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We study Taylor-Couette flow of a glycerol-water mixture containing a wide range of
concentration (0 — 2000 ppm) of xanthan gum, which induces both shear-thinning and
viscoelasticity, in order to assess the effect of the changes in rheology on various flow
instabilities. For each suspension, the Reynolds number (the ratio of inertial to viscous
forces) is slowly increased to a peak value of around 1000, and the flow is monitored
continuously using flow visualisation. Shear-thinning is found to suppress many elasticity-
controlled instabilities that have been observed in previous studies of viscoelastic Taylor-
Couette flow, such as diwhirls and disordered oscillations. The addition of polymers
is found to reduce the critical Reynolds number for the formation of Taylor vortices,
but delay the onset of wavy flow. However, in the viscoelastic regime (> 1000 ppm
concentration), the flow becomes highly unsteady soon after the formation of Taylor
vortices, with substantial changes in the waviness with Reynolds number, which are
shown to be highly repeatable. Vortices are found to suddenly merge as Reynolds number
increases, with the number of mergers increasing with polymer concentration. These
abrupt changes in wavelength are highly hysteretic and can occur in both steady and
wavy regimes. Finally, the vortices in moderate and dense polymer solutions are shown
to undergo a gradual drift in both their size and position, which appears to be closely
linked to the splitting and merger of vortices.

1. Introduction

Taylor-Couette flow occurs between two concentric cylinders, one or both of which is
rotating, and has been of interest to the fluids community, rheologists, process engineers
and mathematicians over the past century (Taylor 1923; Donnelly 1991). This is in part
motivated by the fact that, in spite of its simple configuration, Taylor-Couette flow of
Newtonian fluids can yield a vast array of complex dynamics, including a wide variety of
steady and unsteady flow states (Andereck et al. 1986; Coles 1965), mode competition
(Dutcher & Muller 2009), chaos (Akonur & Lueptow 2003) and transition to turbulence
(Grossmann et al. 2016; Gul et al. 2018). In the relatively simple case in which the outer
cylinder is fixed, the system can be characterised using only the Reynolds number

id
Re = 271¢, (1.1)
I
where p and p are the fluid density and dynamic viscosity, respectively, w is the rotation

speed, r; are the radius of the inner cylinder, and d is the gap between the inner and
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outer cylinder radii (d = 7, — r;). Likewise, the system geometry can be expressed
using two non-dimensional groups; the radius ratio, = r;/r,, and the aspect ratio,
I' = L/d, where L is the cylinder length. When the Reynolds number is low, the flow
is characterised by uniform shear (Circular Couette Flow, CCF), and at a critical point,
Re,, the flow becomes unstable and a series of toroidal vortices form along the fluid
annulus (Taylor Vortex Flow, TVF). Further increases in Re cause this state in turn to
become unstable and undergo oscillations (Wavy Vortex Flow, WVF). If the Reynolds
number is increased further, additional frequencies appear, inducing a more complicated
unsteady flow (Coughlin & Marcus 1992; Imomoh et al. 2010), until the flow ultimately
becomes turbulent. Because of this rich set of dynamic states, Taylor-Couette flow has
been widely used as a means to study flow transitions and instabilities (Fardin et al.
2014).

This has also served as a motivation to study Taylor-Couette flow of non-Newtonian
fluids, as it allows the effects of various rheological parameters on the flow stability to
be examined (Muller 2008). One of the most common features of non-Newtonian fluids
is shear-thinning, which is observed in many polymer solutions (Larson & Desai 2015),
cell cultures (Cagney et al. 2017) and particle suspensions (Mueller et al. 2010), and is
characterised by a viscosity that scales with strain rate, ju ~ 4™, where ¥ is strain rate
and n is the flow index (with n = 1 for Newtonian fluids). This can lead to spatial and
temporal variations in viscosity, requiring the use of a reference viscosity to calculate the
Reynolds number; in Taylor-Couette flow, it is common to define Re with respect to the
viscosity found at the ‘nominal’ strain rate, wr;/d.

Several researchers have addressed the effect of shear-thinning on the critical Reynolds
number for the formation of Taylor vortices, predicting a decrease in Re, with increased
shear-thinning for large values of 1 (i.e. when curvature effects are small) (Coronado-
Matutti et al. 2004; Caton 2006; Ashrafi 2011), which has been supported by various
numerical and experimental studies (Lockett et al. 1992; Khali et al. 2013; Cagney &
Balabani 2019b). Bahrani et al. (2015) found that for a very large gap, n = 0.4, shear-
thinning led to an increase in the wavelength of Taylor Vortex Flow (i.e. a decrease in
the number of vortices), in agreement with their predictions from linear stability theory.
Escudier et al. (1995) also observed an increase in wavelength associated with shear-
thinning, and using laser-Doppler velocimetry showed that the non-Newtonian rheology
affected the structure of individual vortices, noting an increase in the asymmetry between
the strength of the inward and outward jets between vortices. They also found that for
the two shear-thinning fluids they examined (aqueous suspensions of xanthan gum and
a Laponite/CMC blend, the latter of which was also thixotropic), the vortices exhibited
a slow axial drift, which they assumed to be a steady-state process.

Recent work by the current authors (Cagney & Balabani 2019a,b), using Particle-
Image Velocimetry and flow visualisation to study Taylor-Couette flow of xanthan gum
solutions, showed that shear-thinning also altered the wavy state, inducing significant
variability in the amplitude of the waves along the axis, despite the relatively small
aspect ratio, I' = 12.97. With increased shear-thinning, the spacing of vortices became
increasingly irregular as Re increased, similar to the drift noted by Escudier et al. (1995),
suggesting that as well as increasing the global wavelength of the flow, shear-thinning
caused the wavelength to become more variable along the cylinder axis. The wavelength
was also found to change as Re was slowly increased, via the sudden creation and
destruction of vortices (Cagney & Balabani 2019a). Such transitions have been noted
in previous studies of Taylor-Couette flow of Newtonian fluids and are associated with
the wavy instability, which leads to an expansion of vortices near the centre of the flow
cell and a squeezing of vortices near the ends, until the squeezed vortices are ultimately
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destroyed via merger with their neighbours (Park & Crawford 1982; Crawford et al.
1985). Beavers & Joseph (1974) also reported the merger of vortices in a solution of
polyacrlyamide (PAA) in glycerol-water as the Reynolds number was increased, which
they found to be strongly hysteretic, but they did not present information on the rheology
of their fluid.

While several researchers have commented on the lack of experimental data on Taylor-
Couette flow of shear-thinning fluids (Ashrafi 2011; Coronado-Matutti et al. 2004; Al-
ibenyahia et al. 2012; Escudier et al. 1995), by comparison there has been extensive work
in recent decades examining Taylor-Couette flow of viscoelastic fluids. In this case, as well
as inertial and viscous forces, the fluids are affected by elastic forces, typically due to
dispersed polymers. This requires an additional non-dimensional group, the Deborah
number, De = A% (which in this context is equivalent to the Weissenberg number
(Schéfer et al. 2018)), where A, is the relaxation time of the fluid. The relative importance
of viscoelasticity in Taylor-Couette flow is often expressed using the ratio of the Deborah
and Reynolds number, De/Re (Groisman & Steinberg 1998; Latrache et al. 2016), referred
to as the elasticity number.

Early studies showed that the addition of a small amount of polymers led to an increase
in the critical Reynolds number (Rubin & Elata 1966; Denn & Roisman 1969), but as
Muller (2008) notes, the relevance of many early studies is limited due to incomplete
rheological characterisation of the fluids. Several more recent studies have examined the
dynamics of viscoelastic fluids with negligible shear-thinning (Boger fluids). For dilute
suspensions with very weak elasticity, De/Re < 0.023, the elasticity has a non-monotonic
effect on the critical Reynolds numbers for various flow regimes, but these do not differ
significantly from those seen in the Newtonian case (Dutcher & Muller 2011). At slightly
higher elasticity, De/Re > 0.1, the flow transitions from Circular Couette Flow to an
unsteady state, characterised by standing waves (Groisman & Steinberg 1996; Baumert
& Muller 1999; Dutcher & Muller 2013), ‘disordered oscillations’ (Groisman & Steinberg
1996, 1997), elastic turbulence Liu & Khomami (2013) or ‘spiral’ or ‘ribbon’ states
(Thomas et al. 2006; Latrache et al. 2016). At higher values of De/Re, a purely elastic
instability occurs, which is independent of Reynolds number (Groisman & Steinberg
1998) and is characterised by isolated vortex pairs called ‘diwhirls’ (Lange & Eckhardt
2001; Kumar & Graham 2000; Groisman & Steinberg 1997).

Most polymer solutions that are not very dilute or have a highly viscous suspending
medium will exhibit both shear-thinning and viscoelasticity (Larson 1992). Larson (1989)
modelled Taylor-Couette flow of a Doi-Edwards fluid (viscoelastic and strongly shear-
thinning) and found that while the viscoelasticity has a non-monotonic effect on the
critical Reynolds number, shear-thinning was always destabilising. This observation was
supported by the experimental studies of Yi & Kim (1997), who examined the stability
of ultra-dilute solutions of PAA, polyacrylic acid and xanthan gum, and Crumeyrolle &
Mutabazi (2002), who measured the stability of aqueous solutions of polyethyleneoxide
(PEO). Crumeyrolle and Mutabazi found that for dilute concentrations, ¢ < 500 ppm,
the flow exhibited the same progression of states as a Newtonian fluid (CCF — TVF —
WVF), but for ¢ > 500 ppm, they found that the flow transitioned to a standing wave,
which was attributed to an increase in elasticity. However, it should be noted that the
relaxation time was inferred from the flow curves, rather than being estimated directly
from dynamic rheological tests, and therefore the elasticity values may not be reliable.

It is clear that there is a lack of experimental data on Taylor-Couette flow of fluids
that are both shear-thinning and viscoelastic. Specifically, it remains unclear how the flow
states change as Re is increased for shear-thinning, viscoelastic fluids, what rheological
factors control these transitions, how vortex drift and sudden changes in the wavelength
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are affected by the fluid rheology and how repeatable and deterministic these processes
are. In order to address these questions, we present flow visualisation measurements of
Taylor-Couette flow for a series of solutions of xanthan gum in a glycerol-water solvent,
spanning the inelastic (De < 1), weakly-viscoelastic (De/Re < 1) and viscoelastic
(De/Re > 0.1) regimes. The remainder of the paper is structured as follows; details
of our experimental system and the rheological characterisation of the polymer solutions
are presented in §2; the results are discussed in §3, with specific emphasis on the wavy
instability, the splitting and merger of vortices, and the axial drift; additional data is
presented in §4 to confirm that the novel phenomena observed are independent of the
acceleration rate of the cylinder; and finally some concluding remarks are made in §5.

2. Experimental Details

The experiments were performed in a specially designed Taylor-Couette flow cell, which
was comprised of a thin acrylic pipe as the outer cylinder, mounted vertically between
two acrylic plates, and a nylon inner cylinder, which was spray-painted black to reduce
reflections. The inner and outer radii of the flow cell were 21.66 mm and 27.92 mm,
respectively, and it had an axial length of L = 155 mm, yielding a radius ratio of n = 0.77
and an aspect ratio of I" = 21.56. The top acrylic plate was sealed to ensure that a no-
slip condition existed at both the top and bottom of the flow cell, i.e. there was no free
surface.

The flow cell was surrounded by a rectangular chamber in which water was recirculated
via a temperature bath to ensure that the temperature remained constant at 20°C
throughout experiments. The temperature within the flow cell was measured immediately
before and after each experiment, and it was found to vary by less than 0.2°C, with a
variation of less than 0.1°C (i.e. the resolution of the temperature sensor) for the vast
majority of cases.

The inner cylinder was connected to the drive shaft of a stepper motor (Smart Drive
Ltd.), the rotation of which was monitored using an optical encoder with a resolution
of 2000 pulses per revolution, such that the cylinder speed could be controlled to a high
degree of precision.

Experiments were performed using a mixture of three parts deionised water and one
part glycerol, with various quantities of xanthan gum (Sigma Aldrich) ranging from 0 to
2000 ppm, as listed in table 1. Gel permeation chromatography was used to characterise
the xanthan molecules, which were found to have a mean molecular weight of M,, = 1.76x
10% g/mol and a polydispersity of 1.1. A rotary mixer (Silverson) was used to ensure that
the polymer was uniformly dispersed throughout the fluid. The shear rheology of each
fluid was measured three times using a rotational rheometer (ARES, TA Instruments)
and a cup and bob geometry. The flow curves for each fluid are presented in figure 1.
The shear-rheology could be well described using the Carreau model,

n—1

11 () = oo + (o — fiso) (1 + (/\CW)Q)( =) ; (2.1)
where (o, and g are the viscosity values at infinite and zero shear, respectively, A. is
the characteristic time-scale and n is the flow index. The estimated Carreau parameters
for each fluid are listed in table 1.

In order to characterise the viscoelastic properties of each fluid, the storage and loss
moduli (G’ and G”, respectively) were measured using oscillatory shear tests, with a
peak strain of 5%, which prior tests indicated was well within the linear viscoelastic
regime. Figure 2 summarises the variations in the storage and loss moduli with oscillation
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FIGURE 1. Variation in the measured viscosity with strain rate for each of the eight fluids
examined, with varying concentrations of xanthan gum. The lines represent the best fit to the

Carreau model, with the various Carreau parameters listed in table 1. Data points where the
measured stress was less than 0.02 Pa were neglected.

frequency, for each polymer suspension. Elasticity can be said to dominate the rheology
when the storage modulus exceeds the loss modulus, i.e. when G’ > G”. The oscillation
frequency at which this crossover occurs, w,., can be used to define the relaxation time of
the fluid, A, = 27 /w,.. These values are found using figure 2 and are listed in table 1. For
dilute concentrations, ¢ < 100 ppm, G’ does not exceed G” over the range of oscillation
frequencies accessible in the rheometer (up to 100 rad/s), which implies a relaxation time
of A\, < 0.063 s.

Polymer suspensions can be broadly divided into three regimes based on concentration:
dilute suspensions, in which individual polymers do not interact; semi-dilute suspensions,
in which polymer molecules have limited interactions with each other; and concentrated
suspensions, in which the polymers form a network. ? studied the rheology of suspensions
of xanthan gum in pure water, and found that the zero shear viscosity increased in a
power law fashion with concentration, with an greater slope in the concentrated regime
and a kink (a sudden increase followed by a slight plateau) at the boundary between
the dilute and semi-dilute regimes. Similarly, they found the relaxation time increased
in a power law fashion with ¢ in the dilute and concentrated regimes (with the sharpest
growth in the concentrated regime), and remained roughly constant in the semi-dilute
regime (with a slight decrease at the onset of the semi-dilute regime).

As the solvent has a significant effect on the rheology of polymer suspensions, the
boundaries between the regimes in our case will not be the same as those identified
by ?. However, figure 3 indicates that our suspensions of xanthan in glycerol-water
mixtures exhibit very similar behaviour; the zero shear viscosity increases with polymer
concentration, has a kink at relatively low concentration (¢ ~ 100 ppm) and increases
very sharply at high values (¢ 2 500 ppm). Likewise, both the relaxation time and the
Carreau time-scale remain roughly constant in the region ¢ ~ 100 — 500 ppm, before
increasing sharply for ¢ 2 500 ppm. Based on these trends, it is possible to classify the
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FIGURE 2. Variation in the storage (G') and loss (G”) moduli with oscillations frequency for each
of the eight polymer solutions. The open symbols denote the loss moduli, and the closed symbols
denote the storage moduli. The relaxation time is defined based on the oscillation frequency at
which the magnitude of the G’ exceeds that of G”, which only occurs for ¢ > 100 ppm, (c) and

(d). The tests were performed using a maximum applied strain of 5%.
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FIGURE 3. Variation in the zero shear viscosity (a) and the relaxation and Carreau time-scales
(b) as a function of polymer concentration. The dashed grey lines indicate the approxiamte
boundaries between the dilute (D), semi-dilute (SD) and concentrated (C) regimes, based on
qualitative comparison with the rheological measurements of ? for xanthan gum in pure water.
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polymer suspensions studied here into different regimes: solutions with ¢ < 100 ppm are
dilute (o and A, increase with ¢); solutions in the range 100 ppm < ¢ < 1000 ppm
are semi-dilute (A, and A, are independent of ¢ and there is a slight kink in the pg
curve at the onset of the regime); and denser suspensions with ¢ > 1000 ppm are in the
concentrated regime (., A, and pg all increase sharply with ¢).

For each fluid, a series of measurements were performed in which the cylinder was
slowly accelerated from rest at a fixed rate, as listed in table 2. The maximum speed
was chosen such that the maximum Reynolds number was above 1000, with Re defined
using the Carreau viscosity (equation 2.1), assuming a nominal strain rate of ¥ = wr;/d,
as has been used in previous studies (Bahrani et al. 2015; Coronado-Matutti et al. 2004;
Lockett et al. 1992; 7). The non-dimensional acceleration rate,

dRe  p?rid® dw
dtx — p2 dt’

(2.2)

(where t* = ut/pd? is time non-dimensionalised with respect to the viscous time-scale)
must be kept low to ensure that the flow state is independent of the acceleration rate,
i.e. the system can be treated as quasi-static (Dutcher & Muller 2009). The mean values
of dRe/dt* for each polymer solution are listed in table 2, along with the value at onset
of Taylor Vortex Flow, (dRe/dt*)..

It should be noted that the non-dimensional acceleration rates listed in table 2 are
all above unity, and as such, the experiments are not quasi-static as defined by Dutcher
& Muller (2009) and may be influenced by the acceleration rate of the inner cylinder.
In many other studies, authors choose to use a high viscosity solvent, which allows for
higher acceleration rates and shorter experiments, as well as simplifying the physics
by suppressing shear-thinning effects. However, examining the effects of shear-thinning
rheology as well as viscoelastic effects is a central aim of this study, thus necessitating
a relatively low viscosity. This problem is compounded by other experimental factors
which prevent the use of very long experiments, including the desire to continuously
monitor the flow throughout each experiment at a sampling rate that is sufficiently high
to capture all relevant frequencies, the limited camera memory, the need to avoid any
noticeable sedimentation of the flakes used for visualisation at low rotation speeds (i.e. in
the CCF regime), particularly at low concentration suspensions. However, for the highest
concentration solution, it was possible to perform a very long experiment over the course
of several hours in which dRe/dt* was maintained at a very low magnitude (below 0.05),
in order to ensure that the existence of the various phenomena discussed in this paper
were not reliant on the choice of acceleration rate. These experiments and results will be
discussed in §4.

The acceleration rate can be expected to affect the results of parameters such as
the critical Reynolds number, as will be discussed later, especially in dilute suspensions
(¢ < 50 ppm), where (dRe/dt*),. can be large (table 2). However, we note that estimates
of Re,. for the Newtonian case (for which (dRe/dt*). = 5.94), were within 42 of the
theoretical predictions for this radius ratio (?7).

For each polymer suspension, after the cylinder rotation speed was gradually increased
and the maximum Reynolds number was reached, the cylinder rotation speed was held
constant for approximately five minutes to allow the data to be saved from the camera,
and the cylinder was then decelerated using the same magnitude of acceleration as in the
ramp-up stage, in order to study the effects of hysteresis. Following this, the accelerating
stage of the measurements was repeated a number of times (Niests in table 2) under the
same conditions to assess the repeatability of the dynamics.
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FIGURE 4. Sketch of the test-section and flow visualisation system used, showing the flow cell,
the axis of rotation of the inner cylinder, the light source and the camera.

The flow was visualised by adding a small quantity (volume fraction of ~ 107%) of
reflective flakes of mica and illuminating the flow using a white LED (SugarCUBE,
Edmund Optics) as indicated in figure 4. The mica flakes are small and highly anisotropic,
such that they align with the flow. As the amount of light scattered by the flakes
strongly depends on their orientation, the flakes represent a useful means of visualising
the direction of the flow (Dutcher & Muller 2009; ?; ?; 7). For such small volume fractions,
the flakes had a negligible effect on the fluid viscosity, which was confirmed using rheology
measurements.

Images were acquired using a Phantom Miro 340 camera along the entire span of the
flow cell at a fixed frame rate (table 2). The frame rate was at least three times the
maximum rotation speed of the cylinder and could resolve all the frequencies present in
the flow. Each image had a size of 2560 x 16 pixels (2224 of which spanned the flow cell).
All images were averaged to form a single profile along the axial direction of 2224 pixels,
and all the profiles acquired as the cylinder accelerated were compiled into a matrix,
which we refer to as a ‘flow map’. A similar approach has been used by previous authors
in the literature (Bahrani et al. 2015; Coronado-Matutti et al. 2004; ?; 7).

For Carreau fluids, the degree of shear-thinning depends on the strain rate, with the
fluid behaving as Newtonian at very low or high strain rates. This means that the degree
of shear-thinning will vary throughout an experiment as the Reynolds number increases.
Figure 5 shows how the ‘effective’ flow index, which is given by the local slope of the
stress-strain curve in log-log space (Coronado-Matutti et al. 2004),

Cambridge University Press
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c n Moo 1o Ac Ne Ar Suspension
[ppm] [mPa s] [mPas] [s] [s]
0 1 2.56 2.56 0 1 0 n/a

20  0.282 293 4.36 0.13 0.901 < 0.0628 Dilute

50 0.387 3.21 7.18 0.15 0.82 < 0.0628 Dilute
100 0473 3.31 24.1  0.639 0.72 0.165 Semi-dilute
200 0.477 3.43 32.6 0.5 0.681 0.17 Semi-dilute
500 0.49 3.24 122 1.02 0.6 0.134 Semi-dilute
1000 0.453 3.66 558 4.17 0.546 1.87 Concentrated
2000 0.352 5.07 3809 13.6 0.463 14.3 Concentrated

TABLE 1. Rheological properties of each of the solutions of xanthan gum in glycerol-water
studied. The mean effective flow index, 7., is obtained by averaging the value of n. (equation
2.3) found over the range Re = 50 — 1000. The suspension regime is characterised based on the
trends in po, Ac and A, as shown in figure 3.

c fs  wWmae dw/dt (dRe/dt™) ..~ (dRe/dt"), (De/Re), . .. Regime Niests
[ppm] [Hz] [rad/s] [rad/s?]

0 24 19.62 0.0064 5.94 5.94 <1 Inelastic 3
20 24 2445 0.0253 13.3 9.86 <1 Inelastic 4
50 24 30.34 0.0255 7.86 4.62 <1 Inelastic 3
100 24 40.65 0.0383 5.92 2.88 0.0256 Weakly-viscoelastic 3
200 30 4786 0.051 5.23 2.15 0.0327 Weakly-viscoelastic 3
500 40 77.07 0.0957 3.46 1.31 0.044 Weakly-viscoelastic 3
1000 50 104.9 0.153 2.81 0.91 0.883 Viscoelastic 4

2000 160 137.4 0.255 2.57 0.72 9.29 Viscoelastic 5

TABLE 2. Experimental conditions used in the measurements for each polymer solution.
The mean quantity of De/Re is found by averaging the values in figure 5 over the range
Re = 50 — 1000. The number of tests, Niests, refers to the repeated measurements in which
the Reynolds number was slowly increased (i.e. it does not include tests in which the cylinder
was decelerated).

_ Ologp
~ Olog¥

1, (2.3)

Te

varies throughout each experiment. As can be seen from table 1, the estimates for n
and A. can be somewhat scattered, due to the difficulty in acquiring reliable rheological
measurements at low strain rates when the magnitude of stress is low. While the estimates
of n vary non-monotonically with polymer concentration, in opposition to the trends seen
from the flow curves in figure 1, the effective flow index decreases with ¢ and represents
a more useful means of characterising the degree of shear-thinning in each fluid. Table 1
lists the mean effective flow index, e, which is found by averaging the values of n. that
occur over the range Re = 50 — 1000.

Figure 5(b) shows the variation in the elasticity as a function of Reynolds number
for the cases in which the relaxation time was large enough to be measured. The trends
in figure 5(b) show that the change in De/Re are relatively small over the course of
each experiment, but that the importance of the elasticity changes dramatically over the
range of ¢ examined. Using this data, the measurements can be divided into three regimes;
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FIGURE 5. Variation in the effective flow index, found using equation 2.3 and the Carreau
parameters listed in table 1 (a) and the elasticity for each fluid (b). Fluids for which the relaxation
time was very small (A, < 0.063 s) are omitted from (b).
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FIGURE 6. Critical Reynolds number for the onset of Taylor Vortex Flow, as a function of polymer
concentration (a), effective flow index (b) and elasticity (c). Each data point corresponds to a
single test run, as detailed in table 2. The effective flow index is defined in equation 2.3 (b).

inelastic (¢ < 50 ppm, De < 1), weakly-viscoelastic (¢ = 100 — 500 ppm, De/Re < 1),
and viscoelastic (¢ = 1000 ppm, De/Re 2 0.1), as indicated in table 2.

These regimes are equivalent to dilute, semi-dilute and concentrated regimes, as
discussed with respect to the rheology (table 1).

3. Results
3.1. Owverview

The critical Reynolds number for the onset of Taylor Vortex Flow found for each of the
experiments is summarised in figure 6. For completeness, Re, is presented as a function
of the polymer concentration, as well as the effective flow index and elasticity ratio,
allowing the effect of both the shear-thinning and viscoelastic rheology to be examined.
The observed critical Reynolds numbers for the Newtonian case range between 89.3 and
92.3, which are in good agreement with the analytical predictions of ? (Re., = 91.2) and ?
(Re. = 89.8) for this radius ratio. There is a general trend of decreasing Re, with polymer
concentration, although the data show more scatter for the xanthan solutions compared
to the Newtonian case. Some of the scatter at low concentrations may be a result of the
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FIGURE 7. Flow maps for solutions of xanthan gum in a glycerol-water solvent, for various
concentrations. The vertical dashed white lines denote the critical Reynolds numbers for the
onset of Taylor Vortex Flow and the wavy instability, while the large white circles indicate
merger of neighbouring vortices. The corresponding frequency maps are shown in figure 8.

rate of change of Re (table 2), as the experiments are not quasi-static (Dutcher & Muller
2009)red, with non-dimensional acceleration rates ranging from 0.72 to 9.86, depending
on the solution.

The tendency for shear-thinning to cause a reduction in the critical Reynolds number
has been noted in previous studies (Escudier et al. 1995; Lockett et al. 1992; Alibenyahia
et al. 2012; Cagney & Balabani 2019b). The elasticity also appears to be associated with
a progressive destabilisation of the flow (figure 6(c)), which is not always the case for
Boger fluids (Muller 2008), although it is not straightforward to disentangle the effects
of shear-thinning and viscoelasticity.

Sample flow maps for each of the solutions are presented in figure 7. The dashed
vertical lines denote the boundaries of the different flow regimes, with the left-most line
in each case indicating the transition from Circular Couette Flow to Taylor Vortex Flow
(Re.) and the other line at high Reynolds number indicating the transition to Wavy
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Vortex Flow (Recq,). These maps reveal spatial variations in the flow, but it is difficult
to detect by visual inspection the onset of any unsteadiness or WVF. In order to do this,
it is helpful to view the maps alongside their corresponding ‘frequency maps’, which are
shown in figure 8. These were compiled by dividing the flow maps into segments of 256
columns (with an overlap of 50%), and calculating the average Fast Fourier Transform
(FFT) for each row in each segment, before compiling all the averaged spectra to form
a stack (in a similar manner to how the instantaneous images were averaged to compile
the flow maps).

By firstly examining the Newtonian case in figure 7(a) and 8(a), we can see that for
Re < Re,, Circular Couette Flow dominates, and all the flakes are aligned with the
streamlines, leading to a uniform texture in the flow maps (with slight axial variations
due to the positioning of the light source), while the frequency maps indicate that
any unsteady energy in the flow is limited to low frequencies. As the rotation speed
is increased, Gortler vortices form at either end of the flow cell, before the flow becomes
unstable at Re.. The formation of the toroidal Taylor vortices leads to the appearance
of several light and dark horizontal banks in the flow map. As the Reynolds number
is increased up to 1000, the flow map does not indicate any further clear changes, but
at Re = 428, a dark band appears at f/Npq = 0.3 in the frequency map (where
Nipmaz = 2TWmaz, and N is the cylinder rotation speed in Hz), indicating the onset
of Wavy Vortex Flow. As the Reynolds number is increased further, the frequency of
the wavy instability also increases, appearing to maintain a fixed proportionality to the
rotation speed.

Similar trends are observed in the flow and frequency maps for the relatively weak
xanthan solutions of 20 — 100 ppm (figures 7(b-d) and 8(b-d)). In these cases, non-
Newtonian rheology means that the Reynolds number is no longer linearly dependent
on the cylinder rotation speed, and hence the dashed lines indicating the rotation speed
in the frequency maps are no longer linear. The only significant changes relative to
the Newtonian case occur at ¢ = 100 ppm, where we observe a sudden increase in
the critical Reynolds number for the onset of the wavy instability and a reduction in
the wavy frequency at which it occurs. At slightly higher concentrations (figure 8(e-f)),
the frequency maps continue to be dominated by single ridges. However, there are some
notable differences, with the ridges observed for the 200 ppm and 500 ppm solutions being
less clearly defined and appearing to meander slightly without a fixed proportionality with
the rotation speed. Other weak ridges can also be seen, indicating a more disorganised
and less periodic flow. This increased disorganisation is apparent in the corresponding
flow maps in figure 7, particularly at high Reynolds number where the spacing of vortices
varies gradually with Re. There are also two points in each flow map (highlighted by the
large white circles), where the number of bands is abruptly reduced, corresponding to
the sudden disappearance of a vortex pair, as the vortices merge with their neighbours
of opposite sign.

Finally, in the most dense xanthan solutions (figures 7(g-h)), several merger events
occur and much of the flow maps are characterised by gradual fluctuations in the position
of vortices. This drift in the size and position of vortices is evident in regions of the
maps near merger events, but also appears to occur independently of the vortex-merger
phenomenon; for example, in the range Re = 200 — 400 in both maps, the bands are
no longer purely horizontal, indicating the gradual contraction of some vortices and the
widening or dilation of others. The merger and drift processes result in a relatively small
number of very wide vortices by Re = 1000, with the largest vortices being found near
the centre of the flow cell, i.e. z/d ~ 11.

There is also a significant reduction in the critical Reynolds number for the onset of
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FI1GURE 8. Frequency maps for solutions of xanthan gum in a glycerol-water solvent, for various
concentrations. The dashed line represents the rotation speed of the inner cylinder (which does
not vary linearly with Reynolds number for the non-Newtonian cases), while the dark regions
indicate frequencies at which significant energy is occurring. The scales are arbitrary. See text
for a description of how the frequency maps are calculated. The corresponding flow maps are
shown in figure 7.

wavy flow, which now occurs relatively soon after the formation of Taylor vortices. The
frequency maps (figures 8(g-h)) show that the nature of the wavy instability has also
been significantly altered, with multiple bands present throughout different ranges of Re.
The increase in the disorder in the frequency maps and the amount of energy occurring
at frequencies other than harmonics of IV or the primary ridge for ¢ > 200 ppm is likely
to be associated with the corresponding increase in De/Re, as the effective flow index
does not change significantly (table 1).

Perhaps the most significant observation from the flow and frequency maps is not the
change in the dynamics as the concentration is increased, but the similarity between the
dynamics in all eight fluids. While there are clear changes in the dynamics in each case,
the overall pattern of the flow maps remains the same, i.e. a transition from Circular
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FIGURE 9. Comparison between the flow regimes observed in the current study ( as seen in figure
7), and the boundaries identified by Groisman & Steinberg (1998) for a viscoelastic fluid with
negligible shear-thinning. The black lines with circular markers denote the regime boundaries
measured by Groisman & Steinberg, and the thick lines are from the current experiments, with
line style and colour denoting the different regimes encountered. The non-linear relationship
between viscosity and strain rate means that as Re is increased, the experiments follow a curved
path through the Re./Re.o — De/Re plane, starting from the bottom right of the graph.

Couette Flow to Taylor Vortex Flow to a wavy state. This stands in contrast to several
previous studies, which showed that for similar ranges of De/Re (2 0.01), the flow was
characterised by disordered oscillations (Groisman & Steinberg 1996, 1997), standing
waves (Groisman & Steinberg 1996; Baumert & Muller 1999), diwhirls (Lange & Eckhardt
2001; Groisman & Steinberg 1997; Kumar & Graham 2000), or ribbons or spirals (Thomas

et al. 2006).

To demonstrate the differences between the current results and those of previous
studies, figure 9 shows the change in flow regime for the polymer solutions for ¢ > 100 ppm
(i.e. the cases in which the relaxation time could be reliably measured), as a function
of De/Re and Re/Re.o (where Re.o is the critical Reynolds number in the absence
of polymers), along with the regime boundaries reported by Groisman & Steinberg
(1998). The polymer solutions examined by Groisman & Steinberg were very weakly
shear-thinning, with a change in viscosity of approximately 10% over the course of their
measurements, which they neglected, treating the solutions as Boger fluids.

For the weakly viscoelastic fluids in our experiments, the flow transitions from CCF
to TVF at Re/Re.,o ~ 0.8, and the flow does not become unsteady until a much higher
Re. In contrast, for the Boger fluids examined by Groisman & Steinberg, shortly after
entering the TVF regime, the flow transitions to rotating standing waves and finally
to disordered oscillations. The difference between our results and those of Groisman &
Steinberg are even starker for De/Re > 0.1; while the xanthan gum solutions in our
study still follow the path of CCF — TVF — WVF, the Boger fluids transition from
CCF to a state of either diwhirls or oscillating strips at very low Reynolds number before
exhibiting disordered oscillations. Based on the data of Groisman & Steinberg (1998), one
would expect disordered oscillations to occur for almost the entirety of the experiments

for ¢ > 1000 ppm.
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The differences between our experiments and those of Groisman & Steinberg are
unlikely to be attributed to transient effects, because, while the non-dimensional ac-
celeration rates are above unity, they remain relatively small (table 2), especially for
high polymer concentrations (this is confirmed in §4 for the ¢ = 2000 ppm case).

The absence of disordered oscillations, rotating standing waves, oscillatory strips,
diwhirls or any other regime associated with Boger fluids, and the clear differences
between our results and those of Groisman & Steinberg (1998) appear to be related
to the relatively low solvent viscosity in our study. The low solvent viscosity means that
the viscosity component due to the polymers, j1, is more significant, which in turn allows
for the significant shear-thinning behaviour, and it is possible that this shear-thinning
may act to suppress the elastic and inertio-elastic instabilities that have been extensively
described for Boger fluids.

The low viscosity of the solvent may also affect the stability of the system via the first
normal stress difference. Groisman & Steinberg (1998) argued that N; is responsible for
inducing elastic instabilities, and predicted (for a Newtonian fluid) that in the Couette
regime, Ni = —2,up)\,x'yz. In our case, the low solvent viscosity increases the relative
importance of p, and thus is likely to increase the relative strength of N; for a given
value of Re and De (?); therefore, the low solvent viscosity can be expected to promote
elastic instabilities relative to Boger fluids, i.e. the opposite trend to that seen in figure
9. It appears to be unlikely that the normal stresses are responsible for the absence of
elastic instabilities in the current experiments.

In any case, the presence of the polymers induces clear changes in the flow which are of
interest. The most significant changes can be grouped into three categories: (1) changes
in the nature of the wavy instability; (2) the abrupt changes in the wavelength of the
flow which occur via the sudden merger of vortices; and (3) the slow drift of vortices.
These three issues will be explored in turn in the following sections.

3.2. Wawvy Instabilities

The variation in the measured critical Reynolds number for the onset of wavy flow
is shown in figure 10 in terms of the polymer concentration, effective flow index and
elasticity. In contrast to the critical Reynolds number for the onset of Taylor Vortex
Flow, the addition of moderate concentrations of xanthan gum lead to an increase in
Rec,w. As with the critical Reynolds number for TVF, the experimental results show
some scatter, which may be influenced by the magnitude of the rate of change of Re
(table 2) for the dilute cases.

The trend of increasing Re. ,, with concentration ceases as it reaches 1000 ppm, where
Re, ., experiences a dramatic reduction. This effect is unlikely to be explained solely by
differences in the rate of change of Re, and appears to be clearly linked to the growing
importance of elasticity on the fluid rheology; the change in the effective flow index is
relatively small (table 1) for the 1000 ppm and 2000 ppm solutions, but they show a sharp
increase in the elastic time-scale (figure 5(b)). This is consistent with the observation of
many previous researchers that for viscoelastic fluids, the flow transitions directly from
Circular Couette Flow to an unsteady state (Muller 2008; ?; ?).

For the Newtonian fluid (0 ppm) and more dilute solutions, the frequency maps in
figures 8(a-f) indicated a clear relationship between the dominant frequency of the wavy
instability (i.e. the wave speed) and the rotation speed of the inner cylinder. In order
to quantify this relationship, segments of the frequency maps covering the Reynolds
number range shortly after the onset of wavy flow (Re. ., < Re < Rec, + 200) were
examined to identify the non-dimensional frequency, f/N, at which most energy was
occurring. This equated to the frequency of the wavy instability, f,,, which is plotted in
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FI1GURE 10. Critical Reynolds number for the onset of Wavy Vortex Flow, as a function of
polymer concentration (a), effective flow index (b) and elasticity (c). Each data point corresponds
to a single test run, as detailed in table 2.

figure 11 for all the measurements as a function of polymer concentration, flow index and
elasticity. For the Newtonian mixture and dilute solutions, the wave frequency remains
locked at f,,/N = 0.76, before transitioning at 100 ppm to f,,/N ~ 0.48. Returning to
the frequency map for the slightly more dilute case of 50 ppm (figure 8(c)), it can be
seen that at Re ~ 900, the wavy instability undergoes a transition whereby its frequency
changes from f,,/N ~ 0.76, as seen for the Newtonian and dilute fluids, to 0.48, as seen
for the more dense cases (i.e. 200 ppm and 500 ppm). This suggests that the presence
of the xanthan gum chains encourages the wavy instability to operate at a lower relative
frequency, but that this shift is itself Reynolds number-dependent. The fact that the wavy
frequency occurs at either f,,/N = 0.48 or 0.76 for all six solutions with ¢ < 500 ppm,
irrespective of any differences in rheology or experimental conditions, such as the rate of
change of Re, indicates the robustness of the relationship between the non-dimensional
frequency of the wavy instability and the polymer concentration.

As the concentration is increased further and the effects of elasticity become dominant
and Re.,, is reduced, the wavy frequency experiences another reduction (although this
change was not observed in all test runs). However, the frequency maps for the dense
solutions of 1000 ppm and 2000 ppm (figure 8(g-h)) show that the instability is more
complex than in previous cases and characterising the unsteady flow using a single
frequency component may represent an over-simplification of the physics. It is clear
that the addition of polymers for ¢ > 1000 ppm, significantly affects not just the
critical Reynolds number for the onset of the wavy instability, but also the nature of
the instability.

In order to examine the nature of the wavy instability in more detail, the frequency
maps can be examined over a relatively short number of cycles, such that the change
in the Reynolds number is relatively small. Such ‘snapshots’ of the flow map over 20
cylinder revolutions are shown in figure 12 for four polymer solutions at Re = 700. The
changes in Re over the course of each snapshot are less than 6.5. The wavy instability can
clearly be seen in figure 12(a) (the Newtonian case), with several dark ridges undergoing
periodic oscillations. These dark ridges correspond to the inward and outward jets
between vortices, where the flat surfaces of the mica flakes are facing perpendicular to
the direction of light and the viewing angle of the camera, resulting in a lack of reflected
light in the images. The amplitude of the waves tend to be highest near the centre of
the flow cell (z/d = 11), as was noted by Crawford et al. (1985) for a large aspect ratio
(I'=70.4).
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FIGURE 11. Variation in the dominant frequency of the wavy instability with polymer
concentration (a), effective flow index (b) and elasticity (c). The frequency was measured over
the range Rec,w < Re < Rec,w + 200. Each data point corresponds to a single test run, as
detailed in table 2.
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FIGURE 12. Brief ‘snapshots’ of the flow maps at Re = 700 for four suspension of xanthan
gum; 0 ppm (a), 50 ppm (b), 100 ppm(c) and 500 ppm (d).
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FIGURE 13. Brief ‘snapshots’ of the flow maps at various Reynolds number for a solution of
2000 ppm xanthan gum.

It is interesting to note that even within a given region of the flow cell, the amplitude
of the waves is not the same at all jets. In fact, the amplitude appears to alternate,
with every second jet having a relatively large amplitude and every other jet having a
relatively weak amplitude. The no slip condition at the ends means that the first jet near
the ends (i.e. one vortex-spacing away from the end walls) move fluid radially outward
(Imomoh et al. 2010; Cagney & Balabani 2019b); using this information, it can be seen
from figure 12(a) that the wavy instability is strongest at the inward jets and relatively
weak at the outward jets, regardless of the axial location.

The tendency for the waves to occur predominantly at the inward jets can also be
seen in the flow map for the dilute solution of 50 ppm (figure 12(b)). However, as the
concentration is increased further, this trend breaks down and the amplitudes of the
waves appear approximately equal regardless of the direction of the jets (figure 12(c-d)).

Snapshots captured at a range of Reynolds number for the most viscoelastic case
(¢ = 2000 ppm) are shown in figure 13. In many cases, the jets do not appear to follow
a simple sinusoidal motion, reflecting the presence of multiple frequency components, as
was indicated by the frequency map shown previously (figure 8(b)). This is most evident
in the fluctuations at Re = 350 in figure 13(b), where the corresponding point in the
frequency map in figure 8(h) indicate that much of the energy occurs at f/N = 0.25, but
other ridges can be seen in the frequency map in the range 0.25 < f/N < 1.

As well as revealing the complexity of the wavy flow at a given time or Reynolds num-
ber, the snapshots in figure 13 also demonstrate that the instability varies significantly
in both the axial direction and with Re. Shortly after the onset of wavy flow, waves
are visible throughout the flow cell (figure 13(a)), but the appearance and frequency of
the instability has changed dramatically by Re = 350 (figure 13(b)), and by Re = 500
and 600 (figures 13(c-d)), the amplitude of many waves has been damped. While some
periodicity is clearly present, it is not uniformly distributed, as reflected by the presence
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FIGURE 14. Frequency maps found in four repeated experiments for the solution of 2000
ppm xanthan. The distribution of energy in each map is similar, indicating that the various
transitions described here and in previous figures are not the result of random processes, but
are a manifestation of the complex fluid dynamics of the system. The corresponding flow maps
are shown in figure 17 and are discussed in §3.4.

of a single, large amplitude wave appearing in near isolation at z/d = 19.5 in figure 13(c).
The amplitude of the wavy instability has recovered by Re = 800 (figure 13(e)), with
significant waviness at both inward and outward jets near the axial centre. Finally, at
very high Reynolds number (Re = 1000 in figure 13(f)), several waves can be seen, which
are made all the more apparent by the reduction in the number of vortices. However,
in this case, the waves are only observed at the inward jets, as was observed for the
Newtonian fluid.

The changes shown in figure 13 cannot be attributed to random fluctuations, as
repeated experiments shown in figure 14 indicate that these complex transitions are
largely repeatable. The relative complexity of the dense solution of xanthan gum is likely
to be associated with the growing importance of elasticity. However, unlike the random
‘elastic turbulence’ seen in highly viscoelastic fluids (7), the transitions seen here for
¢ = 2000 ppm are in fact surprisingly predictable, illustrating the complexity of the
dynamics of dense polymer suspensions at high Re.

3.3. Vortex Merger and Splitting

The axial wavelength of Taylor-Couette flow is characterised by the number of vortex
pairs present, which is in most cases constant. However, it is clear from some of the
results presented here that this is no longer the case when the concentration of polymers
exceeds around 100 ppm and vortices appear to suddenly merge as Re is increased (figure
7). In order to characterise how the wavelength changes with Reynolds number for each
of the solutions tested, the flow maps were first averaged into segments of ARe = 10
to reduce the effect of noise or wavy flow, and the FFT was applied to each column of
the averaged flow map to determine the dominant wavelength at that Reynolds number.
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FIGURE 15. Variation in the wavelength of the flow maps as a function of Reynolds number, for
the eight fluids tested. The wavelength was determined using the peak of the FFT calculated
from the flow map (averaged into bins of ARe = 10), as described in the text.

The data points in the flow map within one diameter of either end were neglected, which
meant that the FFT captured the effect of the gradual dilation of the vortices near the
centre of flow cell as well as any sudden changes in wavelength. This meant that A (Re)
is not constrained to be a rational number (L divided by the number of vortex pairs),
but instead can vary smoothly, as would occur for an infinitely long flow cell.

For the low concentration solutions (figure 15(a)), the wavelength shows relatively little
variation with Re, which is consistent with visual inspection of the flow maps in figure 7.
The dilute polymer solutions (¢ = 20 — 100 ppm) exhibit some fluctuations, reflecting a
slight drift in the position of vortices that can be seen in figure 7(b-d), but the magnitude
of the change is small. The wavelength of the dilute polymer solutions in figure 15(a) is
larger than that in the Newtonian case, which can be attributed to the shear-thinning
rheology of the working fluids in the present study, as noted in previous experimental
and theoretical studies (Alibenyahia et al. 2012; Bahrani et al. 2015; Cagney & Balabani
2019b).

The variations in A are much more complex when the xanthan gum concentrations are
higher and the role of elasticity becomes important (figure 15(b)). For the 200 ppm case,
A remains approximately constant for Re < 600, before undergoing a sharp increase at
Re ~ 660 and another increase at around 800, which coincide with the merger events
seen in Figure 7(e). Likewise, the A signal for the 500 ppm solution is relatively constant
until merger events cause variations at Re ~ 550 and 850. Gradual changes in A can also
be observed slightly before and following these events.

For the strongly viscoelastic cases (¢ > 1000 ppm), A exhibits several sharp changes.
Although the general trend is for the wavelength to increase with Re, the effect is not
monotonic. This can be understood by referring to the corresponding flow maps in figures
7(g-h), where the various merger events cause vortices up to several d away to adjust
their size and position, contributing to the general unsteadiness in the A signals. Some
gradual fluctuations in the wavelength can also be seen for ¢ > 1000 ppm, particularly
in the range Re = 150 — 400, which are not associated with vortex merger events, and
will be explored in more detail in §3.4.

The sensitivity of the vortex merger events to hysteresis is examined in figure 16, which
compares the flow maps for four solutions obtained when Re is increasing (left column)
and decreasing (right column). The most notable difference between the accelerating and
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FIGURE 16. Flow maps for four concentrations of xanthan; 20 ppm (a); 50 ppm (b); 100 ppm
(c¢) and 200 ppm (d). The flow maps in the left column (i) were acquired as the cylinder was
accelerated (and are the same data as presented in figure 7(e-h)), after which the Reynolds
number was held constant for approximately five minutes, before the cylinder was decelerated
using the same magnitude acceleration rate to acquire the data presented in the right columns

(ii).

decelerating flow maps is the absence of any vortex mergers for Re 2 200 in the latter
case. For the 200 ppm solution, as Re is increased, two mergers take place, leading to
an increase in wavelength, but as Re is decreased the flow retains this larger wavelength
until a vortex pair splits at Re ~ Re,, reducing the wavelength of the flow briefly before it
reverts to Circular Couette Flow. For the other three cases shown in figure 16(b-d) with
larger concentrations of xanthan, the splitting process is more noticeable; as the cylinder
is decelerated the flow again retains its large wavelength until close to Re., at which
point several vortices split over a very narrow Re range. Comparison of the flow maps
in the left and right columns of figure 16 indicates that over the range Re &~ 200 — 500,
more than one wavelength is stable. Such hysteresis in the number of vortices was also
noted by Beavers & Joseph (1974) for a solution of PAA that was both shear-thinning
Cambridge University Press
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FIGURE 17. Flow maps found in four repeated experiments for the solution of 2000 ppm xanthan.
The white circles indicate the points where vortex merger occurs. The corresponding frequency
maps are shown figure 14.

and viscoelastic, and in the simulations of a (Newtonian) Oldroyd-B fluid by Lange &
Eckhardt (2001). The absence of such merger events in the literature on Taylor-Couette
flow of inelastic, shear-thinning fluids cited in §1, and its occurrence in the Newtonian
fluid modelled by Lange & Eckhardt (2001) implies that the process may be a consequence
of the viscoelasticity rather than the shear-thinning.

In contrast to the transitions associated with the wavy instability, which appeared to
be highly repeatable, the vortex merger events are not entirely repeatable, as can be seen
in figure 17, which shows four repeated experiments performed using an identical protocol
(i.e. the same fluid, temperature, acceleration rate and maximum rotation speed) for the
2000 ppm solution. There is a clear tendency for merger to occur at certain points, e.g.
near the centre shortly after Re, and near the top of the flow cell at Re ~ 600, but the
sequence of merger events cannot be said to be repeatable. There are clear similarities
between the merger locations in Tests 3 and 4 (figures 17(c-d)), but the comparison with
Test 1 and 2 (figure 17(a-b)) is less clear (although some similarities remain, such as the
merger near the top of the flow cell at Re = 550).

The differences in the locations of merger events shown here make the similarity of the
four corresponding frequency maps (figure 14) all the more striking, and suggest that the
merger of vortices has relatively little influence on the frequency spectra of the overall
flow.

The locations of the various vortex merger and splitting events observed from repeated
experiments are summarised in figure 18, where the different symbols refer to the different
tests runs performed (under identical conditions). There is a general tendency for the
merger events from different runs to cluster in certain regions of the z/d — Re plane.
This is particularly evidence for the 500 ppm solution (figure 18(b)), but clusters can
also be seen at Re =~ 550, z/d =~ 16 and Re ~ 800, z/d ~ 2 in figure 18(c) and at
Re ~ 600 and 900, z/d ~ 20 in figure 18(d). A general tendency can be inferred from
figure 18 for merger to occur near the top or bottom of the flow cell (as was suggested by
Crawford et al. (1985) for Newtonian flows), especially for ¢ > 500 ppm. However, when
the cylinder is decelerating, vortex splitting tends to be distributed along the axis.
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FIGURE 18. Summary of the axial locations and Reynolds numbers at which merger or splitting
of vortices was observed. All tests were performed under identical conditions, with the exceptions
of the open symbols in which the Reynolds number was decreasing with time.

Similar vortex merging processes have been observed at Re < Re. in viscoelastic
suspensions of polymers in which the instability is controlled by elasticity and the flow is
dominated by isolated diwhirls (Groisman & Steinberg 1998). However, it is important to
note that, neglecting the merger events which are sometimes observed shortly after the
formation of the Taylor vortices (i.e. at Re ~ Re..), the first vortex merger always occurs
at Re ~ 500, regardless of the concentration or rheology (and despite the vast difference
in De/Re). While the occurrence of merger or splitting is clearly linked to the rheology,
the point at which these events take place appears to be independent of the magnitude of
the elastic forces, suggesting that these events are controlled by shear-thinning rheology
(as the shear-rheology is incorporated into the definition of the Reynolds number) rather
than viscoelastic effects.

Vortex merger in Newtonian Taylor-Couette flow has been associated with the wavy
instability, which causes a progressive reduction in the width of vortices, until at a critical
point a vortex becomes too thin and is subsumed as the vortices on either side merge
(Park & Crawford 1982; ?; Crawford et al. 1985). However, in some cases, such as in
the 500 ppm solution at Re & 560 and in the viscoelastic regime (¢ > 1000 ppm) near
Re., vortex merger occurs in the absence of the wavy instability. In fact, when the flow
is decelerating, vortex splitting is observed only in the TVF regime. Thus it can be
concluded that at least some of the jumps in wavelength seen in the polymer solutions
cannot be attributed to the same mechanism as has been described for Newtonian fluids.

In order to investigate the physical mechanism responsible for vortex merger, we
examine two cases involving merger occurring before and after the onset of wavy flow.
Figure 19 shows details of the flow map of a merger event shortly after the formation of
the Taylor vortices (before the onset of wavy flow) and one at a relatively high Reynolds
number when the flow is unsteady.

A noticeable difference between the two cases is that in the former, three bright bands
merge to form a single line (figure 19(a)), while in figure 19(b), it is three dark bands
that merge. This is a consequence of the different initial orientations of flakes prior to
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(a) 2000 ppm, Test 5
T AT R ——

FIGURE 19. Detail of the flow maps for two cases of vortex merger in a ¢ = 2000 ppm solution;
before the onset of wavy flow (a) and when the flow is unsteady (b).

each merger event, i.e. mostly aligned parallel to the cylinder surface at onset of TVF
at Re &~ 70 in figure 19(a), and mostly aligned around fully developed Taylor vortices in
figure 19(b).

The removal of a recently-formed vortex pair shown in figure 19(a) appears to occur
via a gradual reduction in size, starting at around Re = 70, as the neighbouring vortices
above and below widen, before the pair is completely diminished by Re = 77 and the
wavelength has been increased. The flow map indicates that this process does not involve
any spirallling motion as the neighbouring vortices of opposite sign become imbalanced
and develop a net circulation as they merge, as occurs in quiescent fluid for two opposite-
sign vortices of different magnitude circulation (?). Instead, it is likely to be the same
process as reported in the axisymmetric (2D) simulations of Lange & Eckhardt (2001)
for De/Re = 0.15 and Re = Re,.

In contrast to this gradual, smooth process, the merger event shown in figure 19(b) for
Re > Rec,, is highly unsteady. As the Reynolds number is increased from 695 to 710,
the three jets (now represented by dark bands) gradually move closer together, possibly
as a result of the general tendency noted earlier for most vortices near the centre of the
flow cell to grow in size, resulting in the squeezing of other vortices. All three jets show
some waviness, but even long before the merger event at Re =~ 700, the amplitude and
frequency of the waves do not appear to be the same for each jet. As the jets move closer
together, the amplitude of the wave at the centre jet increases dramatically at Re ~ 705,
and by Re =~ 712 the amplitude is comparable to the width of the vortices above and
below it. Finally, there is a sudden merger at Re = 714, and thereafter only a single jet
is present. This new jet fluctuates with a large amplitude and at a significantly lower
frequency than the wave at the centre jet prior to the merger near Re = 705 — 714,
demonstrating that such merger events can have a significant effect on the nature of the
wavy instability. These jumps in wavelength may be responsible for some of the many
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FI1GURE 20. Detail of the flow map for the 1000 ppm solution in which the Reynolds number is
decreasing, showing the splitting and formation of new vortices. The entire flow map is presented
in figure 16(d,ii). Note that Re decreases from left to right.

changes in the nature of the wavy instability along the cylinder axis that can be seen in
the snapshots in figure 13.

It seems plausible that the merger events which take place for Re > Re, ,, are governed
by the same mechanism envisaged by Park & Crawford (1982) (i.e. the amplitude of
the waves growing large enough to subsume neighbouring vortices), but in this case the
process also involves the shrinking of vortices due to a gradual drift, rather than occurring
solely due to the effects of the wavy instability. This distinction may explain the relative
unpredictability of the merger events in polymer solutions.

We can use the same approach to study the inverse process - the splitting and formation
of new vortices as Re is decreased. Figure 20 shows a detailed section of the flow map
for the ¢ = 1000 ppm solution as Re is decreased from 121 to 83 (note that Reynolds
number decreases from left to right). At Re = 121, the flow appears to be stable, with the
exception of some local waviness at a vortex pair near z/d = 16, indicated by the label
‘Al’. By Re =~ 112, the amplitude of the local waviness has grown, and the flow map
develops a cross-hatched pattern; this represents the spiralling of neighbouring vortices
which was noted to be absent in the vortex merger described above. The vortices have
ceased spiralling by Re = 106 and by Re = 83 two newly formed, stationary vortices are
present (labeled ‘A2’ in figure 20).

The formation of the new vortex pair and the accompanying spiralling motion induces
unsteadiness at points along the flow cell, and by Re = 106 the vortex pair directly below
(labeled ‘B1’) has also split and undergoes a spiralling motion for Re ~ 105 — 90, after
which it has split to form four distinct vortices (labeled ‘B2’). The spirallling of the B1
vortices appears to trigger unsteadiness and splitting in the vortices at lower axial height
(z/d =4 —11), suggesting that the splitting of a single vortex pair can induce a cascade
of subsequent splitting events, which is responsible for the large number of new vortices
formed in a narrow range of Reynolds number close to Re. seen in the right column figure
18.
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FIGURE 21. Variation in the maximum cross-correlation coefficient calculated for successive
segments of the flow maps (averaged into segments of ARe = 25), with Reynolds number. The
magnitude of R4 provides a measure of the consistency of the flow structure, with a decrease
in Ryq. indicating that drift is occurring.

3.4. Wawvelength Drift

Throughout many of the flow maps in the weakly-viscoelastic and viscoelastic regimes
presented in this study, a very prominent feature is the gradual drift in the size and
position of vortices. It can be seen from figure 16, which shows the effect of hysteresis
for ¢ > 200 ppm, that this drift appears to be linked to the vortex merger events, as
merger events are triggered by gradual changes in the size of vortices (as discussed in
the previous section), and inversely, vortices readjust their size and spacing in response
to a sudden change in the mean wavelength following a merger event. However, drift
is also observed in the absence of any merger or splitting events, such as in the range
Re = 200 — 400 for ¢ > 1000 ppm (figure 16(d.i) and 16(d,ii)), and for Re > 200 for all
cases in figure 16 when the Reynolds number is decreasing.

A similar phenomenon has been noted in Newtonian flows, which is induced by the
wavy instability and involves the elongation of vortices near the centre of the flow cell and
the compression of vortices near the ends in order to relieve the additional strain induced
by the wavy motion (Park & Crawford 1982). However, the absence of this process in the
Newtonian flow map (figure 7(a)) and the increase in drift as the polymer concentration
is increased suggests that drift is dependent not just on the wavy instability, but also on
the shear-thinning and viscoelasticity of the fluid. As Re is increased, there is a general
tendency for the central vortices to dilate, in agreement with previous studies (Park &
Crawford 1982), but as Re is decreased, the flow maps in figure 16 do not indicate any
general trends, with the direction of drift of individual vortices or jets changing in an
apparently random manner.

In order to quantify the onset of drift, the flow maps were divided into segments with
intervals of ARe = 25, each segment was averaged to form a single intensity profile,
and each profile was cross-correlated with the profile from the preceding segment. The
maximum of the cross-correlation coefficient, R,, .., provides a quantitative measure of
the uniformity of the flow map, with R4, = 1 for negligible drift and lower R,,,, as drift
becomes more prominent. By averaging the profiles over each segment, the information on
the waviness is suppressed, allowing the cross-correlation coefficient to yield information
on low frequency changes in the position and size of vortices rather than high frequency
phenomena. However, as vortex merger appears to be inherently coupled to the drift
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FIGURE 22. Variation in the Reynolds number at which significant axial drift of vortices is
observed, as a function of polymer concentration (a), effective flow index (b) and elasticity (c).
The onset of drift is determined from the cross-correlation signals in figure 21, as outlined in
the text. Each data point corresponds to a single test run, as detailed in table 2.

process (and has a dramatic effect on the flow maps), R4, Will be strongly influenced
by such sudden changes in wavelength.

The variation in the maximum cross-correlation coefficient with Reynolds number for
the eight fluids is plotted in figure 21. For the Newtonian case and solutions with moderate
concentrations of xanthan (¢ < 100 ppm), Ry,q. remains relatively constant and close
to unity, with the exception of a small region near Re., which likely arises due to the
effects of the transition from CCF to TVF. There is a slight reduction in the R4,
signals for ¢ = 50 ppm and 100 ppm near Re 2> 750, which is a reflection of the moderate
levels of drift seen in the flow maps (figures 7(c-d)). In contrast, the cross-correlation
coeflicient signal for ¢ = 200 ppm decreases dramatically at Re = 625, which coincides
with a merger event and the onset of both the wavy instability and significant drift.
The drift is particularly evident in figure 7(e) near the top and bottom of the flow map.
The Rp.qx signals become strongly disorganised as the xanthan gum concentration is
increased; for ¢ = 500 ppm, the signal exhibits three sudden drops in amplitude (only
two of which coincide with merger events) while the signals for the strongly viscoelastic
solutions (¢ > 1000 ppm) are characterised by spikiness throughout the entire Re range,
reflecting the continuous drift seen in the flow maps (figure 7(g-h)).

Examination of the cross-correlation coefficients in figure 21 suggests that the Reynolds
number at which drift is observed appears to be reduced as the polymer concentration and
shear-thinning increase. In order to test this observation using all the flow maps acquired
for increasing Re, a criterion was developed by which the critical Reynolds number for the
onset of drift, Regy;f:, coincides with the first points above Re = 200 when R4, drops
below 0.9. The requirement that Re > 200 is chosen to avoid the region near Re. where
Rpaz is reduced due to the establishment of TVF and the corresponding readjustment
of the mica flakes.

What variations are sufficient to be classified as drift is an inherently subjective choice,
and the use of the critical value of 0.9 is somewhat arbitrary; nevertheless, the variations
in Regrif: were found to be qualitatively very similar to those found using other values
of ARe and critical R,q., and the resulting estimates of Reg,;s; give a good intuitive
measure of the effect of the polymer concentration and rheology on the drift process, as
can be seen from the flow maps.

The variation in the estimates of Regy;s¢ with polymer concentration, 7 and De/Re
is shown in figure 22. Using this criterion, no drift is detected for ¢ < 50 ppm, which is
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FIGURE 23. Variation in the non-dimensional acceleration rate (equation 2.2) with Reynolds
number for two experiments performed with a ¢ = 2000 ppm solution. The higher acceleration
case (dashed grey line) has been discussed in the previous sections.

consistent with visual inspection of the flow maps in figure 7(a-b). Above this concentra-
tion, the onset of drift decreases significantly with ¢, both in the weakly-viscoelastic and
viscoelastic regimes.

The presence of drift in both regimes, and the fact that Reg,;; declines both with
decreasing 7. and increasing De/Re, indicate that the drift cannot be attributed to either
rheological phenomenon alone. However, it is interesting to note the similarities between
the drifting vortices in the high concentration solutions and the isolated diwhirls seen
in Newtonian viscoelastic fluids (Boger fluids) at low Re (Groisman & Steinberg 1997,
1998; 7). Diwhirls are typically observed at random locations along the axis rather than
having a uniform spacing (?), suggesting that elastic instabilities in a Taylor-Couette
geometry can occur at any wavelength. The data presented in the various flow maps in
this study indicates that vortices in polymer solutions may be characterised by more than
one wavelength at a given time, even in the inertial regime (Re > Re.) and when the
rheology is dominated by shear-thinning rather than viscoelasticity (i.e. in the weakly-
viscoelastic regime).

4. Effect of Acceleration Rate

An additional test was performed in order to assess the possible effects of the non-
quasi-static acceleration rate used in the experiments on the results presented in §3, such
as the absence of purely elastic instabilities, the regime path (CCF — TVF — WVF)
and the presence of phenomena such as drift and spontaneous vortex merger/splitting.

For the highest concentration case, ¢ = 2000 ppm, the cylinder was accelerated
extremely slowly, dw/d¢ = 0.004 rad/s, up to a maximum speed of 110.6 rad/s, which
corresponds to Re = 735. The experiment lasted over seven hours, and images were
acquired in six batches at a frame rate of 24 Hz. This is below the Nyquist frequency at
high Re, leading to some aliasing effects in the frequency maps.

These conditions corresponded to an acceleration rate of dRe/dt* < 0.03 (equation
2.2) throughout the entire test, and the variation in dRe/dt* with Reynolds number
is shown in figure 23, along with the acceleration rate used in the other ¢ = 2000
ppm tests discussed previously. The very low non-dimensional acceleration rate (< 1),
ensures that the test can be treated as quasi-static (Dutcher & Muller 2009). This test
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FIGURE 24. Flow maps for a ¢ = 2000 ppm solution, with in which the cylinder rotation speed
is increased quasi-statically (a) and at a faster rate (b). The white stripes in (a) correspond
to the periods where no images were recorded as the data was loaded from the camera. The
corresponding non-dimensional acceleration rates are shown in figure 23, and the data in (b)
has also previously been presented in figure 7.

was only possible in a very dense polymer suspension, because in less concentrated
suspensions, the relatively low viscosity would increase the duration of the experiment
(which approximately scales with 1) and increase the risk of sedimentation of the mica
flakes used for visualisation (the settling velocity also scales with 1), The combination
of these effects meant that as the cylinder speed was slowly increased throughout the
CCF regime, sedimentation lead to an increase in the concentration of particles near
the bottom of the flow cell and a depletion near the top, which in turn can affect the
onset of instabilities (7). Any effects of sedimentation, such as those that occur between
experiments, could easily be reversed by running the system in the WVF regime for a
short period of time to redisperse the mica flakes, but this was obviously not possible
mid-experiment.

The compiled flow map and frequency map for the very slow experiment are presented
in figures 24 and 25, respectively, along with the corresponding maps for ¢ = 2000 ppm
discussed earlier (see figures 7(h) and 8(h)). The white patches in the compiled maps
correspond to the gaps between the video recordings, while the data was saved from the
camera. The gaps are not uniformly distributed because Re does not increase linearly
with time.

Figure 24 indicates that a number of vortex merger events take place for Re > 500
in both cases, regardless of the acceleration rate. As with previous cases (figure 18(d)),
these appear most likely to occur near the top or bottom of the flow cell. Considerable
drift in the position of vortices can also been seen in figure 24(a). The compression of
a very long experiment into a single map in figure 24(a) gives the impression that these
changes in position for Re 2 600 are quite rapid or constitute wavy behaviour, whereas
in fact they occur slowly over long time spans.

The frequency maps for both cases also show a number of similarities (figure 25). The
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FIGURE 25. Frequency maps for a ¢ = 2000 ppm solution, with in which the cylinder rotation
speed is increased quasi-statically (a) and at a faster rate (b). The white stripes in (a) correspond
to the periods where no images were recorded as the data was loaded from the camera. The
corresponding non-dimensional acceleration rates are shown in figure 23, and the corresponding
flow maps are shown in figure 24. The data in (b) has also previously been presented in figure 7.
The black and white dashes lines represent the rotation speed of the inner cylinder. The rotation
speed increases linearly with time; however, aliasing effects in (b) cause the rotation frequency
to appear to decrease at high Re.

spectra in figure 25(a) were compiled using more data points and have a higher resolution
(with each FFT spectrum calculated using 513 images, and acquired at intervals of ARe =
1), leading to a ‘cleaner’ map with more sharply defined ridges. Aliasing effects also cause
the cylinder rotation frequency (black and white dashed line) to appear to ‘bounce’ off
the top of the graph. Aside from these incidental differences, the maps are remarkably
similar, with both maps being dominated by a dark ridge starting at approximately
f/Nmaz = 0.15 and Re & 250 and continuing until about 380, a second, slightly weaker
ridge starting at f/Npqe ~ 1.5 and Re &~ 150 and another ridge starting at f/Nyq. =~ 0.3
and Re &~ 300. There are some ridges that do not match, the most notable of which is a
short ridge at f/Npas =~ 0.05 and Re &~ 100 — 130 in figure 25(a). This wavy behaviour
can also be seen directly in the corresponding flow map (figure 24(a)). However, similar
ridges can be seen in the corresponding flow maps in figures 14(c) and 14(d), performed
under the same conditions as the ‘fast’ map in figure 24(b).

The most significant observation regarding figures 24 and 25 is the absence of any
instabilities associated with elasticity (diwhirls, disordered oscillations etc.), despite the
very high elasticity and the negligible acceleration rate. The work of Groisman & Stein-
berg (1998) predicts that for a polymer solution of this elasticity, disordered oscillations
should occur throughout almost the entire Re range examined (see a reproduction of
their regime map in figure 9). The absence of such elastic regimes indicates that the
suppression of elastic instabilities in the current experiments is not a consequence of
any unsteady effects, providing further evidence that shear-thinning rheology plays a
very significant role in controlling the stability and dynamics of Taylor-Couette flow of
non-Newtonian fluids.
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5. Conclusions

The effect of shear-thinning and viscoelasticity on fluid instabilities in Taylor-Couette
flow has been studied using a range of solutions of xanthan gum in a glycerol-water
mixture. The concentration was varied over a wide range, ¢ = 0 — 2000 ppm, and
rheological tests indicated that this spanned the inelastic (De <« 1), weakly-viscoelastic
(De/Re <« 1) and viscoelastic (De/Re = 0.1) regimes. Flow visualisation was performed
by dispersing a small quantity of anisotropic flakes in the fluid, which allowed the flow field
to be characterised as the Reynolds number was slowly increased up to 1000. Despite the
high polymer concentrations examined, the flow did not exhibit any of the characteristic
features of viscoelastic fluids, such as standing waves, disordered oscillations or diwhirls,
which have been observed in several previous studies of Boger fluids for similar ranges of
De/Re. The suppression of these modes was attributed to the shear-thinning rheology.

The polymers were found to lower the critical Reynolds number for the onset of Taylor
Vortex Flow, but in the inelastic and weakly-viscoelastic regimes, the transition to wavy
flow was delayed as the concentration was increased. The frequency of the wavy instability
was also reduced from f,,/N = 0.76 to ~ 0.48 as the concentration was increased. This
transition occurred in a piecewise manner at Re ~ 900 for ¢ = 100 ppm. In the Newtonian
and very dilute fluids, the wavy instability tended to occur predominantly in the centre of
the flow cell (away from the ends) and at the inward jets. However, as the concentration
was increased, the wavy instability tended to occur with comparable amplitude at both
inward and outward jets.

In the viscoelastic regime, there were distinct changes in the nature of the unsteady
flow, which no longer occurred at a single frequency relative to the cylinder rotation speed.
The flow became unsteady shortly after the formation of the Taylor Vortices, and as Re
was increased, the wavy instability underwent a number of transitions. Fourier analysis of
the flow visualisation measurements showed that the unsteady flow varied substantially
as the Reynolds number increased, with the a number of frequency components appearing
and diminishing, either gradually or abruptly, as Re was varied. Examination of repeated
experiments performed under identical protocols indicated that this process of transitions
was remarkably repeatable, highlighting the impact of viscoelasticity on the level of
complexity of the system.

In both the weakly-viscoelastic and viscoelastic regimes, vortices were observed to
merge as Reynolds number was increased, leading to sudden changes in wavelength. This
process has been noted in previous studies of shear-thinning or viscoelastic fluids (Beavers
& Joseph 1974; Lange & Eckhardt 2001), but has not been studied in detail. Experiments
in which the Reynolds number was slowly increased and then slowly decreased revealed
that this process is strongly hysteretic, with spontaneous splitting of vortices (decrease
in wavelength) occurring as Re was reduced close to Re.. Splitting was found to occur in
two different manners, depending on whether the flow was steady or unsteady. When the
flow was steady (Re < Rec,w), the vortices merged in a gradual fashion which appears to
be axisymmetric and similar to that described in the numerical simulations by Lange &
Eckhardt (2001). In the case of unsteady flow, merger tended to occur as a result of the
gradual reduction in the size of a single vortex pair until it became comparable in size to
the amplitude of the waves at the local jets, leading to a sudden removal of the vortices,
which occurred over a time-span comparable to the period of the local wavy instability.

Splitting of vortices as the Reynolds number was slowly reduced also occurred in a
highly unsteady manner, with the newly formed vortices spiralling around each other
due to an imbalance in the angular momentum, as occurs in imbalanced vortex pairs in
two-dimensional unconfined flows (?). This unsteadiness was found to trigger splitting in
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other vortex pairs, leading to a cascade of splitting events over a relatively short range
of Re.

As the polymer concentration was increased and the fluid could no longer be considered
inelastic, the vortices were found to experience a gradual drift in terms of size and
axial position, which was closely linked to the vortex-merger process. The drift generally
involved a dilation of vortices near the centre of the flow cell and a contraction of vortices
near the ends, but unlike the variations in the waviness of the flow, this drift was not
found to be repeatable. Increasing the polymer concentration tended to cause this drift
process to begin at lower Re and its magnitude to increase.

Finally, data were presented from a very long experiment performed for the densest
polymer solution (¢ = 2000 ppm), demonstrating that the key finding of this study,
such as the suppression of elastic instabilities, vortex drift and the merger/splitting
of vortices, cannot be attributed to transient effects or experimental conditions (i.e.
the non-dimensional acceleration rate). The experiments reported here demonstrate the
complexity of the dynamics seen in Taylor-Couette flow of polymer solutions, especially
when the fluids exhibit both shear-thinning and viscoelasticity.
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