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ABSTRACT 1 
The Origin-Destination (OD) data collection often relies on the questionnaire surveys which is inevitably 2 
incomplete. With incomplete input data, the traditional traffic assignment models (e.g., mathematical 3 
programming) cannot generate reasonable results. Alternatively, we propose a deep-learning approach 4 
employing Feed-Forward Neural Network (FFNN) for the traffic assignment that respects incomplete data. 5 
Experiments are conducted in the Braess’s paradox network, Sioux Falls network, and Chicago sketch 6 
network. In the first two networks, training data for the FFNN is obtained by randomly generating 10000 7 
OD scenarios and running mathematical assignment models for link flows. For Chicago sketch network, a 8 
mesoscopic tool is employed to generate the training data. The feasibility of using FFNN to learn traffic 9 
assignment mechanics is verified by using complete OD data and full link flow data with accuracy over 90% 10 
in three networks. In case of partially observed OD data, our idea is to learn the mapping between 11 
incomplete OD data and full link flow data. Experiments are conducted under different OD data 12 
incompleteness levels. The results demonstrate that the accuracy of FFNN model remains over 90% even 13 
losing 50% OD data and overwhelms that of the mathematical assignment model in three networks. 14 
Practically, the reported model can be trained for a certain network with easily-obtained partial OD data 15 
(e.g., observed cellular mobile data) and traffic flow data in the field (e.g., loop data and video data). Once 16 
well trained, when inputting voluminous incomplete OD data, the data-driven approach can provide 17 
accurate full link flows efficiently. 18 
Keywords: Traffic Assignment, Deep Learning, Feed Forward Neural Network, User Equilibrium, 19 

Incomplete OD Data 20 
21 
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INTRODUCTION 1 
As the last step of the traditional four-step method, traffic assignment problem (TAP) aims to 2 

distribute the origin-destination (OD) demand over the whole network and produce the link flows under 3 
equilibrium. Accurate link flow and travel time predictions are important in traffic planning and 4 
management. In TAP, the final link state is characterized by the well-known deterministic user equilibrium 5 
(DUE) condition: all the utilized paths between the same OD pair experience the same travel time that is 6 
no greater than any of the unused counterparts’ (1). Assuming that the Jacobian matrix of link cost function 7 
is symmetric, Beckmann (2) formulated the DUE state as the solution of a convex optimization, to which 8 
the uniqueness of the link flow solution has been proved by (3). The most popular method to solve this 9 
optimization problem is Frank-Wolfe (FW) algorithm (4), which utilizes linear approximation method and 10 
converts TAP into a series of shortest path problems (5). Following this fundamental work, numerous 11 
researches have been devoted in this field and developed a wide range of improved methods (6-9).  12 

The OD demand matrix is the key input to traffic assignment. However, in real-world practice, the 13 
collected OD demand data is often incomplete. The reasons are many. Major ones may include: the survey 14 
methods per se (e.g., the sampled households’ interview) and the data processing due to hardware and 15 
software malfunction, carelessness, and so on (10). With incomplete OD matrix, the traditional traffic 16 
assignment approaches cannot predict link flows accurately. The incomplete data issue motivates us to seek 17 
another approach to predict link flows. On the one hand, the development of intelligent transportation 18 
system (ITS) may enable us to obtain the full traffic flow data at each link (e.g., from loop detectors and 19 
videos); complete OD data is difficult to obtain but partial OD data can be inferred easily from travelers’ 20 
cellular mobile records or vehicle’s Global Position System (GPS) trajectories. With these rich data, we 21 
propose to directly map the partially observed OD data with complete traffic flow data. Once the model is 22 
well trained, we can yield accurate and complete traffic flow data within seconds even inputting voluminous 23 
incomplete OD data. In practical life, we can use small sized simple (e.g., size of 10000) to train the model, 24 
and input large-scale incomplete OD to get accurate and complete link flow data in a reasonable time. 25 

 Before we applied data-driven method to learn the mapping between incomplete OD data and 26 
complete link flows, we should firstly make sure whether data-driven method is capable to learn the 27 
mapping between complete OD data and complete link flow data. In other words, the feasibility of using 28 
deep-learning method to learn complicate traffic assignment mechanism should be verified. The biggest 29 
challenge of learning the traffic assignment mechanism is to learn the non-linearities. The Kolmogorov–30 
Arnold representation theorem votes for deep learning method, which states that any continuous function 31 
𝐹(𝑥) of n variables can be presented by the summation and function composition (11). The formulation is 32 
expressed in Equation 1: 33 
 34 
𝐹(𝑥) = ∑ 𝑔()∑ ℎ+((𝑥+),

+-. /0,1.
(-.                                                    (1) 35 

 36 
where 𝑔( and ℎ+((𝑥+) are two continuous functions, of which 𝑔( is a function of ℎ+( and ℎ+( stands 37 
for bias and is independent from F. In other words, any continuous function can be reformulated with one 38 
hidden layer and 2n+1 activation units in a neural network. Thus, using deep-learning method to learn 39 
complex traffic assignment seems possible. 40 

More recently, in the work of Polson and Sokolov (12), the deep-learning method has been 41 
demonstrated to be effective in learning complex traffic patterns with sudden changing traffic conditions. 42 
The most recent research (13) again verified the feasibility of using deep-learning approach in learning 43 
complex traffic assignment mechanism of simple networks. Based on previous studies, we further explore 44 
a deep-learning approach to determine traffic flows in the case of incomplete OD data. To this end, we 45 
resort to feed-forward neural network (FFNN), which is a widely used technique in deep learning (14, 15). 46 

In this research, we propose a deep-learning approach for the traffic assignment with incomplete 47 
OD data. Specifically, a Feed-Forward Neural Network (FFNN) is employed for this task. We conduct 48 
experiments in three different networks: Braess’s paradox network, Sioux Falls network, and Chicago 49 
Sketch network, representing small-sized, medium-sized and large-sized networks. In each network, we 50 
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investigate several scenarios with data missing rates ranging from 10% up to 50% of total input data. For 1 
each scenario, the mapping between incomplete OD data and full link flows is learnt. Once the deep-2 
learning model is well trained, even inputting partially observed OD data, we can obtain accurate full link 3 
flows. 4 

The paper is organized as follows. Next section reviews the relevant literature. Section 3 presents 5 
the model structure of FFNN and illustrates the input/output data preparation for training/testing model. 6 
The experiments of traffic assignment using incomplete OD matrix are conducted and analyzed in section 7 
4. Section 5 wraps up the main findings and indicates future extensions. 8 
 9 
LITERATURE REVIEW 10 

Generally, there are two variants of TAP: one is the static traffic assignment (STA) model, and the 11 
other is dynamic traffic assignment (DTA) model. STA models (16-18) are usually developed under fixed 12 
OD demand assumption set to mainly reflect the long-term demand patterns. Thus, it accounts for no 13 
dynamically varying demand. DTA models (19-24) have addressed this issue by treating OD demand as 14 
functions of time. The practical implementation of DTA models is limited because of its high computational 15 
cost and complexity. Both STA model and DTA model require complete description of the transportation 16 
system (25). Any incomplete data will render biased link flow estimation. Thus, employing traditional 17 
traffic assignment methods to predict link flows under incomplete data situation seems problematic.  18 

 Many efforts have been done in the field of traffic data imputation (26-30). The objective of traffic 19 
data imputation is to estimate the missing/corrupted traffic data. Three major approaches have been mainly 20 
implemented: prediction methods, interpolation, and statistical learning. Prediction methods (31-33) use 21 
historical data collected from the same site to develop prediction model to predict incomplete/corrupted 22 
data points. The idea of interpolation methods is to directly replace the missing/corrupted data points using 23 
historical data or neighboring data points. Thus, they largely depend on historical data, and are incapable 24 
to proceed data imputation without referring to historical data. Different from the first two approaches, 25 
statistical learning methods aim to build statistical model (e.g., expectation maximization and Markov 26 
Chain) to forecast incomplete/corrupted data based on an iterative regression technique (34, 35). The 27 
incomplete/corrupted data is then estimated until the model converges. In summary, the general idea of 28 
handling incomplete data is to fill it with an estimated value. It seems that no study has been dedicated to 29 
the mechanism of traffic assignment that directly admits the incomplete dataset. To fill the gap, we propose 30 
a deep-learning-based method and employ FFNN model to learn traffic assignment principles.  31 
 32 
METHODOLOGIES 33 
Fully-connected FFNN model 34 
Here we propose a deep-learning neural network, which is designed in a multi-layer FFNN fashion. A FFNN 35 
neural network is derived from the classical artificial neural network (ANN). Three types of layers are 36 
contained in FFNN, including one input layer, one or more hidden layer/layers, and one output layer. The 37 
architecture of a simple FFNN is illustrated in Figure 1. 38 
 39 



Su, Fan, Puchinger, and Shen  

5 
 

 1 
 2 

 3 
Figure 1 Fully-connected FFNN model architecture  4 

 5 
In Figure 1, each neuron in input layer and hidden layer/layers is connected with all the neurons in 6 

next layer. Given the input dataset for training, denoted as {𝑋., 𝑋0, 𝑋5, 𝑋6, … }, the output of the input layer 7 
is characterized as in Equation 2: 8 
 9 
𝑌 = 𝑓(𝑊.𝑋 + 𝑏)                                                                    (2) 10 
 11 
where 𝑓(⋅) is the layer activation function, 𝑊. is the weight matrix, b stands for the bias vector. 12 

The next step, Y becomes the input for the hidden layer, and is encoded by activation function to 13 
calculate the output. Then, the output will be used as input for next layer. This process is repeated until 14 
obtaining output.  15 

For training the input dataset, two passes are involved: forward pass and backward pass. The 16 
parameters, W and b, are randomly initialized with certain values, and the input data will propagate from 17 
network input to network output (36). The difference between desired output and model’s actual output will 18 
be computed. Then, this calculated difference will be propagated backward through the network to adjust 19 
the values of weight matrix 𝑊. and bias vectors b. This is so-called backward pass process. Those values 20 
will be adjusted iteratively until reaching their convergence (37). One iteration of the complete training 21 
dataset is called an epoch. To accomplish the model training process, many epochs are required. In each 22 
epoch, model employs backpropagation algorithm, which uses the gradient-descent minimization method 23 
to adjust the value of weight matrix and bias vectors. In this study, we have made comparison among 24 
different backpropagation algorithms in terms of model performance, and we chose ReLU (Rectified Linear 25 
Unit) as activation function.  26 
 27 
Modeling Framework for Learning Traffic Assignment Principle 28 
To mimic the real world, we use both numerical experiments and simulations on three types of roadway 29 
networks, i.e., Braess’s paradox network, Sioux Falls network, and Chicago network, representing the small, 30 
medium, and large-sized ones, respectively. For the first two, we randomly generate OD data and employ 31 
mathematical assignment models to calculate link flow data. As for Chicago sketch network, the training 32 
data is generated from a mesoscopic simulation tool, i.e., DTALite, which is capable of reflecting real-33 
world traffic phenomenon, e.g., queuing at intersections and traffic lights (38). The benefits for using 34 
artificial data is twofold: Firstly, it allows us to conduct experiments regarding various levels of data 35 
incompleteness. Secondly, the randomly generated OD data and simulated data further illustrate the 36 
reliability of proposed model as we can set OD data with arbitrary value. The proposed FFNN model doesn’t 37 
rely on the value of OD data nor the completeness of OD data. Once the OD matrices are entered, it can 38 
provide full link flows. 39 



Su, Fan, Puchinger, and Shen  

6 
 

Figure 2 presents the deep learning-based traffic assignment forecast evaluation process. To 1 
evaluate the performance of proposed FFNN model of mapping the incomplete OD data with complete link 2 
flow data, we conduct a series of experiments. The artificial world in the figure represents the world using 3 
artificial OD data which is either randomly generated or simulated. The complete OD data is used to 4 
calculate the corresponding link flow data. Then we hide certain percentage OD data to create incomplete 5 
OD dataset (denoted as OD dataset 1). With the link flow data and OD dataset 1, we input them into deep 6 
learning model for training. Then we input another incomplete OD data into the well-trained model. This 7 
incomplete OD data (denoted OD data 2) is created from another complete OD data by hiding the same 8 
percentage of data. Then the link flow forecast obtained from the well-trained deep-learning model and the 9 
exact link flow data (i.e., calculated from complete OD data) are compared to assess the model accuracy. 10 
 11 

 12 
 13 
Figure 2 Deep learning-based traffic assignment forecast evaluation framework 14 
 15 

The proposed traffic assignment forecast is depicted in Figure 3, where in artificial world, 16 
incomplete OD data and complete link flow data are inputted into deep learning training process. The deep 17 
learning model are trained and validated by the process described in Figure 2 in order to present the 18 
relationship between partial OD data and complete link flow data. When the deep learning model is well 19 
trained, we can use the real-world incomplete OD data to produce link flow forecast efficiently and 20 
accurately.  21 
 22 

 23 
 24 
Figure 3 The proposal traffic assignment forecast procedure 25 
 26 

The data preparation is illustrated in Figure 4(a). Given generated OD matrix and network 27 
information, we employ FW algorithm to obtain link flows under UE principle. The calculated link flow 28 
matrices are regarded as the target variables for training proposed model. Figure 4(b) exemplify the 29 
network information in the Braess’s paradox network. The link information matrix and link-node incidence 30 
matrix are also plugged in the FFNN model as input features. There are three columns containing in the 31 
link information matrix, they are: link numbers, capacity, and free flow travel time (FFT). The link travel 32 
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impedance is represented by the Bureau of Public Road (BPR) function. Figure 4(c) depicts the data flow 1 
in training process of FFNN model. 2 
 3 

 4 
(a) Traffic assignment method for solving the network 5 

 6 
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(veh/hour) 
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(c) Input and output data for training model  10 

 11 
Figure 4 Data preparation process for training FFNN model 12 
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EXPERIMENTAL RESULTS 1 
Experiments are conducted on a small-sized, a medium-sized, and a large-sized network, namely 2 

the Braess’s paradox network, the Sioux Falls Network, the Chicago sketch network. 3 
 4 

Braess’s paradox network 5 
Firstly, we run the experiment on a Braess’s paradox network to verify whether proposed FFNN model can 6 
learn the complex traffic assignment mechanics or not. In this case, the complete OD data and complete 7 
link flow data is inputted to train and validate proposed model, the model accuracy is then calculated. To 8 
begin with, we randomly generate the OD matrix, in which the OD demand values ranging from 100 to 150 9 
units. Each time, FW algorithm is used to determine corresponding link flow matrix. By repeating this 10 
process 10000 times, we yield 10000 OD matrices and 10000 link flow vectors. For each data point, we 11 
simply flatten the OD matrix of shape (4,4) into a vector of size 16. Similarly, we flatten the link information 12 
matrix and link-node incidence matrix into vector of size 15 and 20, respectively. These flattened matrices 13 
are then concatenated into one vector of size 51. The output dimension is equal to the number of links. We 14 
split the total dataset into 70% training data and 30% test data. 15 
 16 
Model Selection 17 
To get the best model performance, we firstly select the optimal combination of hyperparameters including 18 
the learning rate, batch size, optimizers, and activation functions (AFs). To this end, we tune the 19 
hyperparameters manually and train the model with different optimizers and AFs. We compare the losses 20 
of four types of stochastic gradient descent-based optimizers (i.e., Adam, Momentum, Adagrad, RMSprop) 21 
and four types of AFs (i.e., ReLU, Elu, Sigmoid, Tanh). To visualize the performance, Figure 5 shows the 22 
logarithm of training losses changes with iteration times. We further study the performance metrics when 23 
deploying different optimizers and different AFs. Root Mean Squared Error (RMSE), Mean Average Error 24 
(MAE), Mean Average Percentage Error (MAPE) are selected as performance metrics, and their 25 
formulations are expressed as followings. 26 
 27 

𝑅𝑀𝑆𝐸 = S∑ (TUVTUW)XY
UZ[

,
                                                                (3) 28 

 29 
𝑀𝐴𝐸 = ∑ |TUVTUW|Y

UZ[
,

                                                                   (4) 30 
 31 
𝑀𝐴𝑃𝐸 = ∑ |TUVTUW|Y

UZ[
TU

× 100%                                                           (5) 32 

 33 

  
(a) Train loss for different optimizers (AF=ReLU) (b) Train loss for different AFs (optimizer=Adam) 
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 1 
Figure 5 Train losses for different optimizers and different AFs 2 
 3 

While training the model, we set up the initial batch size equal to 64. This operation aims to divide 4 
the training and test dataset to small batches instead of passing the entire dataset. Then we fix the AF as 5 
ReLU (Rectified Linear Unit) and train the model with four kinds of optimizers separately. The 6 
experimental results show that, model that uses Adam optimizer has the highest model accuracy (99.35%). 7 
Then, we change our AF and find that Elu has the best system performance while comparing with others. 8 
As ReLU learns faster than Elu (39), and the system performances regarding these two AFs seem 9 
approximate. Thus, we finally select Adam (Adaptive moment estimation) as the optimizer and ReLU as 10 
AF. The optimal learning rate for proposed model is 0.001, and optimal batch size is 128. Table 1 11 
summarizes the FFNN model performance with different optimizers and AFs. Selecting the fine-tuned 12 
parameters, the model accuracy is 99.35% for Braess’s paradox network. The accuracy of FFNN model to 13 
learn equilibrium traffic assignment mechanism has been verified. 14 
 15 
TABLE 1 Performance Metrics for Different Optimizers and AFs 16 

 17 
Optimizer/AF 

selected 
Train loss RMSE MAE MAPE% Accuracy% 

Performance metrics for different optimizers with AF = ReLU 
Adam 0.0170 0.1320 0.1404 0.65% 99.35% 

Adagrad 1.1144 1.0608 0.3297 4.87% 95.13% 
RMSprop 0.0557 0.2330 1.9577 1.23% 98.77% 

Momentum 1.6224 1.2735 0.7508 6.26% 93.74% 
Performance metrics for different AFs with optimizer = Adam 

ReLU 0.0170 0.1320 0.1404 0.65% 99.35% 
Elu 0.0022 0.0470 0.1361 0.23% 99.77% 

Sigmoid 0.9540 0.9881 0.8645 4.69% 95.31% 
Tanh 1.6026 1.2852 0.5741 6.28% 93.72% 

 18 
Incomplete OD data as Input  19 
We next investigate whether a deep learning-based method can accurately accomplish traffic flow 20 
assignment task given incomplete OD data. To address this issue, we conduct two experiments. In the first 21 
experiment, we hide total demand of randomly chosen OD pairs. In the second, we randomly hide OD trips 22 
out of every trip origin according to certain percentage. The difference between two experiments is: the 23 
first reflects the fact that for certain OD pairs the demand information may be totally unknown with no 24 
samples in reality; while the second one implies that OD trips information is only partially available for 25 
each surveyed trip zones. We compare the accuracy of the results of FW algorithm and that of deep-learning 26 
algorithm. Table 2 reports the model accuracy. It is not surprising that the accuracy of FW algorithm 27 
deteriorates fast with higher levels of data incompleteness. On the contrary, the accuracy of our FFNN 28 
model remains higher than 94% in both experiments. 29 
 30 
TABLE 2 Model Accuracy Comparisons with Incomplete OD Dataset: Braess’s Paradox Network 31 
 32 

First experiment: randomly hiding OD pairs out of 6 in total 
Scenarios  Link flow results of FW 

algorithm 
Link flow results of Deep 

learning 
Improvement 

No missing 100% 99.35% -0.65% 
Hide 1 OD pair (17%) 80.56% 97.08% 16.52% 
Hide 2 OD pairs (33%) 63.68% 96.38% 32.70% 
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Hide 3 OD pairs (50%) 48.99% 95.27% 46.28% 
Hide 4 OD pairs (67%) 33.69% 94.89% 61.20% 

 1 
Second experiment: randomly hiding OD trips for each trip origin 

Scenarios Link flow results of FW 
algorithm 

Link flow results of Deep 
learning 

Improvement  

Hide 10% 90.23% 98.36% 8.13% 
Hide 25% 71.40% 95.44% 25.04% 
Hide 30% 64.19% 95.26% 31.07% 
Hide 50% 44.90% 94.85% 49.95% 

 2 
Results in Table 2 demonstrate the robustness of the FFNN model. Furthermore, FFNN model also 3 

entails computation efficiency. The well-trained FFNN model will finish calculation in few hundredths of 4 
FW algorithm’s running time, which is more suitable to be implemented practically.  5 
 6 
Impacts of Missing Certain OD Pairs on Model Accuracy 7 
Another interesting point is to examine the impact of missing individual OD pairs on model accuracy. The 8 
most influential OD pair may be identified. There are six OD pairs in this network: (1,2), (3,2), (1,3), (1,4), 9 
(2,4), and (3,4). We sequentially hide these OD pairs, and then train and test FFNN model. The results are 10 
summarized in Table 3. 11 
 12 
TABLE 3 Impacts of Missing OD Pairs on Model Accuracy 13 
 14 

Missing OD 
pairs 

Train loss RMSE MAE MAPE% Accuracy% 

No missing 0.0022 0.0470 0.1361 0.23% 99.77% 
OD(1,2)  0.2792 0.5431 0.6965 2.79% 97.21% 
OD(3,2)  0.1844 0.4445 0.4127 2.26% 97.74% 
OD(1,3)  0.2640 0.5253 0.3103 1.70% 98.30% 
OD(1,4) 0.3686 0.6230 0.9354 3.11% 96.89% 
OD(2,4) 0.2807 0.5284 0.2204 1.53% 98.47% 
OD(3,4) 0.2485 0.5082 0.2920 2.54% 97.46% 

 15 
It is observed from Table 3 that when OD pair (1,4) is missing, the model accuracy decreases by 16 

2.88%, which is the biggest decrease among all the cases. The findings highlight that in real-world practice 17 
of data collection, particular OD pairs need special attention and more efforts/resources in survey to 18 
guarantee the data availability. 19 

 20 
Sioux Falls Network 21 
Model Selection 22 
We further execute the FFNN model in a more complex network, as shown in Figure 6 to verify the model 23 
effectiveness in the case of incomplete OD data. Similar to the case of Braess’s network, we generate 10000 24 
OD matrix randomly, flatten each OD matrix into a vector of size 576, and therefore obtain an input matrix 25 
of shape 10000*576. Then we select the optimal combination of hyperparameters. Here, for the sake of 26 
simplification, we report directly the selected hyperparameters. We chose Adam as optimizer and ReLU as 27 
activation function. To avoid overfitting, we add dropout rate of 0.01 and 0.005 in the first and second 28 
hidden layer. We split the dataset into 80/20, in which 80% for training, 20% for testing. The learning rate 29 
in this scenario is 0.001. The model accuracy is 97.31% after training. 30 
 31 
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 1 
 2 
Figure 6 Sioux Falls Network (24 nodes and 76 links) 3 
 4 
Incomplete OD data as Input  5 
Then we do the similar experiments on Sioux Falls network. In the first experiment, we hide total demand 6 
of randomly chosen OD pairs with the missing rates of 10%, 20%, 30%, 40%, and 50%, respectively. In 7 
the second experiment, same missing rates are applied to each trip origin. The comparison of model 8 
accuracy between the traditional traffic assignment method and FFNN model is summarized in Table 4. 9 
 10 
TABLE 4 Model Accuracy Comparisons with Incomplete OD Dataset: Sioux Falls Network 11 
 12 

First experiment: randomly hiding OD pairs 
Scenarios Link flow results of FW 

algorithm 
Link flow results of 

Deep learning 
Improvement 

No missing 100% 97.31% -2.69% 
Hide 10% OD pairs 88.06% 94.40% 6.34% 
Hide 20% OD pairs 77.04% 93.20% 16.16% 
Hide 30% OD pairs 66.40% 92.71% 26.31% 
Hide 40% OD pairs 55.70% 92.08% 36.38% 
Hide 50% OD pairs 45.27% 91.52% 46.25% 

 13 
Second experiment: randomly hiding OD trips 

Scenarios Link flow results of FW 
algorithm* 

Link flow results of 
Deep learning 

Improvement  

10% 90.89% 94.83% 3.94% 
20% 78.90% 93.45% 14.55% 
30% 85.43% 93.99% 8.46% 
40% 69.58% 92.74% 23.16% 
50% 85.88% 94.05% 8.17% 

* The accuracy of FW assignment fluctuates in this experiment due to the randomly missing OD trips, which may hurt 14 
different when they occur in different OD pairs (as confirmed by our results in Braess’s network). 15 
 16 

The results in Table 4 are also impressive when we perform the FFNN model in Sioux Falls 17 
network. It is seen that FFNN model has an excellent performance even with half of all OD pairs missing. 18 
On the contrary, the traditional traffic assignment method is not qualified to predict link flows for any levels 19 
of data incompleteness. Significant improvements on the model accuracy are observed for the FFNN model 20 
ranging from 6.34% to 46.25%, as opposed to the results of FW algorithm. 21 
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 1 
Chicago Sketch Network 2 
Finally, we conduct our experiments in Chicago sketch network, as shown in Figure 7. Different from 3 
Braess’s paradox network and Sioux Falls network, the training data is now generated from a mesoscopic 4 
simulation tool, i.e., DTALite, which is capable of reflecting real-world traffic phenomenon, e.g., queueing 5 
at intersections (38). Similarly, we hide OD pairs randomly chosen from OD matrix with the missing rates 6 
of 10% to 50%. Table 5 summarizes the comparisons of results by FW algorithm and our model as against 7 
the simulated results. Interestingly, we find that our model already beats the FW algorithm with higher 8 
accuracy under the no-missing scenario. The reason is that FW algorithm calculate link flows in ideal 9 
condition (e.g., no traffic light and queueing), while the link flow obtained using simulation tool considered 10 
the traffic phenomenon. At the same time, proposed FFNN model learns the mapping between OD data and 11 
simulated link flow data directly and takes these factors into account. Therefore, the predicted link flow 12 
obtained by FFNN model can better reflect practical situation than that by FW algorithm. Similar outcomes 13 
are also observed in the 2nd experiment. It should be mentioned that the accuracy of using FW algorithm to 14 
predict link flow fluctuates comparing with the first experiment. The reason is that in the second experiment, 15 
we randomly hide certain percentage of OD trips out of every trip origin rather than hiding a certain 16 
percentage of OD pairs directly out of total demand. As the consequence, the actual number of missing OD 17 
pairs fluctuates. 18 
 19 

 20 
 21 
Figure 7 Chicago sketch network (387 demand zones, 933 nodes, and 2950 links) 22 
 23 
 24 
 25 
TABLE 5 Model Accuracy Comparisons with Incomplete OD Dataset: Chicago Sketch Network 26 
 27 
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First experiment: randomly hiding OD pairs 
Randomly hide # OD 

pairs 
Link flow results of FW 

algorithm 
Link flow results of 

Deep learning 
Improvement 

No missing 84.62% 90.98% 6.27% 
Hide 10% OD pairs 82.27% 91.45% 9.18% 
Hide 20% OD pairs 77.06% 89.86% 12.80% 
Hide 30% OD pairs 69.91% 90.38% 20.77% 
Hide 40% OD pairs 60.90% 88.27% 27.37% 
Hide 50% OD pairs 51.14% 90.62% 39.48% 

Second experiment: randomly hiding OD trips 
Scenarios Link flow results of FW 

algorithm* 
Link flow results of 

Deep learning 
Improvement  

10% 84.46% 92.18% 7.72% 
20% 78.58% 90.56% 11.98% 
30% 81.72% 89.33% 7.61% 
40% 68.58% 88.62% 20.04% 
50% 83.54% 91.59% 8.05% 

* The accuracy of FW assignment fluctuates in this experiment due to the randomly missing OD trips, which may 1 
hurt different when they occur in different OD pairs (as confirmed by our results in Braess’s network). 2 
 3 

In Table 5, we can find a significant improvement (i.e., 39.48%) in link flow prediction accuracy 4 
when hiding 50% OD pairs out of total demand in the first experiment. In the second experiment, the 5 
accuracy of deep-learning model remains stable while that of FW algorithm often experiences dramatic 6 
decrease (e.g., from 81.72% to 68.58%). The performance of using deep-learning model in large-sized 7 
network to accomplish accurate link flow prediction has been proved. To be more straightforward, Figure 8 
8 compares the model accuracy in three networks while conducting first and second experiment.  9 
 10 

  
(a) Model accuracy in the first experiment (b) Model accuracy in the second experiment 

 11 
Figure 8 Model accuracy: FW v.s. FFNN 12 
 13 
CONCLUSIONS AND EXTENSIONS 14 

In this research, we develop a novel data-driven approach for traffic assignment in the case of 15 
incomplete OD data without need of data imputation or sample expansion. Feed-forward neural network is 16 
embedded in a deep-learning structured model to learn the mechanism of UE traffic assignment principle. 17 
The model is trained by randomly generated OD matrix and its corresponding link flow patterns that 18 
determined by FW algorithm. Experiments are conducted in three typical networks, i.e., Braess’s paradox 19 
network, Sioux Falls network and Chicago sketch network. The FFNN model shows good performance 20 
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with model accuracy over 97% in small-sized and medium-sized network. For large-sized network, as 1 
Chicago sketch network in this research, the accuracy of deep learning model is still over 90%. Those 2 
results indicate that FFNN model can learn the equilibrium traffic assignment mechanism effectively and 3 
efficiently. 4 

Then, we randomly hide OD pairs from each OD matrix and compare the assignment results of the 5 
traditional FW algorithm and that of FFNN model. The experimental results are promising. Under various 6 
levels of data incompleteness, the result accuracy of FFNN model remains over 87%, even with 50% OD 7 
pairs missing. In contrast, the accuracy of the traditional traffic assignment method deteriorates quickly and 8 
unsurprisingly becomes unqualified for any levels of data incompleteness. The results demonstrate that the 9 
effectiveness and robustness of the FFNN model in traffic assignment, particularly for incomplete OD data. 10 
This finding provides a new direction for traffic assignment with partial data, that is we can learn the 11 
mapping between partial observed OD data (easy to obtain from GPS but usually incomplete) and fully 12 
available link flow data (e.g., via loop detector or videos) and train the deep-learning model. Once the 13 
model if well trained, link flow results with satisfactory accuracy can be very efficiently obtained by 14 
inputting the newly-surveyed incomplete raw data.  15 

Another application of FFNN model in traffic assignment is to identify the most “influential” OD 16 
pairs that have largest impacts on model accuracy while missing. Accordingly, targeted survey may be 17 
designed. We are also examining other deep-learning architectures such as convolution neural network and 18 
graph convolution network for comparison with the current one. For next extension, it is also interesting to 19 
study if the deep learning method is competent for dynamic traffic assignment task with time-varying OD 20 
demand as input, which definitely has no time for sophisticated data preprocessing. 21 
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