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The Origin-Destination (OD) data collection often relies on the questionnaire surveys which is inevitably incomplete. With incomplete input data, the traditional traffic assignment models (e.g., mathematical programming) cannot generate reasonable results. Alternatively, we propose a deep-learning approach employing Feed-Forward Neural Network (FFNN) for the traffic assignment that respects incomplete data. Experiments are conducted in the Braess's paradox network, Sioux Falls network, and Chicago sketch network. In the first two networks, training data for the FFNN is obtained by randomly generating 10000 OD scenarios and running mathematical assignment models for link flows. For Chicago sketch network, a mesoscopic tool is employed to generate the training data. The feasibility of using FFNN to learn traffic assignment mechanics is verified by using complete OD data and full link flow data with accuracy over 90% in three networks. In case of partially observed OD data, our idea is to learn the mapping between incomplete OD data and full link flow data. Experiments are conducted under different OD data incompleteness levels. The results demonstrate that the accuracy of FFNN model remains over 90% even losing 50% OD data and overwhelms that of the mathematical assignment model in three networks. Practically, the reported model can be trained for a certain network with easily-obtained partial OD data (e.g., observed cellular mobile data) and traffic flow data in the field (e.g., loop data and video data). Once well trained, when inputting voluminous incomplete OD data, the data-driven approach can provide accurate full link flows efficiently.

INTRODUCTION

As the last step of the traditional four-step method, traffic assignment problem (TAP) aims to distribute the origin-destination (OD) demand over the whole network and produce the link flows under equilibrium. Accurate link flow and travel time predictions are important in traffic planning and management. In TAP, the final link state is characterized by the well-known deterministic user equilibrium (DUE) condition: all the utilized paths between the same OD pair experience the same travel time that is no greater than any of the unused counterparts' [START_REF] Wardrop | Some Theoretical Aspects of Road Traffic Research[END_REF]. Assuming that the Jacobian matrix of link cost function is symmetric, Beckmann (2) formulated the DUE state as the solution of a convex optimization, to which the uniqueness of the link flow solution has been proved by [START_REF] Simth | The Existence, Uniqueness and Stability of Traffic Equilibria[END_REF]. The most popular method to solve this optimization problem is Frank-Wolfe (FW) algorithm [START_REF] Frank | Algorithm for Quadratic Programming[END_REF], which utilizes linear approximation method and converts TAP into a series of shortest path problems [START_REF] Nie | Models and Algorithms for the Traffic Assignment Problem with Link Capacity Constraints[END_REF]. Following this fundamental work, numerous researches have been devoted in this field and developed a wide range of improved methods [START_REF] Xu | A Modified Physarum-inspired Model for the User Equilibrium Traffic Assignment Problem[END_REF][START_REF] Martin | A Research Program for Comparison of Traffic Assignment Techniques[END_REF][START_REF] Ruiter | The Prediction of Network Equilibrium-The State of Art[END_REF][START_REF] Wilkie | Precise Determination of Equilibrium in Travel Forecasting Problems Using Numerical Optimization Techniques[END_REF].

The OD demand matrix is the key input to traffic assignment. However, in real-world practice, the collected OD demand data is often incomplete. The reasons are many. Major ones may include: the survey methods per se (e.g., the sampled households' interview) and the data processing due to hardware and software malfunction, carelessness, and so on [START_REF] Bae | Missing Data Imputation for Traffic Flow Speed Using Spatial-temporal Cokriging[END_REF]. With incomplete OD matrix, the traditional traffic assignment approaches cannot predict link flows accurately. The incomplete data issue motivates us to seek another approach to predict link flows. On the one hand, the development of intelligent transportation system (ITS) may enable us to obtain the full traffic flow data at each link (e.g., from loop detectors and videos); complete OD data is difficult to obtain but partial OD data can be inferred easily from travelers' cellular mobile records or vehicle's Global Position System (GPS) trajectories. With these rich data, we propose to directly map the partially observed OD data with complete traffic flow data. Once the model is well trained, we can yield accurate and complete traffic flow data within seconds even inputting voluminous incomplete OD data. In practical life, we can use small sized simple (e.g., size of 10000) to train the model, and input large-scale incomplete OD to get accurate and complete link flow data in a reasonable time.

Before we applied data-driven method to learn the mapping between incomplete OD data and complete link flows, we should firstly make sure whether data-driven method is capable to learn the mapping between complete OD data and complete link flow data. In other words, the feasibility of using deep-learning method to learn complicate traffic assignment mechanism should be verified. The biggest challenge of learning the traffic assignment mechanism is to learn the non-linearities. The Kolmogorov-Arnold representation theorem votes for deep learning method, which states that any continuous function 𝐹(𝑥) of n variables can be presented by the summation and function composition [START_REF] Kolmogorov | On the Representation of Continuous Functions of Several Variables as Superpositions of Smaller Number of Variables[END_REF]. The formulation is expressed in Equation 1:

𝐹(𝑥) = ∑ 𝑔 ( )∑ ℎ +( (𝑥 + ) , +-. / 0,1. (-.
(1) where 𝑔 ( and ℎ +( (𝑥 + ) are two continuous functions, of which 𝑔 ( is a function of ℎ +( and ℎ +( stands for bias and is independent from F. In other words, any continuous function can be reformulated with one hidden layer and 2n+1 activation units in a neural network. Thus, using deep-learning method to learn complex traffic assignment seems possible.

More recently, in the work of Polson and Sokolov (12), the deep-learning method has been demonstrated to be effective in learning complex traffic patterns with sudden changing traffic conditions. The most recent research [START_REF] Rahman | Learning Traffic Assignment of a Network: Some Experimental Findings from a Deep Learning Approach[END_REF] again verified the feasibility of using deep-learning approach in learning complex traffic assignment mechanism of simple networks. Based on previous studies, we further explore a deep-learning approach to determine traffic flows in the case of incomplete OD data. To this end, we resort to feed-forward neural network (FFNN), which is a widely used technique in deep learning [START_REF] Hinton | What Kind of Graphical Model is the Brain[END_REF][START_REF] Bengio | Greedy Layer-wise Training of Deep Networks[END_REF].

In this research, we propose a deep-learning approach for the traffic assignment with incomplete OD data. Specifically, a Feed-Forward Neural Network (FFNN) is employed for this task. We conduct experiments in three different networks: Braess's paradox network, Sioux Falls network, and Chicago Sketch network, representing small-sized, medium-sized and large-sized networks. In each network, we investigate several scenarios with data missing rates ranging from 10% up to 50% of total input data. For each scenario, the mapping between incomplete OD data and full link flows is learnt. Once the deeplearning model is well trained, even inputting partially observed OD data, we can obtain accurate full link flows.

The paper is organized as follows. Next section reviews the relevant literature. Section 3 presents the model structure of FFNN and illustrates the input/output data preparation for training/testing model. The experiments of traffic assignment using incomplete OD matrix are conducted and analyzed in section 4. Section 5 wraps up the main findings and indicates future extensions.

LITERATURE REVIEW

Generally, there are two variants of TAP: one is the static traffic assignment (STA) model, and the other is dynamic traffic assignment (DTA) model. STA models [START_REF] Yang | Traffic Assignment and Signal Control in Saturated Road Networks[END_REF][START_REF] Nguyen | Traffic-An Equilibrium Assignment Program[END_REF][START_REF] Leblanc | An Efficient Approach to Solving the Road Network Equilibrium Traffic Assignment Problem[END_REF] are usually developed under fixed OD demand assumption set to mainly reflect the long-term demand patterns. Thus, it accounts for no dynamically varying demand. DTA models [START_REF] Yagar | Dynamic Traffic Assignment by Individual Path Minimization and Queuing[END_REF][START_REF] Merchant | A Model and an Algorithm for the Dynamic Traffic Assignment Problems[END_REF][START_REF] Merchant | Optimal Conditions for a Dynamic Traffic Assignment Model[END_REF][START_REF] Ho | A Successive Linear Optimization Approach to the Dynamic Traffic Assignment Problem[END_REF][START_REF] Nie | A Cell-based Merchant-Nemhauser Model for System Optimum Dynamic Traffic Assignment Problem[END_REF][START_REF] Long | A Non-linear Equation System Approach to the Dynamic Stochastic User Equilibrium Simultaneous Route and Departure Time Choice Problem[END_REF] have addressed this issue by treating OD demand as functions of time. The practical implementation of DTA models is limited because of its high computational cost and complexity. Both STA model and DTA model require complete description of the transportation system [START_REF] Patriksson | The Traffic Assignment Problem: Models and Methods[END_REF]. Any incomplete data will render biased link flow estimation. Thus, employing traditional traffic assignment methods to predict link flows under incomplete data situation seems problematic.

Many efforts have been done in the field of traffic data imputation [START_REF] Li | Missing Traffic Data: Comparison of Imputation Method[END_REF][START_REF] Han | A Spatial-temporal Approach for High Resolution Traffic Flow Imputation[END_REF][START_REF] Strub | Weak Formulation of Boundary Conditions for Scalar Conservation Laws: an Application to Highway Traffic Modelling[END_REF][START_REF] Zou | An Improved Distance Metric for the Interpolation of Link-based Traffic Data Using Kriging: a Case Study of a Large-scale Urban Road Network[END_REF][START_REF] Shamo | Linear Spatial Interpolation and Analysis of Annual Average Daily Traffic Data[END_REF]. The objective of traffic data imputation is to estimate the missing/corrupted traffic data. Three major approaches have been mainly implemented: prediction methods, interpolation, and statistical learning. Prediction methods [START_REF] Zhong | Genetically Designed Models for Accurate Imputation of Missing Traffic Counts[END_REF][START_REF] Li | Trend Modeling for Traffic Time Series Analysis: an Integrated Study[END_REF][START_REF] Gan | Gradient Radial Basis Function Based Varying-coefficient Autoregressive Model for Nonlinear and Nonstationary Time Series[END_REF] use historical data collected from the same site to develop prediction model to predict incomplete/corrupted data points. The idea of interpolation methods is to directly replace the missing/corrupted data points using historical data or neighboring data points. Thus, they largely depend on historical data, and are incapable to proceed data imputation without referring to historical data. Different from the first two approaches, statistical learning methods aim to build statistical model (e.g., expectation maximization and Markov Chain) to forecast incomplete/corrupted data based on an iterative regression technique [START_REF] Smith | Exploring Imputation Techniques For Missing Data in Transportation Management Systems[END_REF][START_REF] Ni | Markov Chain Monte Carlo Multiple Imputation Using Bayesian Networks for Incomplete Intelligent Transportation Systems Data[END_REF]. The incomplete/corrupted data is then estimated until the model converges. In summary, the general idea of handling incomplete data is to fill it with an estimated value. It seems that no study has been dedicated to the mechanism of traffic assignment that directly admits the incomplete dataset. To fill the gap, we propose a deep-learning-based method and employ FFNN model to learn traffic assignment principles.

METHODOLOGIES Fully-connected FFNN model

Here we propose a deep-learning neural network, which is designed in a multi-layer FFNN fashion. A FFNN neural network is derived from the classical artificial neural network (ANN). Three types of layers are contained in FFNN, including one input layer, one or more hidden layer/layers, and one output layer. The architecture of a simple FFNN is illustrated in Figure 1. Figure 1 Fully-connected FFNN model architecture

In Figure 1, each neuron in input layer and hidden layer/layers is connected with all the neurons in next layer. Given the input dataset for training, denoted as {𝑋 . , 𝑋 0 , 𝑋 5 , 𝑋 6 , … }, the output of the input layer is characterized as in Equation 2: 𝑌 = 𝑓(𝑊 . 𝑋 + 𝑏)

(2) where 𝑓(⋅) is the layer activation function, 𝑊 . is the weight matrix, b stands for the bias vector.

The next step, Y becomes the input for the hidden layer, and is encoded by activation function to calculate the output. Then, the output will be used as input for next layer. This process is repeated until obtaining output.

For training the input dataset, two passes are involved: forward pass and backward pass. The parameters, W and b, are randomly initialized with certain values, and the input data will propagate from network input to network output [START_REF] Robi | Application of Neural Networks in Generating Processing Map for Hot Working[END_REF]. The difference between desired output and model's actual output will be computed. Then, this calculated difference will be propagated backward through the network to adjust the values of weight matrix 𝑊 . and bias vectors b. This is so-called backward pass process. Those values will be adjusted iteratively until reaching their convergence [START_REF] Svozil | Introduction to Multi-layer Feed-forward Neural Network[END_REF]. One iteration of the complete training dataset is called an epoch. To accomplish the model training process, many epochs are required. In each epoch, model employs backpropagation algorithm, which uses the gradient-descent minimization method to adjust the value of weight matrix and bias vectors. In this study, we have made comparison among different backpropagation algorithms in terms of model performance, and we chose ReLU (Rectified Linear Unit) as activation function.

Modeling Framework for Learning Traffic Assignment Principle

To mimic the real world, we use both numerical experiments and simulations on three types of roadway networks, i.e., Braess's paradox network, Sioux Falls network, and Chicago network, representing the small, medium, and large-sized ones, respectively. For the first two, we randomly generate OD data and employ mathematical assignment models to calculate link flow data. As for Chicago sketch network, the training data is generated from a mesoscopic simulation tool, i.e., DTALite, which is capable of reflecting realworld traffic phenomenon, e.g., queuing at intersections and traffic lights [START_REF] Zhou | DTALite: A queue-based mesoscopic traffic simulator for fast model evaluation and calibration[END_REF]. The benefits for using artificial data is twofold: Firstly, it allows us to conduct experiments regarding various levels of data incompleteness. Secondly, the randomly generated OD data and simulated data further illustrate the reliability of proposed model as we can set OD data with arbitrary value. The proposed FFNN model doesn't rely on the value of OD data nor the completeness of OD data. Once the OD matrices are entered, it can provide full link flows. 

EXPERIMENTAL RESULTS

Experiments are conducted on a small-sized, a medium-sized, and a large-sized network, namely the Braess's paradox network, the Sioux Falls Network, the Chicago sketch network. Braess's paradox network Firstly, we run the experiment on a Braess's paradox network to verify whether proposed FFNN model can learn the complex traffic assignment mechanics or not. In this case, the complete OD data and complete link flow data is inputted to train and validate proposed model, the model accuracy is then calculated. To begin with, we randomly generate the OD matrix, in which the OD demand values ranging from 100 to 150 units. Each time, FW algorithm is used to determine corresponding link flow matrix. By repeating this process 10000 times, we yield 10000 OD matrices and 10000 link flow vectors. For each data point, we simply flatten the OD matrix of shape (4,4) into a vector of size 16. Similarly, we flatten the link information matrix and link-node incidence matrix into vector of size 15 and 20, respectively. These flattened matrices are then concatenated into one vector of size 51. The output dimension is equal to the number of links. We split the total dataset into 70% training data and 30% test data.

Model Selection

To get the best model performance, we firstly select the optimal combination of hyperparameters including the learning rate, batch size, optimizers, and activation functions (AFs). To this end, we tune the hyperparameters manually and train the model with different optimizers and AFs. We compare the losses of four types of stochastic gradient descent-based optimizers (i.e., Adam, Momentum, Adagrad, RMSprop) and four types of AFs (i.e., ReLU, Elu, Sigmoid, Tanh). To visualize the performance, Figure 5 shows the logarithm of training losses changes with iteration times. We further study the performance metrics when deploying different optimizers and different AFs. Root Mean Squared Error (RMSE), Mean Average Error (MAE), Mean Average Percentage Error (MAPE) are selected as performance metrics, and their formulations are expressed as followings. Then, we change our AF and find that Elu has the best system performance while comparing with others. As ReLU learns faster than Elu (39), and the system performances regarding these two AFs seem approximate. Thus, we finally select Adam (Adaptive moment estimation) as the optimizer and ReLU as AF. The optimal learning rate for proposed model is 0.001, and optimal batch size is 128. Table 1 summarizes the FFNN model performance with different optimizers and AFs. Selecting the fine-tuned parameters, the model accuracy is 99.35% for Braess's paradox network. The accuracy of FFNN model to learn equilibrium traffic assignment mechanism has been verified. We next investigate whether a deep learning-based method can accurately accomplish traffic flow assignment task given incomplete OD data. To address this issue, we conduct two experiments. In the first experiment, we hide total demand of randomly chosen OD pairs. In the second, we randomly hide OD trips out of every trip origin according to certain percentage. The difference between two experiments is: the first reflects the fact that for certain OD pairs the demand information may be totally unknown with no samples in reality; while the second one implies that OD trips information is only partially available for each surveyed trip zones. We compare the accuracy of the results of FW algorithm and that of deep-learning algorithm. Table 2 reports the model accuracy. It is not surprising that the accuracy of FW algorithm deteriorates fast with higher levels of data incompleteness. On the contrary, the accuracy of our FFNN model remains higher than 94% in both experiments. 2 demonstrate the robustness of the FFNN model. Furthermore, FFNN model also entails computation efficiency. The well-trained FFNN model will finish calculation in few hundredths of FW algorithm's running time, which is more suitable to be implemented practically.

𝑅𝑀𝑆𝐸 = S ∑ (T U VT U W) X Y UZ[ , (3) 
𝑀𝐴𝐸 = ∑ |T U VT U W| Y UZ[ , (4) 
𝑀𝐴𝑃𝐸 = ∑ |T U VT U W| Y UZ[ T U × 100% (5) 

Impacts of Missing Certain OD Pairs on Model Accuracy

Another interesting point is to examine the impact of missing individual OD pairs on model accuracy. The most influential OD pair may be identified. There are six OD pairs in this network: (1,2), [START_REF] Simth | The Existence, Uniqueness and Stability of Traffic Equilibria[END_REF][START_REF] Beckmann | Studies in the Economics of Transportation[END_REF], [START_REF] Wardrop | Some Theoretical Aspects of Road Traffic Research[END_REF][START_REF] Simth | The Existence, Uniqueness and Stability of Traffic Equilibria[END_REF], [START_REF] Wardrop | Some Theoretical Aspects of Road Traffic Research[END_REF][START_REF] Frank | Algorithm for Quadratic Programming[END_REF], [START_REF] Beckmann | Studies in the Economics of Transportation[END_REF][START_REF] Frank | Algorithm for Quadratic Programming[END_REF], and [START_REF] Simth | The Existence, Uniqueness and Stability of Traffic Equilibria[END_REF][START_REF] Frank | Algorithm for Quadratic Programming[END_REF]. We sequentially hide these OD pairs, and then train and test FFNN model. The results are summarized in Table 3. 3 that when OD pair [START_REF] Wardrop | Some Theoretical Aspects of Road Traffic Research[END_REF][START_REF] Frank | Algorithm for Quadratic Programming[END_REF] is missing, the model accuracy decreases by 2.88%, which is the biggest decrease among all the cases. The findings highlight that in real-world practice of data collection, particular OD pairs need special attention and more efforts/resources in survey to guarantee the data availability.

Sioux Falls Network Model Selection

We further execute the FFNN model in a more complex network, as shown in Figure 6 to verify the model effectiveness in the case of incomplete OD data. Similar to the case of Braess's network, we generate 10000 OD matrix randomly, flatten each OD matrix into a vector of size 576, and therefore obtain an input matrix of shape 10000*576. Then we select the optimal combination of hyperparameters. Here, for the sake of simplification, we report directly the selected hyperparameters. We chose Adam as optimizer and ReLU as activation function. To avoid overfitting, we add dropout rate of 0.01 and 0.005 in the first and second hidden layer. We split the dataset into 80/20, in which 80% for training, 20% for testing. The learning rate in this scenario is 0.001. The results in Table 4 are also impressive when we perform the FFNN model in Sioux Falls network. It is seen that FFNN model has an excellent performance even with half of all OD pairs missing. On the contrary, the traditional traffic assignment method is not qualified to predict link flows for any levels of data incompleteness. Significant improvements on the model accuracy are observed for the FFNN model ranging from 6.34% to 46.25%, as opposed to the results of FW algorithm. 23 Chicago Sketch Network Finally, we conduct our experiments in Chicago sketch network, as shown in Figure 7. Different from Braess's paradox network and Sioux Falls network, the training data is now generated from a mesoscopic simulation tool, i.e., DTALite, which is capable of reflecting real-world traffic phenomenon, e.g., queueing at intersections [START_REF] Zhou | DTALite: A queue-based mesoscopic traffic simulator for fast model evaluation and calibration[END_REF]. Similarly, we hide OD pairs randomly chosen from OD matrix with the missing rates of 10% to 50%. Table 5 summarizes the comparisons of results by FW algorithm and our model as against the simulated results. Interestingly, we find that our model already beats the FW algorithm with higher accuracy under the no-missing scenario. The reason is that FW algorithm calculate link flows in ideal condition (e.g., no traffic light and queueing), while the link flow obtained using simulation tool considered the traffic phenomenon. At the same time, proposed FFNN model learns the mapping between OD data and simulated link flow data directly and takes these factors into account. Therefore, the predicted link flow obtained by FFNN model can better reflect practical situation than that by FW algorithm. Similar outcomes are also observed in the 2 nd experiment. It should be mentioned that the accuracy of using FW algorithm to predict link flow fluctuates comparing with the first experiment. The reason is that in the second experiment, we randomly hide certain percentage of OD trips out of every trip origin rather than hiding a certain percentage of OD pairs directly out of total demand. As the consequence, the actual number of missing OD pairs fluctuates. In Table 5, we can find a significant improvement (i.e., 39.48%) in link flow prediction accuracy when hiding 50% OD pairs out of total demand in the first experiment. In the second experiment, the accuracy of deep-learning model remains stable while that of FW algorithm often experiences dramatic decrease (e.g., from 81.72% to 68.58%). The performance of using deep-learning model in large-sized network to accomplish accurate link flow prediction has been proved. To be more straightforward, Figure 8 compares the model accuracy in three networks while conducting first and second experiment. 

FFNN CONCLUSIONS AND EXTENSIONS

In this research, we develop a novel data-driven approach for traffic assignment in the case of incomplete OD data without need of data imputation or sample expansion. Feed-forward neural network is embedded in a deep-learning structured model to learn the mechanism of UE traffic assignment principle. The model is trained by randomly generated OD matrix and its corresponding link flow patterns that determined by FW algorithm. Experiments are conducted in three typical networks, i.e., Braess's paradox network, Sioux Falls network and Chicago sketch network. The FFNN model shows good performance Then, we randomly hide OD pairs from each OD matrix and compare the assignment results of the traditional FW algorithm and that of FFNN model. The experimental results are promising. Under various levels of data incompleteness, the result accuracy of FFNN model remains over 87%, even with 50% OD pairs missing. In contrast, the accuracy of the traditional traffic assignment method deteriorates quickly and unsurprisingly becomes unqualified for any levels of data incompleteness. The results demonstrate that the effectiveness and robustness of the FFNN model in traffic assignment, particularly for incomplete OD data. This finding provides a new direction for traffic assignment with partial data, that is we can learn the mapping between partial observed OD data (easy to obtain from GPS but usually incomplete) and fully available link flow data (e.g., via loop detector or videos) and train the deep-learning model. Once the model if well trained, link flow results with satisfactory accuracy can be very efficiently obtained by inputting the newly-surveyed incomplete raw data.

Another application of FFNN model in traffic assignment is to identify the most "influential" OD pairs that have largest impacts on model accuracy while missing. Accordingly, targeted survey may be designed. We are also examining other deep-learning architectures such as convolution neural network and graph convolution network for comparison with the current one. For next extension, it is also interesting to study if the deep learning method is competent for dynamic traffic assignment task with time-varying OD demand as input, which definitely has no time for sophisticated data preprocessing.

Figure 2

 2 Figure 2 presents the deep learning-based traffic assignment forecast evaluation process. To evaluate the performance of proposed FFNN model of mapping the incomplete OD data with complete link flow data, we conduct a series of experiments. The artificial world in the figure represents the world using artificial OD data which is either randomly generated or simulated. The complete OD data is used to calculate the corresponding link flow data. Then we hide certain percentage OD data to create incomplete OD dataset (denoted as OD dataset 1). With the link flow data and OD dataset 1, we input them into deep learning model for training. Then we input another incomplete OD data into the well-trained model. This incomplete OD data (denoted OD data 2) is created from another complete OD data by hiding the same percentage of data. Then the link flow forecast obtained from the well-trained deep-learning model and the exact link flow data (i.e., calculated from complete OD data) are compared to assess the model accuracy.
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 2 Figure 2 Deep learning-based traffic assignment forecast evaluation frameworkThe proposed traffic assignment forecast is depicted in Figure 3, where in artificial world, incomplete OD data and complete link flow data are inputted into deep learning training process. The deep learning model are trained and validated by the process described in Figure 2 in order to present the relationship between partial OD data and complete link flow data. When the deep learning model is well trained, we can use the real-world incomplete OD data to produce link flow forecast efficiently and accurately.
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 3 Figure 3 The proposal traffic assignment forecast procedure The data preparation is illustrated in Figure 4(a). Given generated OD matrix and network information, we employ FW algorithm to obtain link flows under UE principle. The calculated link flow matrices are regarded as the target variables for training proposed model.Figure 4(b) exemplify the network information in the Braess's paradox network. The link information matrix and link-node incidence matrix are also plugged in the FFNN model as input features. There are three columns containing in the link information matrix, they are: link numbers, capacity, and free flow travel time (FFT). The link travel
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 4 Figure 4 Data preparation process for training FFNN model

Figure 5

 5 Figure 5 Train losses for different optimizers and different AFsWhile training the model, we set up the initial batch size equal to 64. This operation aims to divide the training and test dataset to small batches instead of passing the entire dataset. Then we fix the AF as ReLU (Rectified Linear Unit) and train the model with four kinds of optimizers separately. The experimental results show that, model that uses Adam optimizer has the highest model accuracy (99.35%). Then, we change our AF and find that Elu has the best system performance while comparing with others. As ReLU learns faster than Elu (39), and the system performances regarding these two AFs seem approximate. Thus, we finally select Adam (Adaptive moment estimation) as the optimizer and ReLU as AF. The optimal learning rate for proposed model is 0.001, and optimal batch size is 128. Table1summarizes the FFNN model performance with different optimizers and AFs. Selecting the fine-tuned parameters, the model accuracy is 99.35% for Braess's paradox network. The accuracy of FFNN model to learn equilibrium traffic assignment mechanism has been verified. TABLE 1 Performance Metrics for Different Optimizers and AFs Optimizer/AF selected
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 7 Figure 7 Chicago sketch network (387 demand zones, 933 nodes, and 2950 links) TABLE 5 Model Accuracy Comparisons with Incomplete OD Dataset: Chicago Sketch Network

Figure 8

 8 (a) Model accuracy in the first experiment (b) Model accuracy in the second experiment Model accuracy: FW v.s.

TABLE 1 Performance Metrics for Different Optimizers and AFs Optimizer/AF selected

 1 

		Train loss	RMSE	MAE	MAPE%	Accuracy%
		Performance metrics for different optimizers with AF = ReLU	
	Adam	0.0170	0.1320	0.1404	0.65%	99.35%
	Adagrad	1.1144	1.0608	0.3297	4.87%	95.13%
	RMSprop	0.0557	0.2330	1.9577	1.23%	98.77%
	Momentum	1.6224	1.2735	0.7508	6.26%	93.74%
		Performance metrics for different AFs with optimizer = Adam	
	ReLU	0.0170	0.1320	0.1404	0.65%	99.35%
	Elu	0.0022	0.0470	0.1361	0.23%	99.77%
	Sigmoid	0.9540	0.9881	0.8645	4.69%	95.31%
	Tanh	1.6026	1.2852	0.5741	6.28%	93.72%
	Incomplete OD data as Input				

TABLE 2 Model Accuracy Comparisons with Incomplete OD Dataset: Braess's Paradox Network First experiment: randomly hiding OD pairs out of 6 in total

 2 

	Scenarios	Link flow results of FW	Link flow results of Deep	Improvement
		algorithm	learning	
	No missing	100%	99.35%	-0.65%
	Hide 1 OD pair (17%)	80.56%	97.08%	16.52%
	Hide 2 OD pairs (33%)	63.68%	96.38%	32.70%

experiment: randomly hiding OD trips for each trip origin

  

	Scenarios	Link flow results of FW	Link flow results of Deep	Improvement
		algorithm	learning	
	Hide 10%	90.23%	98.36%	8.13%
	Hide 25%	71.40%	95.44%	25.04%
	Hide 30%	64.19%	95.26%	31.07%
	Hide 50%	44.90%	94.85%	49.95%
	Results in Table			

TABLE 3 Impacts of Missing OD Pairs on Model Accuracy Missing OD pairs

 3 

		Train loss	RMSE	MAE	MAPE%	Accuracy%
	No missing	0.0022	0.0470	0.1361	0.23%	99.77%
	OD(1,2)	0.2792	0.5431	0.6965	2.79%	97.21%
	OD(3,2)	0.1844	0.4445	0.4127	2.26%	97.74%
	OD(1,3)	0.2640	0.5253	0.3103	1.70%	98.30%
	OD(1,4)	0.3686	0.6230	0.9354	3.11%	96.89%
	OD(2,4)	0.2807	0.5284	0.2204	1.53%	98.47%
	OD(3,4)	0.2485	0.5082	0.2920	2.54%	97.46%
	It is observed from Table				

  The model accuracy is 97.31% after training. The accuracy of FW assignment fluctuates in this experiment due to the randomly missing OD trips, which may hurt different when they occur in different OD pairs (as confirmed by our results in Braess's network).

			Link flow results of	Improvement
			Deep learning	
	No missing	100%	97.31%	-2.69%
	Hide 10% OD pairs	88.06%	94.40%	6.34%
	Hide 20% OD pairs	77.04%	93.20%	16.16%
	Hide 30% OD pairs	66.40%	92.71%	26.31%
	Hide 40% OD pairs	55.70%	92.08%	36.38%
	Hide 50% OD pairs	45.27%	91.52%	46.25%
		Second experiment: randomly hiding OD trips	
	Scenarios	Link flow results of FW	Link flow results of	Improvement
		algorithm *	Deep learning	
	10%	90.89%	94.83%	3.94%
	20%	78.90%	93.45%	14.55%
	30%	85.43%	93.99%	8.46%
	40%	69.58%	92.74%	23.16%
	50%	85.88%	94.05%	8.17%

*

TABLE 5 Model Accuracy Comparisons with Incomplete OD Dataset: Chicago Sketch Network First experiment: randomly hiding OD pairs

 5 The accuracy of FW assignment fluctuates in this experiment due to the randomly missing OD trips, which may hurt different when they occur in different OD pairs (as confirmed by our results in Braess's network).

	Randomly hide # OD	Link flow results of FW	Link flow results of	Improvement
	pairs	algorithm	Deep learning	
	No missing	84.62%	90.98%	6.27%
	Hide 10% OD pairs	82.27%	91.45%	9.18%
	Hide 20% OD pairs	77.06%	89.86%	12.80%
	Hide 30% OD pairs	69.91%	90.38%	20.77%
	Hide 40% OD pairs	60.90%	88.27%	27.37%
	Hide 50% OD pairs	51.14%	90.62%	39.48%
		Second experiment: randomly hiding OD trips	
	Scenarios	Link flow results of FW	Link flow results of	Improvement
		algorithm *	Deep learning	
	10%	84.46%	92.18%	7.72%
	20%	78.58%	90.56%	11.98%
	30%	81.72%	89.33%	7.61%
	40%	68.58%	88.62%	20.04%
	50%	83.54%	91.59%	8.05%

*

  model accuracy over 97% in small-sized and medium-sized network. For large-sized network, as Chicago sketch network in this research, the accuracy of deep learning model is still over 90%. Those results indicate that FFNN model can learn the equilibrium traffic assignment mechanism effectively and efficiently.
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