Mai Alzamel
email: mai.alzamel@kcl.ac.uk

Maxime Crochemore
email: maxime.crochemore@kcl.ac.uk

Costas S Iliopoulos
email: costas.iliopoulos@kcl.ac.uk

Tomasz Kociumaka
email: kociumaka@mimuw.edu.pl

Jakub Radoszewski

Wojciech Rytter
email: rytter@mimuw.edu.pl

Juliusz Straszyński
email: j.straszynski@mimuw.edu.pl

Tomasz Waleń
email: walen@mimuw.edu.pl

Wiktor Zuba
email: w.zuba@mimuw.edu.pl

Quasi-Linear-Time Algorithm for Longest Common Circular Factor

Keywords: 2012 ACM Subject Classification Theory of computation → Pattern longest common factor, circular pattern matching, internal pattern matching, intersection of hyperrectangles Digital Object Identifier 10.4230/LIPIcs.CPM.2019.25

We introduce the Longest Common Circular Factor (LCCF) problem in which, given strings S and T of length at most n, we are to compute the longest factor of S whose cyclic shift occurs as a factor of T . It is a new similarity measure, an extension of the classic Longest Common Factor. We show how to solve the LCCF problem in O(n log 4 n) time using O(n log 2 n) space.

Introduction

We introduce a new variant of the Longest Common Factor (LCF) Problem, called the Longest Common Circular Factor (LCCF) Problem. In the LCCF problem, given two strings S and T , both of length at most n, we seek for the longest factor of S whose cyclic shift occurs as a factor of T . The length of the LCCF is a new string similarity measure that is 2-approximated by the length of the LCF. We show that the exact value of LCCF can be computed efficiently.

A linear-time solution to the LCF problem is one of the best-known applications of the suffix tree [START_REF] Apostolico | Muthukrishnan. 40 years of suffix trees[END_REF]. Just as the LCF problem was an extension of the classical pattern matching, the LCCF can problem be seen as an extension of the circular pattern matching. The latter can still be solved in linear time using the suffix tree and admits a number of efficient solutions based on practical approaches [START_REF] Md | A fast and lightweight filter-based algorithm for circular pattern matching[END_REF][START_REF] Chen | Bit-Parallel Algorithms for Exact Circular String Matching[END_REF][START_REF] Fredriksson | Average-optimal string matching[END_REF][START_REF] Costas | Searching and Indexing Circular Patterns[END_REF][START_REF] Lin | Adjeroh. All-Against-All Circular Pattern Matching[END_REF][START_REF] Susik | Fast and Simple Circular Pattern Matching[END_REF], also in the approximate variant [START_REF] Barton | Fast algorithms for approximate circular string matching[END_REF][START_REF] Barton | Average-Case Optimal Approximate Circular String Matching[END_REF][START_REF] Fredriksson | Average-optimal single and multiple approximate string matching[END_REF][START_REF] Hirvola | Bit-Parallel Approximate Matching of Circular Strings with k Mismatches[END_REF], as well as an indexing variant [START_REF] Athar | Fast circular dictionary-matching algorithm[END_REF][START_REF] Costas | Searching and Indexing Circular Patterns[END_REF]22], and the problem of detecting various circular patterns [START_REF] Lin | Circular Pattern Discovery[END_REF]. The LCCF problem is further related to the notion of unbalanced translocations [START_REF] Cantone | Sequence Searching Allowing for Non-Overlapping Adjacent Unbalanced Translocations[END_REF][START_REF] Cho | Alignment with non-overlapping inversions and translocations on two strings[END_REF][START_REF] Ogiwara | Unbalanced translocation, a major chromosome alteration causing loss of heterozygosity in human lung cancer[END_REF][START_REF] Warburton | De novo balanced chromosome rearrangements and extra marker chromosomes identified at prenatal diagnosis: clinical significance and distribution of breakpoints[END_REF][START_REF] Weckselblatt | Unbalanced translocations arise from diverse mutational mechanisms including chromothripsis[END_REF].

One can formally state the problem in scope as follows.

Longest Common Circular Factor (LCCF) Input: Two strings S and T of length at most n each.

Output: A pair of longest factors, F of S and F of T , for which there exist strings U and V such that F = U V and F = V U ; we denote LCCF(S, T) = (F, F).

This problem can be solved in a straightforward way in O(n 2 log n) time and O(n) space using period queries [START_REF] Kociumaka | Efficient Data Structures for the Factor Periodicity Problem[END_REF][START_REF] Kociumaka | Internal Pattern Matching Queries in a Text and Applications[END_REF][START_REF] Kociumaka | Efficient Data Structures for Internal Queries in Texts[END_REF]; see Section 2.1. Our main result is the following.

Theorem 1 (Main Result). The Longest Common Circular Factor problem on two strings of length at most n can be solved in O(n log 4 n) time and O(n log 2 n) space.

Henceforth, we assume for simplicity that |S| = |T | = n; otherwise, the shorter string can be padded with a special character # that does not occur in either of the strings.

Our approach. We apply local consistency techniques from the area of internal pattern matching (in case U and V are not highly periodic; Section 3) and Lyndon roots (otherwise; Section 4). The LCCF problem is reduced to finding configurations satisfying conjunction of four conditions of type i ∈ Occ(X), where Occ(X) is the set of occurrences of a factor X.

Each configuration can be decomposed into two subconfigurations (pairs of consecutive fragments), one in S and one in T . We guarantee that the number of subconfigurations is nearly linear so that we can compute them all for both S and T . Then, the task reduces to finding two subconfigurations which agree (produce a full configuration) and constitute an optimal solution. This is done using geometric techniques in Section 6. Each condition i ∈ Occ(X) can be seen as membership of a point in a range since Occ(X) forms an interval in the suffix array. This gives a reduction of the LCCF problem to an intersection problem for 4D-rectangles. The latter task is solved efficiently using a sweep line algorithm. W [i . . j + 1), and we define first(x) = i as well as last(x) = j. If first(x) = 1, then x is a prefix, and if last(x) = |W |, it is a suffix of W . Fragments x and y are consecutive if last(x) + 1 = first(y); we then also say that y follows x.

The string

W [i] • • • W [j]
that corresponds to the fragment x is a factor of W . We say that two fragments match if the corresponding factors are the same. Let us note that a fragment can be represented by its endpoints in O(1) space; this representation can also be used to specify the corresponding factor.

By W R we denote the reversal of a string W . We say that a positive integer p is a period of a string W if W [i] = W [i + p] for all i = 1, . . . , |W | -p. By per(W) we denote the shortest period of W . A string W is called (weakly) periodic if its shortest period satisfies 2per(W) ≤ |W |. Fine and Wilf's Periodicity Lemma [START_REF] Fine | Uniqueness Theorems for Periodic Functions[END_REF] asserts that if a string W has periods p and q such that p + q ≤ |W |, then gcd(p, q) is also a period of W .

O(n 2 log n)-Time and O(n)-Space Algorithm

A period query [START_REF] Kociumaka | Efficient Data Structures for the Factor Periodicity Problem[END_REF] is an internal query that is defined on a text W as follows: Given a fragment x of the text, report all periods of x (represented as several arithmetic progressions). In particular, the answer gives the shortest period p = per(x) and the longest border

U = x[1 . . |x| -p] = x[1 + p . . |x|].
Period queries can be answered in O(log n) time using a data structure of size O(n). A randomized O(n)-time construction of this data structure was presented in [START_REF] Kociumaka | Internal Pattern Matching Queries in a Text and Applications[END_REF], whereas a deterministic variant appeared in [START_REF] Kociumaka | Efficient Data Structures for Internal Queries in Texts[END_REF]Theorem 1.1.12].

Proposition 2. The Longest Common Circular Factor problem on two strings of length n

can be solved in O(n 2 log n) time and O(n) space.
Proof. Let us set W = S#T #S, where # is a special character that occurs neither in S nor in T . For every pair of positions i, j ∈ [1 . . n], we ask a period query for [1 . . i). This lets us recover the longest borders U of x and V of y so that (U V, V U) is a common circular factor of S and T . The longest of these factors over all pairs of positions (i, j) corresponds to the LCCF.

x = W [i . . n + j] = S[i . . n]#T [1 . . j) and y = W [n + j + 1 . . 2n + 1 + i] = T [j . . n]#S

Synchronizing Sets

In this section, we present the notion of synchronizing sets recently introduced by Kociumaka and Kempa [START_REF] Kempa | String synchronizing sets: Sublinear-time BWT construction and optimal LCE data structure[END_REF] for BWT construction and answering LCE queries. Intuitively, a τ -synchronizing set P of a string W is a subset of position of W such that: the choice whether i ∈ P is made based on a context of 2τ subsequent characters, P contains at least one in every τ positions of each region of W whose period exceeds 1 3 τ . The underlying idea of making a locally consistent selection based on fixed-length contexts originates from internal pattern matching [START_REF] Kociumaka | Internal Pattern Matching Queries in a Text and Applications[END_REF]. Later, the construction has been used for LCE queries [START_REF] Birenzwige | Locally Consistent Parsing for Text Indexing in Small Space[END_REF] and derandomized [START_REF] Kociumaka | Efficient Data Structures for Internal Queries in Texts[END_REF]. We formalize our results using synchronizing sets as they provide a cleaner interface compared to that of the synchronizing functions of [START_REF] Kociumaka | Efficient Data Structures for Internal Queries in Texts[END_REF]. Definition 3 (Kempa and Kociumaka [23]). Let W be a string of length n and let τ ≤ 1 2 n be a positive integer. We say that a set P ⊆ [1 . . n -2τ + 1] is a τ -synchronizing set of W if it satisfies the following conditions (see Figure 1

): if W [i . . i+2τ) = W [i . . i +2τ), then i ∈ P if and only if i ∈ P (for i, i ∈ [1 . . n-2τ +1]), P ∩ [i . . i + τ) = ∅ if and only if per(W [i . . i + 3τ -2]) ≤ 1 3 τ (for i ∈ [1 . . n -3τ + 2]).
A key technical result is a deterministic linear-time construction of a synchronizing set of optimal size O(n τ). The linear running time is improved in [START_REF] Kociumaka | Efficient Data Structures for Internal Queries in Texts[END_REF][START_REF] Kempa | String synchronizing sets: Sublinear-time BWT construction and optimal LCE data structure[END_REF] to O(n log σ n) for small alphabet size σ and parameter τ = Θ(log σ n), but that is not relevant for this paper. Lemma 4 ([START_REF] Kempa | String synchronizing sets: Sublinear-time BWT construction and optimal LCE data structure[END_REF]; see also [START_REF] Kociumaka | Efficient Data Structures for Internal Queries in Texts[END_REF]Lemma 4.4.9]). Given a string W of length n and a positive integer τ

≤ 1 2 n, in O(n) time one can construct a τ -synchronizing set P of size |P| ≤ 9n τ .
The central property of a synchronizing set P is that if a factor X is sufficiently long and not highly periodic, then most of the positions of P contained in the occurrences of X are located consistently. In our applications, we actually use the leftmost of these positions only. Hence, for an integer i and a set P , we define succ P (i) = min{p ∈ P : p ≥ i} to be the successor of i in P . We assume that min ∅ = ∞ so that succ

P (i) = ∞ if i > max P . Lemma 5. Let P be a τ -synchronizing set in a string W . If W [i . . j] = X = W [i . . j],
where |X| ≥ 3τ -1 and per(X) > 1 3 τ , then succ P (i)

-i = succ P (i) -i ≤ |X| -2τ .
Proof. First, suppose for a proof by contradiction that succ

P (i) -i > |X| -2τ = j -i + 1 -2τ . Consequently, P ∩ [i . . j -2τ + 2) = ∅, which yields P ∩ [p . . p + τ) = ∅ for p ∈ [i . . j -3τ + 2]. Hence, Definition 3 implies per(W [p . . p + 3τ -2]) ≤ 1 3 τ for p ∈ [i . . j -3τ + 2]. Due to j -i + 1 = |X| ≥ 3τ -1,
this range is non-empty, so the Periodicity Lemma yields

1 3 τ < per(X) = per(W [i . . j]) ≤ 1
3 τ , contradicting our assumption that succ P (i)-i > |X|-2τ . Due to succ P (i) -i ≤ |X| -2τ , we now conclude that W [succ P (i) . . succ P (i) + 2τ) = W [i -i + succ P (i) . . i -i + succ P (i) + 2τ). Therefore, succ P (i) ∈ P implies i -i + succ P (i) ∈ P in the light of Definition 3. Consequently, succ P (i) -i ≤ succ P (i) -i. A symmetric argument shows that succ P (i) -i ≤ succ P (i) -i , which completes the proof.

Types of Factors

We define the type of a (non-empty) string W as type(W) = log(|W | + 1) -1 . We denote by LCCF a,b (S, T) the longest common circular factor (U V, V U) of S and T such that type(U) = a and type(V) = b. We also say that it is the type-(a, b) LCCF. Moreover, we denote by LCF(S, T) the (ordinary) longest common factor of S and T (corresponding to U = ε or V = ε). Our basic strategy is to compute LCCF a,b (S, T) independently for every pair (a, b) and report the longest alternative among the obtained common circular factors, including (F, F) for F = LCF(S, T). However, we observe that if Intuitively, P a (S) and P a (T) represent the subsets of P a corresponding to S and T , respectively.

LCCF(S, T) = LCCF a,b (S, T) = (U V, V U), then 1 2 |F | ≤ 1 2 |U V | ≤ max(|U |, |V |) ≤ |F |,
The following result relates these notions to the common factors of S and T .

Corollary 6. If S[i . . j] = F = T [i . . j],
where F is a type-a string satisfying per(F

) > 1 6 2 a , then succ Pa(S) (i) -i = succ Pa(T) (i) -i < |F |.
Proof. The claim is trivial for a = 0 due to succ P0(S) (i)

-i = succ P0(T) (i) -i = 0. Otherwise, we have |F | ≥ 2 a+1 -1 > 3 • 2 a-1 -1 and per(F) ≥ 1 6 2 a = 1 3 2 a-1 , so Lemma 5 yields succ Pa(S) (i) -i = succ Pa(T) (i) -i ≤ |F | -2 • 2 a-1 < |F |.

Nonperiodic Case

We say that a string U of type a is highly periodic if per(U) ≤ 1 6 2 a . We consider now

LCCF a,b (S, T) = (F, F) such that F = U V , F = V U , U is of type a, V
is of type b, and neither U nor V is highly periodic. We call it the nonperiodic case.

For a pair of fragments (u, v), by Γ u,v we denote a condition which states that u is followed by a fragment that matches v and by ∆ u,v we denote a condition which states that v follows a fragment that matches u. We say that two pairs of consecutive fragments, (x, y) in S and (z, t) in T , agree if and only if Γ y,z and ∆ y,z and Γ t,x and ∆ t,x .

We reduce the LCCF problem in this case to the following abstract problem; see Figure 2. For a string W ∈ {S, T } and a type a, we introduce the following set of synchronizers:

LeftSync a (W, i) = P a (W) ∩ [i -2 a+2 + 2 . . i -1], RightSync a (W, i) = P a (W) ∩ [i . . i + 2 a+2 -3].
By RightSync a (W, i) we denote the singleton of the leftmost position in RightSync a (W, i) or an empty set if there is no such position. For positions α ≤ i ≤ β in W , by

Ψ W (α, i, β) = (W [α . . i), W [i . . β))
C P M 2 0 1 9

25:6

Quasi-Linear-Time Algorithm for Longest Common Circular Factor we denote a pair of consecutive fragments of W that are delimited by these positions. We then define the set of candidates (see Figure 3):

S 2 a+2 -2 2 b+2 -2 • • • x • • y • • U V i α β T 2 b+2 -2 2 a+2 -2 • • • • z • • t • • V U i β α Figure 3 Assume that α ∈ LeftSync a (S, i), β ∈ RightSync b (S, i), β ∈ LeftSync a (T, i), β ∈ RightSync b (T, i). Then ΨS(α, i, β) = (x, y) agrees with ΨT (β , i , α) = (z, t) if
CAND a,b (W) = {Ψ W (α, i, β) : α ∈ LeftSync a (W, i), β ∈ RightSync b (W, i), i ∈ [1 . . |W |]}.
Using this terminology, an informal scheme of a general algorithm is as follows:

Lemma 7 (Correctness for Nonperiodic Case). The LCCF a,b problem in the nonperiodic case can be reduced to the Fragment-Families-Problem (F S , F T) for F S = CAND a,b (S) and F T = CAND b,a (T).

Proof. Take a pair of fragments f S of S and f T of T such that f S is an occurrence of a factor F = U V and f T is an occurrence of a factor

F = V U such that U is of type a, V is of type b,

α).

The equalities listed above imply that the two pairs agree.

Conversely, for every two pairs (x, y) ∈ CAND a,b (S), (z, t) ∈ CAND b,a (T) that agree, there exists a factor F in string S matching txyz and a factor F matching yztx in T . Thus, there is a one-to-one correspondence between pairs that agree and fragments of strings of right type that are cyclic shifts. Hence, by finding two pairs that agree and maximize |x| + |y| + |z| + |t|, we construct a solution to the LCCF a,b problem.

Periodic Case

We consider now LCCF a,b (S, T) = (F, F) such that F = U V , F = V U , U is of type a, V is of type b, and both U and V are highly periodic.

Recall that a Lyndon string is a string that is lexicographically smaller than all its non-trivial cyclic shifts. If W is a weakly periodic string with the shortest period p, then its Lyndon root λ is the Lyndon string that is a cyclic shift of W [1 . . p]. A Lyndon representation of W is then (c, e, d) such that W = λ λ e λ where |λ | = c < |λ| and |λ | = d < |λ|; see [START_REF] Crochemore | Extracting powers and periods in a word from its runs structure[END_REF]. Lyndon strings have the following synchronization property that follows from the periodicity lemma: if λ is a Lyndon string, then it has exactly two occurrences in λ 2 ; see [START_REF] Crochemore | Algorithms on strings[END_REF].

For a string W , by HPerPref a (W) and HPerSuf a (W) we denote the longest highly periodic type-a prefix and type-a suffix of W , respectively (or the empty string if there is no appropriate prefix or suffix). Let us start with the following simple observation; see Figure 4.

Quasi-Linear-Time Algorithm for Longest Common Circular Factor

If the latter string is empty, we assume that LeftLyn a (W, i) is also empty. Similarly, we define RightLyn a (W, i) as the set of positions where the first, second to last, and last occurrence of the Lyndon root start in HPerPref a (W [i . . |W |]). We can redefine the set of candidates as follows (see Figure 5)

CAND a,b (W) = {Ψ W (α, i, β) : α ∈ LeftLyn a (W, i), β ∈ RightLyn b (W, i), i ∈ [1 . . |W |]}. • α 1 • α 2 • α 3 • β 1 • β 2 • β 3 i 2 b+1 -1 2 b+2 -2 2 a+1 -1 2 a+2 -2
Figure 5 In this case, CAND a,b (W) contains ΨW (αp, i, βq) for p, q ∈ {1, 2, 3}.

The following lemma implies the correctness of our algorithm in this case. Proof. Take a pair of fragments f S of S and f T of T such that f S is an occurrence of a factor F = U V and f T is an occurrence of a factor F = V U ((F, F) = LCCF a,b (S, T)) such that U is of type a, V is of type b, and both U and V are highly periodic. Denote by u S and v S the consecutive fragments of f S corresponding to U and V , and similarly by v T and u T the consecutive fragments of f T corresponding to V and U , and let i = first(v S) and j = first(u T).

Let X = HPerSuf a (S[1 . . i)) and Y = HPerPref a (T [j . . n]). Note that u S is a highly periodic suffix of X and that X has the same period as U (a different period would contradict the periodicity lemma). Symmetrically, u T is a highly periodic prefix of Y and Y has the same period as U . Let λ be the Lyndon root of U , and observe that λ is also the Lyndon root of X and Y . By Observation 9, we have

|X| -|U | < |λ| or |Y | -|U | < |λ|,
as otherwise we would be able to find a Common Circular Factor of type (a, b) that is longer by |λ|, thus contradicting our choice of f S ad f T .

If |X| -|U | < |λ|, then the first occurrence of λ in u S is also the first or second occurrence of Lyndon root in X. This is due to the synchronization property of Lyndon strings. Moreover, the first λ in u T is also the first occurrence of λ in Y . On the other hand, if |Y | -|U | < |λ|, then the last occurrence of λ in u T is the last or the second to last occurrence of λ in u T , whereas the last occurrence of λ in u S is also the last occurrence of λ in X. In either case, u S and u T contain a pair of corresponding occurrences of λ whose starting positions belong to LeftLyn a (S, i) and RightLyn b (T, j), respectively; see Figure 6.

As the same reasoning can be applied to v S and v T , there exist pairs (x, y) ∈ CAND a,b (S) and (z, t) ∈ CAND b,a (T) which correspond to our choice of occurrences of the Lyndon roots. These pairs agree and |x| + |y| + |z| + |t| = |F |; thus, Fragment-Families-Problem (F S , F T) will find a solution at least that good.

The converse direction is identical to the one from the proof of Lemma 7.

λ • i 2 a+2 -2 2 a+1 -1 * • λ j 2 a+2 -2 2 a+1 -1 • i • j * • i * • j • i • j Figure 6
Four cases from the proof of Lemma 10.

We proceed with an efficient implementation. A run in string W is a maximal weakly periodic fragment W [i . . j] with a given period p. We use 2-period queries which, given a weakly periodic fragment u of a string, compute its shortest period and the run of the same period it belongs to. Such queries can be answered in O(1) time after O(n)-time preprocessing [START_REF] Kociumaka | Internal Pattern Matching Queries in a Text and Applications[END_REF][START_REF] Kociumaka | Efficient Data Structures for Internal Queries in Texts[END_REF] (for a simplified solution, see [START_REF] Bannai | The "Runs" Theorem[END_REF]). Let us also recall that the Lyndon representation of a run can be computed in constant time after linear-time preprocessing [START_REF] Crochemore | Extracting powers and periods in a word from its runs structure[END_REF].

Lemma 11 (Complexity for Periodic Case). In the periodic case, the LCCF problem can be reduced in O(n log n) time to O(log n) instances of the Fragment-Families-Problem with m = O(n).

Proof. First, we spend O(n log n) time in total to construct the sets LeftLyn a (W, i) and RightLyn a (W, i) for each W ∈ {S, T } and a ≤ type(W). For this, we use the following result: Claim 12. After O(n)-time preprocessing of a string W , each set LeftLyn a (W, i) and RightLyn a (W, i) can be constructed in O(1) time.

Proof. To compute HPerPref a (u) for a fragment u of W , it suffices to ask a 2-period query for u[1 . . 2 a+1 -1] (see [START_REF] Kociumaka | Internal Pattern Matching Queries in a Text and Applications[END_REF][START_REF] Bannai | The "Runs" Theorem[END_REF]), determine the Lyndon representation of the resulting run (see [START_REF] Crochemore | Extracting powers and periods in a word from its runs structure[END_REF][START_REF] Bannai | The "Runs" Theorem[END_REF]), and then trim its Lyndon representation to u. A symmetric solution works for HPerSuf a (u). This allows us to construct the sets LeftLyn a and RightLyn a . Proof. In the proofs of Lemmas 7 and 10 the U and V parts of the factors were considered separately. Hence, it is enough to define CAND a,b (W) as

CAND a,b (W) = {Ψ W (α, i, β) : α ∈ LeftSync a (W, i) ∪ LeftLyn a (W, i), β ∈ RightSync b (W, i) ∪ RightLyn b (W, i), i ∈ [1 . . |W |]}.
Depending on whether U or V is highly periodic or not, the existence of an agreeing pair (x, y) ∈ F S and (z, t) ∈ F T can be shown be repeating the arguments in the proofs of Lemma 7 or Lemma 10, respectively. Proof. The families can be computed combining the methods from Lemmas 8 and 11, obtaining the desired complexities and sizes.

Solution to Fragment-Families-Problem

In this section we show how to solve the Fragment-Families-Problem for a string W of length n by a reduction to intersecting special 4-dimensional rectangles. First, we give a geometric interpretation of two predicates: a factor U has an occurrence in W starting at position q (is a prefix of the suffix starting at position q), and U has an occurrence ending at position q (is a suffix of the prefix ending at position q) relating them to the membership of q in a corresponding subinterval of [1 . . n].

Let us recall that the suffix array [START_REF] Manber | Suffix Arrays: A New Method for On-Line String Searches[END_REF] of a string W , SA W , is a permutation of

[1 . . n] such that W [SA W [i] . . n] < W [SA W [i + 1] . . n] for every i ∈ [1 . . n -1]
. By FirstPos(U) let us denote the set of starting positions of occurrences of U in W . Our geometric interpretation is possible due to the following well known fact (see [START_REF] Crochemore | Algorithms on strings[END_REF]). Observation 15. The set FirstPos(U) consists of consecutive elements in SA W .

Let LastPos(U) be the set of ending positions of occurrences of U in W . We also use the FirstPos, LastPos notation for fragments which means operations on corresponding factors.

Observation 16. 1.

A fragment u is a prefix/suffix of the suffix starting (prefix ending) at position q if and only if q ∈ FirstPos(u), q ∈ LastPos(u), respectively. 2. Γ u,v ≡ ((last(u) + 1) ∈ FirstPos(v)) and ∆ u,v ≡ ((first(v) -1) ∈ LastPos(u)).

We define a d-rectangle (d ≥ 2) as a Cartesian product of d closed intervals, such that at least d -2 of them are singletons. E.g., {3} × [2 . . 5] × [1 . . 7] × {0} is a 4-rectangle. In other words, a d-rectangle is an isothetic hyperrectangle of dimension at most 2.

By I(U) and J (U) we denote the subintervals of [1 . . n] that correspond to the intervals of FirstPos(U) in the suffix array SA W and of LastPos(U) in the (analogously defined) prefix array of W , PA W , respectively, as stated in Observation 15. (PA W is a permutation of [1 . . n

] such that W [1 . . PA W [i]] R < W [1 . . PA W [i + 1]] R for every i ∈ [1 . . n -1].
) For pairs (x, y) and (z, t) of consecutive fragments, we denote:

RECT(x, y) = I(x) × J (y) × {SA -1 W [last(y) + 1]} × {PA -1 W [first(x) -1]}, RECT (z, t) = {SA -1 W [last(t) + 1]} × {PA -1 W [first(z) -1]} × I(z) × J (t)

Intersecting 4D Rectangles

We consider two families of 4-rectangles with weights and wish to find a pair of intersecting rectangles, one per family, with maximum total weight. The general problem of finding such an intersection of two families of m weighted hyperrectangles in d dimensions can be solved in O(m log 2d m) time by an adaptation of a classic approach [START_REF] Edelsbrunner | A new approach to rectangle intersections, Part I[END_REF]. Below, we consider a special variant of the problem that has a much more efficient solution.

Max-Weight Intersection of Compatible Rectangles in 4D

Input: Two families R 1 and R 2 of 4-rectangles in Z 4 with integer weights containing m rectangles in total, such that each R 1 ∈ R 1 and R 2 ∈ R 2 are compatible Output: Check if there is an intersecting pair of 4-rectangles R 1 ∈ R 1 and R 2 ∈ R 2 and, if so, compute the maximum total weight of such a pair A very similar problem was considered as Problem 3 in [START_REF] Grabowski | On Abelian Longest Common Factor with and without RLE[END_REF] for an arbitrary d. The sole difference is that the weight of an intersection of two d-rectangles R 1 ∈ R 1 and R 2 ∈ R 2 in that problem was the maximum 1 -norm of a point in R 1 ∩ R 2 . A solution to Problem 3 for d = 4 in the case that the 4-rectangles are compatible working in O(m log 3 m) time and O(m log 2 m) space was given as [START_REF] Grabowski | On Abelian Longest Common Factor with and without RLE[END_REF]Lemma 5.8]. The algorithm presented in that lemma actually solves the Max-Weight Intersection of Compatible Rectangles in 4D problem and applies it for specific weight assignment of the 4-rectangles on the input. It uses hyperplane sweep and a variant of an interval stabbing problem. Henceforth, we will use the following result.

Algorithm for Fragment-Families-Problem

Let us recall that the suffix tree [START_REF] Weiner | Linear Pattern Matching Algorithms[END_REF] of a string W , ST W , is a compacted trie of all the suffixes of W . It can be computed in O(n) time (see [START_REF] Farach-Colton | On the sorting-complexity of suffix tree construction[END_REF]) and reading the suffixes of W in its preorder traversal yields the suffix array of W . An efficient implementation of Observation 15 is known; see [START_REF] Amir | Dynamic text and static pattern matching[END_REF]25].

Lemma 19. The sets I(u) and J (u) can be computed in O(n + m) total time for a batch of m fragments u of a length-n string W .

Figure 1 A 3 -

 13 Figure 1 A 3-synchronizing set P = {1, 2, 5, 8, 11, 12, 16, 19, 22, 24} of a word W of length 30. The 10 positions in P are the starting positions of the occurrences of length-(2 • 3) factors aabbab, aaaaab, baaaaa, bababa, and abaaaa (marked as rectangles, listed top-down). Out of each three consecutive positions in [1 . . 25], at least one belongs to P . The only exception is [13 . . 16) due to the fact that per(W [13 . . 20]) = 1 ≤ 1 3 • 3.

 and therefore type(F) -1 ≤ max(a, b) ≤ type(F). Consequently, it suffices to iterate over O(log |F |) pairs (a, b) satisfying the latter condition. For each type a, we introduce a synchronizing set P a of the concatenation ST . For a = 0, we set P 0 = [1 . . |ST |], while for 1 ≤ a ≤ type(ST), let us define P a as a 2 a-1 -synchronizing set of W . Using Lemma 4, we make sure that |P a | = O(n 2 a) and the set P a can be constructed in O(n) time, which sums up to O(n log n) across all types a. Moreover, let us define P a (S) = {p ∈ P a : p ≤ |S|} and P a (T) = {p -|S| : p ∈ P a , p > |S|}.

Figure 2

 2 Figure 2 Pairs (x, y) and (z, t) agree; txyz and yztx form a common circular factor of S and T .

Algorithm 1 : 1 . 2 .

 112 Figure 3 Assume that α ∈ LeftSync a (S, i), β ∈ RightSync b (S, i), β ∈ LeftSync a (T, i), β ∈ RightSync b (T, i).Then ΨS(α, i, β) = (x, y) agrees with ΨT (β , i , α) = (z, t) if and only if there is a common circular factor of S and T : F = U V , F = V U , where U = tx and V = yz.

 and none of them is highly periodic. Denote by u S and v S the consecutive fragments of f S corresponding to U and V , and similarly by v T and u T the consecutive fragments of f T corresponding to V and U , and let i = first(v S) and j = first(u T). Moreover, considerα = succ Pa(S) (first(u S)) and α = succ Pa(T) (first(u T)). By Corollary 6, α -first(u S) = α -first(u T) ≤ |U |. Consequently, α ∈ LeftSync a (S, i) and α ∈ RightSync a (T, j).Moreover, the relative position of α within u S coincides with the relative position of α within u T . Symmetrically, β = succ P b (S) (first(v S)) ∈ RightSync b (S, i) and β = succ P b (T) (first(v T)) ∈ LeftSync b (T, j). Moreover, the relative position of β within v S coincides with the relative position of β within v T . This means that there exists a pair (x, y) ∈ CAND a,b (S) such that x = S[α . . i) = T [α . . i + |U |) and y = S[i . . β) = T [i -|V | . . β), and a pair (z, t) ∈ CAND b,a (T) such that z = T [β . . i) = S[β . . i + |V |) and t = T [i . . α) = S[i -|U | . .

Lemma 8 (

 8 Complexity for Nonperiodic Case). In the nonperiodic case, the LCCF problem can be reduced in O(n log n) time to O(log n) instances of the Fragment-Families-Problem with m = O(n). Proof. For each type a ∈ [0 . . type(LCF(S, T))], we compute the synchronizing sets P a (S) and P a (T) in O(n) time using Lemma 4 as described in Section 2.3. Observe that each position p ∈ P a (W) may belong to just O(2 a) sets LeftSync a (W, i). Consequently, the total size of the sets LeftSync a (W, i) (for a fixed type a) is O(n), and we can compute them in O(n) time using a sliding window. The running time across all types a is O(n log n). The family CAND a,b (W) is constructed straight from the definition based on the sets LeftSync a (W, i) and the synchronizing set P b (W). As |CAND a,b (W)| ≤ i |LeftSync a (W, i)|, the size of this family is O(n), and the construction time is also linear. Across all O(log n) pairs a, b ≥ 0 with type(LCF(S, T)) -1 ≤ max(a, b) ≤ type(LCF(S, T)), the overall time complexity is O(n log n).

Observation 9 .Figure 4

 94 Figure 4 Illustration of Observation 9. A highly periodic suffix of W that is also a prefix of W of length at most min(|X|, |Y |) -|λ| can be extended by |λ| characters.

Lemma 10 (

 10 Correctness for Periodic Case). The LCCF a,b problem in the periodic case can be reduced to the Fragment-Families-Problem (F S , F T) for the redefined sets F S = CAND a,b (S) and F T = CAND b,a (T).

Lemma 13 (

 13 Now, the family CAND a,b (W), which is of size at most 9n, can be computed in O(n) based on the sets LeftLyn a (W, i) and RightLyn b (W, i). Our reduction to the Fragment-Families-Problem problem relies on O(log n) such families constructed for pairs a, b ≥ 0 such that type(LCF(S, T)) -1 ≤ max(a, b) ≤ type(LCF(S, T)); see Section 2.3 and Lemma 8. consider the general problem of computing LCCF a,b (S, T) = (F, F). It can be reduced to several instances of the Fragment-Families-Problem directly by combining the techniques of the previous two sections. Correctness for General Case). The LCCF a,b problem can be reduced to the Fragment-Families-Problem (F S , F T).

Lemma 14 (

 14 Complexity for General Case). The LCCF problem can be reduced in O(n log n) time to O(log n) instances of the Fragment-Families-Problem with m = O(n).

 Two d-rectangles [a 1 . . b 1]ו • •×[a d . . b d] and [a 1 . . b 1]ו • •×[a d . . b d] are called compatible if, for each i ∈ {1, . . . , d}, [a i . . b i] or [a i . . b i]is a singleton. Let us note that the 4-rectangles in the above observation are compatible.

Fact 18 (

 18 see [19, Lemma 5.8]). Max-Weight Intersection of Compatible Rectangles in 4D can be solved in O(m log 3 m) time and O(m log 2 m) space.

 . Observation 16.2 now implies the following. Two pairs of consecutive fragments (x, y), (z, t) agree if and only if RECT(x, y) ∩ RECT (z, t) = ∅.

	Observation 17.

Funding Tomasz Kociumaka is supported by ISF grant #1278/16 and ERC grant MPM under the European Union's Horizon 2020 research and innovation programme (grant agreement no. 683064). Jakub Radoszewski and Juliusz Straszyński are supported by the "Algorithms for text processing with errors and uncertainties" project carried out within the HOMING programme of the Foundation for Polish Science co-financed by the European Union under the European Regional Development Fund.

Proof. Without loss of generality, it suffices to show how to compute I(u). For every explicit node of ST W , we can compute the interval of elements of SA W that are located in its subtree. This can be done in a bottom-up order in O(n) time.

A weighted ancestor query in ST W , given a terminal node w and positive integer d, returns the ancestor of w located at depth d (being an explicit or implicit node). A batch of m such queries (for any tree of n nodes with positive integer weights of edges) can be answered in O(n + m) time; see [25,Section 7.1].

A weighted ancestor query can be used to compute, given a fragment u of W , the corresponding (explicit or implicit) node w of ST W . The interval stored in the nearest explicit descendant of w equals I(u).

We are now ready to show a solution to the Fragment-Families-Problem.

Conclusions

We have presented an O(n log