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HDROmni: Optical extension of dynamic range
for panoramic robot vision

Julien Ducrocq, Guillaume Caron and El Mustapha Mouaddib

Abstract—This paper presents the design method to optically
extend the perceptible dynamic range of panoramic vision for
robotics. The large range of scene radiance is captured in real-
time by a combination of paraboloidal mirrors, a telecentric lens
and neutral density filters.

The first prototype made of 4 mirrors and 3 neutral density
filters increases 100 times the perceptible dynamic range of the
used camera. Results in various challenging scenes compare the
new camera to low dynamic range ones. They show that the
dynamic range quality of images doubles, on average. They
also show significant benefit for feature-based approaches, i.e.
much more matched features, and direct ones, i.e. much higher
positioning accuracy of direct visual servoing.

I. INTRODUCTION
Real-time panoramic imaging refers to a one-shot camera

of 360o× 180o field of view, or more. Such a field of view is
obtained with a fisheye lens [13] or with a catadioptric optics
including a curved mirror [27].

It decreases the acquisition time to make virtual tours [25]
and enhances video-surveillance capabilities while avoiding
the use of motorized cameras [5]. In robotics, it improves
robustness and accuracy of visual odometry [32] as well as
enlarges the convergence domain of direct visual servoing [7].

However, when the illumination of the scene is significantly
different in several directions, the image includes under-
(Fig. 1b) and over-exposed (Fig. 1c) regions due to the
dynamic range (DR) of the camera, that is lower than the
scene DR. Indeed, the DR of scene radiance is commonly
between 80 and 120 dB [20] whereas few CMOS sensors
of linear response, in machine vision cameras, reach 70 dB1,
eg. 74.3 dB for Sony R©’s IMX287 [12]. Even though sensors
of (pseudo-) logarithmic response overtake 80 dB of DR, eg.
100 dB for ON Semicon R©’s MT9V032, there is still a gap to
reach 120 dB. So, even when combining a fisheye lens with
one of such sensors, there are still risks of non perceived areas,
thus minimizing the interest of panoramic vision in scenes of
challenging lighting.

To handle the latter issue, one increases the DR of a camera
either with hardware processing on CMOS chip [31], however
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1Irradiance DR (iDR), computed with the max/min perceptible irradiances,
can be different from digital DR (dDR), computed from the sensor bit depth
(eg. ON Semicon R©’s 12bits MT9P031: dDR = 72 dB; iDR = 60 dB [3]).
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Fig. 1: (a) HDROmni (filters zoomed, right) to overcome the
dynamic range limits of LDR panoramic images with exposure
times 0.25 (b) and 6.5 ms (c).

not available to consumers yet, or by acquiring several low DR
(LDR) images of the same scene with various exposure times,
then merging them in a single high DR (HDR) image [10],
[11], [15], [21], [30]. The latter methodology samples the
range of scene radiance to overcome the DR limit of a camera.
However, it implies a static camera in a static scene, which is
not suitable for robotics.

The camera motion can be estimated for compensation in
images before merging them. However, the DR of images
acquired successively [15], or in parallel [4], must overlap
significantly for image matching. Alternatively, some design
put optical masks, of spatially varying transmittance, directly
next to the photosensitive matrix of the camera [24], [28].
Recently, neural networks are able to predict the HDR image
from a LDR one [16], [17], [19], to increase the quality of a
HDR image resulting of the fusion of a LDR stack [29] or to
cancel ghosting artifacts due to camera shakes [18].

All the previous methods can almost directly be applied to
panoramic imaging, e.g. [14], but not for dynamic robotics.
Indeed, [15], the fastest learning-based HDR video generation
method we found, would induce a latency of 590 ms, when
considering a 20 Hz image acquisition framerate: 150 ms
to sequentially acquire three exposures + 440 ms to process
430x430 pixels2 (same resolution as in the experiments of
this article, see Sec. IV and V). Hence, only the generalized
assorted pixel camera [28] and the parallel acquisitions of LDR
images of different exposures [4] may lead to real time and low
latency required by robotics applications, including control,
thanks to capturing, not just predicting, a high DR, although
at the price of hardware complexity or size.

We propose a new camera design approach between both

2The 440 ms are estimated from Table IV of [15] where 2.2 s are required
to obtain the HDR image from 3 exposures.
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latter seminal works [4], [28], i.e. easy to setup outside the
camera box while compact as a single camera. Rigorously
chosen neutral density (ND) filters are set between the camera
lens and several curved mirrors, to make HDROmni, the real-
time panoramic HDR camera (Fig. 1a) featuring:

• Maximum DR by enlarging the range of perceptible
irradiances.

• Compactness, as existing catadioptric cameras.
• High precision positioning of mobile robot, outdoors.
The latter, considering HDROmni for photometric visual

servoing [7], [8], is one of the most challenging among various
real-time applications.

The rest of the paper details the design methodology
(Sec. II) of the optical extension, then the analytical descrip-
tion of environments where it can relevantly be used (Sec. III).
After that, Section IV presents the first prototype as well as the
evaluation of the DR quality of its images. Finally, Section V
evaluates visual servoing with HDROmni w. r. t. the state-of-
the-art, before conclusion (Sec. VI).

II. MULTI-VIEW DYNAMIC RANGE EXTENSION

The multi-view dynamic range extension performed by
HDROmni consists in acquiring images of different exposures
in parallel. It is inspired from the ND filters-based multi-
camera system for 3D HDR TV [4] which considers several
(eight) cameras mounted on a rig, each having the same
exposure time for synchronization purpose, but equipped with
different ND filters, to optically simulate various exposure
times. The novelty, in our work, is to consider real-time
panoramic vision and a single camera.

A. Single Panoramic Camera DR Extension

The same idea as [4] applies to panoramic vision. However,
combining a single camera and several mirrors [23], [26]
prevents synchronization issues and may keep compactness.
Particularly, [23], with four paraboloidal mirrors, makes view-
points much closer than a rig of several panoramic cameras
(Fig. 1a). Such proximity of the four panoramic viewpoints
allows the HDR fusion from the basic superimposition of their
LDR image regions, under camera-scene distance assumptions
(Sec. III-A).

We emphasize the fact that a multi-omnidirectional camera
is generally designed for multi-view perception, eg. 3D recon-
struction [9], [23]. However, the proposed panoramic HDR
camera design targets complementary perception to increase
the most the DR of the panoramic camera. Indeed, in a multi-
camera system [4], optical densities of ND filters must be
close to make neighbor image DRs overlap to allow image
matching. Inversely, our design method is not constrained
by such extra-processing. Hence, it selects ND filters for
the minimum overlapping of individual DRs so that their
combination reaches the largest DR.

Extending the four mirrors system of [23] with ND filters
allows acquiring simultaneously four exposures with a single
camera. As a first result, it virtually quadruples the bit depth of
the acquired digital image, thus adds two bits to the bit depth
of any machine vision camera. Such result increases the digital

DR of the camera, but the rest of this section expresses optical
densities of ND filters to increase the most the irradiance DR
of the camera.

B. Optical Densities for Complementarity

We consider a panoramic camera made of M ∈ N∗ mirrors
and M − 1 ND filters. Each filter, in front of a mirror (one
mirror is directly seen), must be selected so that they gradually
decrease the irradiance to simultaneously capture radiances in
the scene, from the lowest to the highest. Assuming the sensor
irradiance equals the scene radiance, the exposure e ∈ R+

is expressed proportionally to the irradiance E ∈ R+ of the
image plane, thanks to the exposure time te ∈ R∗

+ [11]:

e = teE. (1)

Thus, the lowest irradiance that can be captured depends on
the exposure time, set following the application requirements,
e.g. 50 ms for 20 images per second. Then, the ND filter free
mirror gets the exposure e0 (of lowest E) and each ND filter
f ∈ [1,M − 1] ⊂ N achieves optically an exposure reduction
to allow the camera sensor getting the highest irradiances E.
Consecutive exposures ef ∈ R+ of ND filters f are related
by exposure ratios Rf,f−1 ∈ R+, whose expression depends
on the camera response function, either linear or non-linear as
respectively recalled and introduced hereafter.

1) Exposure ratio for linear camera responses: In a few
words, the camera response function (CRF) relates pixel
brightness B ∈ [0, 255] ⊂ N (for an image depth of 8 bits) to
the scene radiance, assumed to be equal to E (1). Then, for a
camera of linear CRF, exposure ratios to acquire several LDR
images, to be fused as an HDR one, follow the rule:

Rf,f−1 = ef/ef−1 = λ, λ ∈ R+ : λ ≤ 1, (2)

even for parallel acquisitions [24]3. Then, additional exposures
ef are recursively computed as ef = ef−1Rf,f−1 [24], which
is a geometric suite, i.e.:

ef = e0 [Rf,f−1]f . (3)

If λ (2) tends to 1, the quantization of the perceptible range
of scene radiance is the most regular, but the latter range
is limited, particularly with a small number M of various
exposures, e.g. M = 4. Inversely, if λ tends to zero, the
perceptible range of scene radiance appears wide but at the
price of a poor quantization. In the worst case, it leads to a
single, partly useful, LDR image among the set of acquired
ones, so far from an HDR acquisition. In practice, for cameras
of linear response function, λ is set to 0.5 or 0.25 as a
compromise [24].

In the next part, we propose a generalization of both the
expression of Rf,f−1 (2), for some cameras of non-linear
response function, and ef (3).

3Contrary to [24], we consider e0 as the closest exposure to E = 0.
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2) Generalized exposure ratio: The expression of exposure
ratios (2) must be extended to fit cameras of non-linear CRF
since they have a higher DR potential (Sec. I). Non-linear
CRF can be approximated by polynomial [22] or logarithmic
functions [11]. However, in this paper, we focus on the class
of cameras whose non-linear CRF can be piece-wise linearly
approximated of an order 2 (Fig. 2a, between irradiances of 0
and E0max).

Define E0max as the maximum perceptible irradiance for
exposure e0 and E0dis as the irradiance at which the slope
of the CRF changes. For a given exposure time, brightnesses
B0max and B0dis are measured for irradiances E0max, re-
spectively E0dis. Then, we define the range of exposure ratios
Rf,f−1 constraining the first slope of the CRF of the second
exposure, i.e e1, to lie between slopes of both linear parts of
the CRF associated to e0 as:

B0max −B0dis

E0max − E0dis
≥ 1

Rf,f−1
≥ E0max/E0dis. (4)

Then, setting Emd = E0max/E0dis, we generalize (2) as:

Rf,f−1 = λ/Emd. (5)

Obviously, if the camera is linear, Emd = 1 and (5) simplifies
as (2). Thus, the latter generalized expression of Rf,f−1 fits
both non-linear and linear CRF. Then, as done in previous
works, we can set empirically λ, but bounded (4).

After that, in order to get the most complementary expo-
sures, we reformulate the expression of ef (3), such that ef
decreases faster than following a geometric suite, by making
the power of Rf,f−1 growing itself as a geometric suite:

ef = e0 [Rf,f−1]m, m = 2f−1. (6)

Equation 6 first maximizes the range of perceptible scene
radiance. Then, it minimizes the resampling of radiance ranges
that were already, and better, sampled by higher exposures.
Figure 2 compares, on an example, the impact of consider-
ing (3) (Fig. 2b) or (6) (Fig. 2c) on the range of perceptible
scene radiance and radiances resampling.

3) Optical densities of ND filters: The exposure ratio (6)
leads to densities of ND filters. We define the attenuation factor
kf of the f -th ND filter as:

kf = [Rf,f−1]−m, m = 2f−1 (7)

It simulates exposure ef (6) while the camera itself keeps
exposure time constant. Then, the optical density Df of ND
filter f is expressed as [1]:

Df = log10(kf ). (8)

C. HDR fusion

The M exposures acquired in parallel lead to M LDR
images ILDRj

, one per mirror j ∈ [0,M − 1] ⊂ N. When
the ratio of scene depth over baseline is large enough (see
Sec. III-A), the image disparity falls within a pixel, thus is
almost null. Hence, every ILDRj can directly be fused into a
HDR image IHDR. For that, we consider exposure fusion [21],
the best HDR algorithm according to the perceptual evaluation
of Zeng et al. [30]. Exposure fusion computes three quality

(a)

(b)

(c)

Fig. 2: Non-linear CRF of a single camera (a) and 4 exposures
ef increasing as (b) a geometric suite and (c) exponentially
(λ = 1/2;Emd = 3/2 for both, to ease comparison).

measures: well-exposedness (more weight to the pixels of
brightness close to the median intensity); saturation (standard
deviation in the three color channels) and contrast (Laplacian
filter).

Writing cju = (cju, cjv)> ∈ R2 the coordinates of
pixel ILDRj

(cju) of the digital image ILDRj
, the weight

w(ILDRj ,
cj u) ∈ [0, 1] is the product of the three quality

measures computed for this pixel. Weights are normalized
by dividing each w(ILDRj0

,cj0 u), j0 ∈ [0,M − 1] ⊂ N, by
the sum of weights at coordinates corresponding to cj0u in
all ILDRj

. Thanks to the single orthographic camera with
multiple paraboloidal mirrors considered in Section II-A,
assuming mirrors are of the same shape and their summits
define a plane parallel to the image plane allows expressing
each cju from cj0u by pure translation in the image plane.
The latter pure translation is computed from principal points
u0j and u0j0

of, respectively, ILDRj
and ILDRj0

, leading to
cju =cj0 u+u0j−u0j0

. The LDR images are then blended-in
in a multi-scale approach which considers the weights.

Figure 3 shows a 860 × 860 pixels HDROmni frame and
the resulting 430× 430 pixels HDR panoramic image.

Fig. 3: LDR panoramic regions of a HDROmni frame (left)
are fused as a HDR image (right). Striped areas are ignored.
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III. OPERATIONAL CONSTRAINTS

We model the disparity of the sensor (Sec. III-A) in order to
define for which interval of depths the basic superimposition
of LDR views is valid for HDR fusion (Sec. III-B).

A. Disparity modeling

HDROmni is modeled as a rig of M panoramic
cameras cj each modeled by the unified cen-
tral projection model with intrinsic parameters
γj = {αuj

, αvj , u0j , v0j , ξj} [2]. Then, considering the
rig frame equals the camera frame Fc0 , without loss of
generality, extrinsic parameters are made of transformation
matrices cjMc0 ∈ SE(3) from Fc0 to Fcj [6].

Based on the latter knowledge, one
can express the observed disparities
δu = (δu, δv) ∈ R2, from two panoramic images, associated
to a 3D point X = (X,Y, Z)> ∈ R3 of the scene. That link
formally defines the relationship between the scene depth
and the image resolution to allow the HDR fusion from the
basic superimposition of LDR panoramic images. In short,
the disparity modeling is here focused on the worst case, i.e.
leading to the highest disparity: a 3D point belonging to the
median plane PM (Fig. 4) between two mirrors and parallel
to their axes of revolution, supposed exactly parallel.

A 3D point c0X expressed in Fc0 transforms to
Fcj by composition of its homogeneous representation
c0X̃ ∈ P3 to the transformation matrix cjMc0 . Its digital
image coordinates cju (see Sec. II-C) are computed as [6]:

cj ũ = prγj (cjX) = Kprξj (cjX), (9)
cj ũ ∈ P2 being the homogeneous representation of cju,
K ∈ Aff(2) gathering the scale factors (αuj and αvj ) and
principal point coordinates (u0j , v0j ):

K =

αuj
0 u0j

0 αvj v0j
0 0 1

 . (10)

In (9), prξj : R3 7−→ P2 is the projection function to the
normalized image plane, involving ξj , the distance between
the unit sphere center and the second center of projection of
the unified central projection model [2]:[

cjX
cjZ+ξjρ

,
cjY

cjZ+ξjρ
, 1
]>

= prξj (cjX) (11)

with ρ =
√
cjX2 + cjY 2 + cjZ2.

To simplify the disparity expression, we suppose, in addition
to the previously mentioned parallelism of mirror axes of
revolution, the coplanarity of mirrors, thus simplifying trans-
formation matrices cjMc1 to pure translations in the mirrors
plane PC (Fig. 4), which is parallel to the image plane.
Furthermore, by a wise choice of the orientation of Fc0 , so
that the Xc0 axis of its frame is aligned with the origin of
Fcj , cjMc0 is even simplified to the translation tX1,j

= −d
along Xc0 , d ∈ R+ being the distance between origins of Fc0
and Fcj (see Fig. 4).

Then, since we focus on the maximum disparity theoreti-
cally observable, it constrains c0X = d/2 (cjX = −d/2), and

Fig. 4: Geometric relationships of two coplanar mirrors.

since axes of Fc0 and Fcj are parallel and their axes Xc0 and
Xcj are coplanar, c0Y = cjY and c0Z = cjZ.

Under the last assumption that the mirrors are exactly the
same, we have αu0 = αuj , αv0 = αvj and ξ0 = ξj . By setting
wisely the orientation of the camera photosensitive matrix
with respect to mirrors, the horizontal and vertical axes of
the image can be set parallel to both first axes of Fc0 , leading
to v00 = v0j . Then, applying (9) to c0X and cjX leads to
different horizontal coordinates u only, since only c0X and
cjX , and u00 and u0j , are different. Thus, the expression of
the disparity δu simplifies to δu only:

δu = c0u− cju− δu0, (12)

where δu0 = u00−u0j is the transformation in the image plane
to match principal points of both panoramic image regions.
Then, it leads to:

δu =
αu0

c0Z + ξ0ρ
(c0X − cjX) =

αu0d
c0Z + ξ0ρ

(13)

The latter disparity model is used to express constraints on
the scene and on the image definition to allow the HDR fusion
from the straightforward superimposition of LDR panoramic
regions in the next Subsection III-B.

B. Scene depth and image definition constraints

For a given image definition, (13) leads to the minimum
camera to 3D points distance ensuring the maximum disparity
lies in a pixel:

|δu| < 1 ⇔ αu0d
c0Z + ξ0ρ

− 1 < 0. (14)

c0Z being non-negative, to be visible by the camera, and the
constant intrinsic parameter αu0 denoting implicitly the image
definition. Thus, with variables c0Z and c0Y , the function
expressed as the left part of the above inequality is a quadratic
curve in the plane of equation c0X − d/2 = 0. That curve
(Fig. 4, plotted in blue in plane PM ) is the spatial border
beyond which the approximation of unique viewpoint shared
by the four mirrors holds. The farthest visible 3D point of that
curve corresponds to c0Z = 0, leading to:

(αu0
d/ξ0ρ)− 1 < 0 ⇔ αu0

d/ξ0 < ρ. (15)

Dually, for a given minimum distance ρ = ρmin between
the camera and the scene 3D point, we can deduce the
image definition boundary below which the unique viewpoint
approximation holds from (15), i.e.:

αu0
d/ξ0 < ρmin ⇔ αu0

< ρmin ξ0/d. (16)
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However, as mentioned above, αu0
only defines implicitly

the image definition, since it includes also optical parameters
of the camera. Thus, to deduce the maximum allowed defi-
nition of N0sup

× N0sup
pixels to satisfy (16), we consider

the scale factor αumax
associated to the maximum definition

Nmax ×Nmax pixels of a panoramic region in the image of
the used actual camera as the upper boundary for αu0

. Then,
for a given ρmin (16), and posing αu0sup = ρmin

ξ1
d , we define

the side definition N0sup as:

N0sup = min (Nmax αu0sup/αumax , Nmax) . (17)

The constraints provided by (15) and (16) are defined
under several simplifying hypotheses about the actual camera.
However, since they are obtained considering the worst case
of a 3D point belonging to the mirrors plane, those equations
are ensured valid for scene points out of that plane.

IV. HDROMNI PROTOTYPE EVALUATION

This section shows and evaluates the prototype of HDR
panoramic camera made following the design method of this
paper. Even if the method is general with respect to the number
of mirrors, we consider the four paraboloidal mirrors case
(M = 4), leading to select F = 3 ND filters.

A. Image DR Evaluation Metrics

In order to evaluate the DR quality of a given image I , we
exploit the weights w(I,u) (Sec. II-C), for pixel coordinates u
of I . Such a weight tends to 1 when I(u) is said to represent
naturally the scene, or 0, inversely. Then, we compute the
mean w̄(I) ∈ [0, 1] of all w(I,u). The highest w(I,u), the
best DR quality.

To take into account practical issues of the camera, its mast
reflection on mirrors is ignored in computing w̄(I).

B. The actual new camera

Following our optical design method (Sec. II), we first
estimate experimentally the CRF of the considered IDS R©

UI3250-LE camera. It exploits an e2v R© EV76C570 CMOS
sensor (DR of 50 dB, with the used global shutter mode).
The choice of the latter camera was mainly made for the
evaluation of the optical extension of DR. Indeed, that camera
is capable of 10 s exposure times, necessary to estimate the
actual CRF of the camera when using filters of high density,
for its comparison with expected CRF.

The camera is set in a dark room with a 350 lumen LED
light source. Then, pointing the camera to the surface of a
cardboard box, assumed Lambertian, illuminated by the light
source, images are recorded with exposure times from 1 ms
(T0min) to 30 ms (step: 1 ms). As exposure varies proportion-
ally with respect to exposure time or irradiance (1), varying
the exposure time as described above simulates proportional
variations of irradiance, thus radiance (since the considered
object is Lambertian) that our cheap, but easy to reproduce,
experimental setup does not allow to quantitatively vary. Since
the proportional factor is unknown, the below CRF appear as
functions of normalized irradiance.

A CRF is got using the brightness of a unique pixel
in the central area of the box for various exposure times.
However, due to the experimental setup, the brightness as
a function of exposure time is noisy. Thus, brightnesses are
slightly smoothed by local regression (sliding window of
30% of the total data) using weighted least squares of a
second order degree polynomial model (Matlab R© Curve Fitting
Toolbox). The brightness saturates for T0max = 21 ms. The
normalized irradiance is then given by E0n = T0n/T0max,
with T0n ≥ T0min, E0max = 1 being its maximum.

As the CRF of the used camera is not linear (Fig. 5a), we
apply the piecewise linear approximation of the generalized
exposure ratio modeling (Sec. II-B2) toward the ND filter
densities computation. Thus, such CRF approximation leads
to E0dis ≈ 2/3, so that Emd = 1

2/3 = 3/2.
Then, to stick to the state-of-the-art [24], we set λ = 1/2

(Eq. (5)) so that the generalized exposure ratio becomes
Rf,f−1 = 1/2

3/2 = 1/3. Finally, following (6), (7), and (8),
we get the ideal optical densities of the three ND filters as
D1 = 0.47, D2 = 0.96 and D3 = 1.90.

The closest products available on the market are three
absorptive, round-shaped, ND filters of optical densities
D̂1 = 0.6, D̂2 = 0.9 and D̂3 = 2.0, which respectively atten-
uates the exposure by k1 = 1/4, k2 = 1/8 and k3 = 1/100
factors (compared to 1/3, 1/9 and 1/81 for the ideal optical
densities). Setting these ND filters between the camera lens
and three of the four paraboloidal mirrors (Fig. 1a acquiring
images as shown in Fig. 3, left), the HDROmni prototype
increases 100 times the DR of the used camera, thus from
50 dB to 90 dB.

Then, to evaluate the actual camera dynamic range with
respect to expectations brought by the use of ND filters, the
CRF of every panoramic region of the acquired HDROmni
image is measured and plotted (Fig. 5b) with respect to
normalized irradiance E0max. Due to the most dense ND filter,
exposure times of HDROmni ranges from 1 ms to 2500 ms
(only to plot the CRF).

Figure 5b shows that the maximum normalized perceptible
irradiance is 120 times E0max , instead of the expected 100
times. The range and quantization of the perceptible irradiance
is improved with respect to a unique image of a single LDR

(a)

(b)

Fig. 5: (a) Measured CRF of UI3250-LE, piecewise linearly
approximated ((d1) and (d2)), (b) measured CRF for the 4
panoramic regions of the acquired HDROmni image.
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camera. However, obviously, with 4 different exposures only
to cover a normalized range of irradiance of [0, 120], the
quantization of normalized irradiance E ∈ [8, 120] is much
lower than for E ∈ [0, 8[ (same observation for the range
[0, 100]). Then, the following subsection evaluates the HDR
image quality, after the fusion of LDR panoramic regions of
the acquired HDROmni image.

C. Dynamic range image quality evaluation

As defined in Section III some rules about image resolution
and scene depth ρj must be followed to permit the HDR
fusion. The four mirror centers of the HDROmni prototype
make a square of d = 0.03 m side. The maximum resolu-
tion of each panoramic LDR image in the used camera is
Nmax = 430. The HDROmni prototype was calibrated [6]
with checkerboards. Considering the means ξ = 0.89 and
α = 157 of intrinsic parameters ξj and, respectively and
together αuj

, αvj , for j ∈ [0, 3] ⊂ N, we found, thanks
to (15), that beyond depth ρj = 5.30 m the disparity falls
within a pixel of the maximum 430 × 430 pixels resolution
per LDR image.

Then, the dynamic range of HDROmni is evaluated outdoor
in 9 challenging scenes of clear, bright sky with a few
clouds, presented in the supplementary video. We kept the
maximum resolution Nmax = 430 as working outdoor, where
the distance constraint is always met. Hence, (16) leads to
N0sup

= Nmax = 430 pixels. To gain space, only 3 of them
are presented below. These scenes are mainly made of white
flat and curvy concrete walls, windows and both bright sun
highlight and dark shadowed areas (Fig. 6). The second scene
(Fig. 6b) also features colorful small walls. The other scenes
(rest of Fig. 6) are parking lots.

HDROmni images are acquired in each scene. Their LDR
panoramic regions (first 4 columns of Fig. 7) are fused into
an HDR image (last column of Fig. 7).

We consider the DR image quality criterion of Section IV-A
to evaluate quantitatively the perceptible DR extension pro-
vided by the HDROmni prototype with respect to common om-
nidirectional camera. Writing w̄(IHDR) the DR image quality
of the HDR fusion and w̄(ILDRj

) the ones of the four LDR
panoramic regions, their ratio w̄(IHDR)/w̄(ILDRj ) ∈ R+ is
greater than 1 if the DR image quality of IHDR is better than
the other one.
IHDR always leads to a higher DR quality than any

ILDRj . Indeed, the mean of the ratios between the 9
HDR images and the best LDR ones in each dataset is
2.0. The computed ratios for three challenging scenes of

(a) (b) (c) (d) (e)

Fig. 6: Scenes for evaluating HDROmni ((c), (d): same scene,
different weather).

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Fig. 7: Panoramic LDR images of an acquired HDROmni
image (shown split in the 4 first columns) and the fused HDR
image (right). A scene per row.

Figure 6a, 6b, 6c are displayed in Table I. The 6 others are
shown in the accompanying video. The DR increase varies
from case to case. Indeed, the highest increase ratio is 17542
in scene 2 in Table I (IHDR of Fig. 7j with respect to ILDR0

of Fig. 7f), where it is obvious that only decreasing a bit
the exposure time would improve the image content. It is
confirmed by the ratio w̄(IHDR)/w̄(ILDR1

) = 3.87 in scene
2 (Tab. I). Visual comparison between Figures 7g and 7j
qualitatively confirms the quantitative comparison. Despite the
lower exposure of ILDR1 with respect to ILDR0 , a large
part of the image (sky and top parts of a building) is still
over-exposed, contrary to IHDR. It is also interesting to note
that decreasing the exposure, while solving the overexposure
of the sky, underexposes the rest of the field-of-view and
decreases the DR of ILDR2

and ILDR3
compared to ILDR1

(Tab. I, Scene 2). The latter observation is nothing but another
illustration of the LDR of the camera that the fusion of the
four ILDRj

in IHDR solves.
The analysis of Scene 1 and Scene 3 leads to similar

conclusions than for Scene 2, obviously with shifts in the
LDR image number the closest to the IHDR of the scene, in
term of DR, since scenes as well as illumination are different.
Furthermore, the default 50 ms exposure time is set for the
first and second scenes, whereas the exposure time in the third
scene was manually decreased to 43 ms to allow one of the
four ILDRj

to get the image of widest DR the camera could
acquire (Fig. 7l). Despite that change, the DR quality of IHDR

j = 0 j = 1 j = 2 j = 3

Scene 1 1448.47 5.66 2.47 6.96
Scene 2 17542.76 3.87 4.58 12.35
Scene 3 4.71 2.09 3.92 25.80

TABLE I: IHDR dynamic range quality increase relatively to
the four ILDRj

.
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is still twice the one of ILDR1
in Scene 3.

D. Evaluation on feature matching

In three scenes (Fig. 6c-6e), 30 images were captured
while the robot moved straight for 2 m (datasets 1, 2, 3).
SURF features (OpenCV 4.1.0 implementation, with default
parameters) were detected in every acquired LDR images
and the resulting HDR image. Then, features were matched
between consecutive images in each sequence. False matches
were manually counted (2.74 for HDR images and 1.17,
1.01, 1.07 and 0.17 for LDR ones, on average). As results,
HDROmni allows detecting, at worst, 36% more features than
a LDR camera. Furthermore, there are, at least, 26% more
matches in successive HDR images than in LDR ones (on
average, 433 matches with HDR, but 221, 306, 257 and 19
for LDR). SURF detection and matching results are shown in
the supplementary video.

V. HDR PANORAMIC VISUAL SERVOING

The real-time property of HDROmni allows its use in
robot control. We consider the panoramic photometric visual
servoing (pPVS) of a Pioneer 3AT mobile robot [7]. Shortly,
photometric visual servoing is the robot control law that
automatically drives the robot from an initial pose to the
desired pose, only using pixel brightnesses of images: the
difference between the desired image, acquired at the desired
pose, and the current image is minimized over time. [7] shows
that pPVS’s convergence domain (up to 1.2 m) is much wider
than using a conventional camera [8] (up to 0.4 m, in ideal
conditions) while both are very precise at convergence. In
our experiments, we observe a decrease of precision out-
doors, particularly in scenes of high dynamic range. Inversely,
HDROmni leads to constantly precise performance of pPVS,
even in scenes of challenging illumination, only thanks to
HDROmni, since the control law is not changed.

To distinguish between the original pPVS and the one using
HDROmni, we name the former LDR-pPVS and the latter
HDR-pPVS. We also consider a third pPVS, namely LDR-
4-pPVS, that considers the HDROmni camera without the
ND-filters. In this case, since filters are not used, the 4 LDR
images have the same exposure and their exposure fusion is
approximately their mean. Comparing LDR-pPVS, LDR-4-
PVS and HDR-pPVS makes clear the impact of using several
mirrors, on the one hand, and ND-filters, on the other hand,
with respect to the state-of-the-art pPVS [7].

A total of 32 experiments done in the same three scenes as
in Section IV-D is reported for quantitative evaluation. 8 of
them are shown in the supplementary video. In each scene, a
single desired pose is considered for four initial poses at 500,
1000, 1500 and 2000 mm backward the desired pose. Then,
LDR-pPVS, LDR-4-PVS and HDR-pPVS are run from these
initial poses. The distance between the final pose of the robot,
i.e. where the control law no longer makes the robot moving,
and the desired pose is reported in Table II.

Experiments of LDR-pPVS and LDR-4-pPVS in low DR
scenes show that the fusion of four mirrors prevents divergence
of pPVS (see results for initial errors of 1500 and 2000 mm

in the first low DR scene parking lot 1, Tab. II). In parking
lot 1, LDR-pPVS is in line with [7], showing a possible
border of the convergence domain of pPVS between 1 and
1.5 m. Interestingly, our implementation of LDR-pPVS could
converge even with an initial error of 2 m in parking lot 2,
showing more favorable for pPVS.

Still in low DR scenes, HDR-pPVS always increases the
positioning precision (see mean final errors of Tab. II for low
DR scenes), particularly in the parking lot 2 where, even if the
sky was full of clouds, the DR of that scene was higher than at
parking lot 1. Thus, as using four mirrors without ND-filters
does not contribute as much as when combined with ND-filters
to form the HDROmni camera, LDR-4-pPVS is not considered
in further experiments.

Experiments of LDR-pPVS and HDR-pPVS in the scene of
high DR show HDR-pPVS outperforms LDR-pPVS by a factor
of almost 10, regarding the mean final error. Interestingly,
the final error of LDR-pPVS is almost constant, for the four
initial poses, highlighting it converges to a local minimum.
Indeed, in LDR images considered by LDR-pPVS, some parts
of the field-of-view are under- or over-exposed (Fig. 8a).
So the inherent lack of details prevents the control law to
reach the true desired pose, contrary to HDR-pPVS for which
HDR images are mostly well-exposed (Fig. 8b) leading, at
convergence, to an almost null difference between current and
desired images (Fig. 8d).

Furthermore, for the three scenes, the mean final errors are
almost the same for HDR-pPVS (31.3 to 36.5 mm), unlike
the ones computed for LDR-4-pPVS (36.3 and 87.5 mm) and
LDR-pPVS (64.5 to 585.0 mm).

(a) (b) (c) (d)

Fig. 8: Parking lot 1 of high scene DR. Desired images for
pPVS: (a) LDR (b) HDR. Differences between the image at
convergence and the desired image for (c) LDR- and (d) HDR-
pPVS.

pPVS type
Scene Initial error Mean

Lot DR 500 1000 1500 2000 error
LDR-pPVS 1 low 65 75 600 1600 585.0
LDR-4-pPVS 1 low 5 40 60 40 36.3
HDR-pPVS 1 low 30 45 35 25 33.8
LDR-pPVS 2 low 10 8 100 140 64.5
LDR-4-pPVS 2 low 10 20 140 180 87.5
HDR-pPVS 2 low 15 20 20 70 31.3
LDR-pPVS 1 high 330 310 330 353 323.3
HDR-pPVS 1 high 11 22 51 62 36.5

TABLE II: Positioning errors of LDR-pPVS, LDR-4-pPVS
and HDR-pPVS (ours) (unit: mm) in various outdoor scenes.
Bold values indicate the lowest mean final errors.
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VI. CONCLUSION AND FUTURE WORKS

We have introduced a design method for extending optically
the dynamic range of panoramic vision with a single camera
in real-time. The first HDROmni prototype extends more than
100 times the dynamic range of the used machine vision
camera. In scenes of challenging illumination, it doubles, on
average, the dynamic range image quality. Such contribution
allows detecting and matching more features, for future benefit
to visual odometry, for instance. It also significantly improves
the positioning precision of direct visual servoing in scenes of
challenging illumination.

Future works will improve the prototype and combine it
with neural networks-based HDR rendering approaches for
better visual appearance of HDR images for the human eye.
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