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This is a review article of Generative Topographic Mapping (GTM) -a non-linear dimensionality reduction technique producing generative 2D maps of high-dimensional vector spaces -and its specific applications in Drug Design (chemical space cartography, compound library design and analysis, virtual screening, pharmacological profiling, de novo drug design, conformational space & docking interaction cartography, etc.) Written by chemoinformaticians for potential users among medicinal chemists and biologists, the article purposely avoids all underlying mathematics. First, the GTM concept is intuitively explained, based on the strong analogies with the rather popular Self-Organizing Maps (SOMs), which are well established library analysis tools. GTM is basically a fuzzy-logics-based generalization of SOMs. The second part of the review, some of published GTM applications in drug design are briefly revisited.

Introduction.

Computer-aided management of chemical information exploits the "chemical space" (CS) defined by a molecular descriptor vector, which positions molecules in this framework [START_REF] Oprea | Chemography: the art of navigating in chemical space[END_REF]. It assumes "Neighborhood Behavior" (NB) compliance [START_REF] Papadatos | Analysis of Neighborhood Behavior in Lead Optimization and Array Design[END_REF][START_REF] Patterson | Neighborhood Behavior: A Useful Concept for Validation of "Molecular Diversity" Descriptors[END_REF] -molecules with similar descriptors should have similar properties. Beyond abstract and often conflicting similarity scoring [START_REF] Willett | Chemical Similarity Searching[END_REF], humans best understand neighborhoods on 2D maps. Chemography is a domain of chemoinformatics dedicated to "flattening out" the CS. Knowing that even Earth planisphere projections cannot avoid significant artefacts, squeezing thousands of CS dimensions into a plane seems bound to fail. Yet, some loss in NB compliance is acceptable in exchange of an intuitive representation. From this perspective, even Principal Component Analysis, PCA [START_REF] Dunteman | Principal Components Analysis[END_REF] provides acceptable compromises [START_REF] Reymond | The enumeration of chemical space[END_REF]. Many non-linear dimensionality reduction approaches were designed [START_REF] Agrafiotis | Stochastic proximity embedding[END_REF][START_REF] Agrafiotis | Multidimensional scaling and visualization of large molecular similarity tables[END_REF][START_REF] Gaspar | Visualization of a Multidimensional Descriptor Space[END_REF], the most popular [START_REF] Schneider | Ligand-based Combinatorial Design of Selective Purinergic Receptor (A2A) Antagonists Using Self-Organizing Maps[END_REF][START_REF] De Sousa | Data Visualization and Analysis Using Kohonen Self-Organizing Maps[END_REF] being the Kohonen Self-Organizing Maps (SOM) [START_REF] Kohonen | Self-Organizing Maps[END_REF][START_REF] Kohonen | Self-Organization and Associative Memory[END_REF]. This is a hybrid of a clustering and a mapping procedure. "Code vectors" pointing towards "nodes" -centroids of dense clusters -represent the neighboring molecules. The "winning" node closest to a molecule will claim it as its resident. Then, code vectors are mapped onto a 2D grid in a topology-preserving way. Compounds residing in a node are no longer distinguishable.

Enough nodes are needed to avoid "squeezing" relevant subfamilies together. A wellparameterized SOM may be NB-compliant and may even serve as property predictor: the property of a node resident is taken as the mean over co-resident training set members. Such model cannot reproduce the influence of small structure variations on the predicted property: unless structure is changed enough to "force" the molecule into another node, the prediction will not change at all. This is a fundamental limitation to NB compliance of SOMs.

Fuzzy logics may solve this shortcoming. Consider the statement "molecule M resides in node N" within a fuzzy-logics framework. Its truth value is a real 0<RN(M)<1. RW(M), the largest over all N corresponds to the winning node W of the SOM. The sum of all RN(M) -further on referred to as the Responsibility vector R -over all nodes equals one. Any small structural change impacts R levels, and smoothly modifies predicted properties.

Although based on different mathematics, Generative Topographic Maps (GTMs) [START_REF] Bishop | Developments of the generative topographic mapping[END_REF][START_REF] Bishop | GTM: The Generative Topographic Mapping[END_REF] behave like fuzzy SOMs. "Nodes" are grid points on a flexible manifold, like a "rubber sheet" inserted in the descriptor space and bent in such a way as to maximize coverage of the molecule population in dense CS zones. Association of each molecule to the grid points is done by means of a set of Gaussian Radial Basis Functions (RBFs) constructing a probability density model in descriptor space. Note that other popular approaches such as PCA and t-SNE [START_REF] Maaten | Accelerating t-SNE using tree-based algorithms[END_REF] return only (x,y) latent space coordinates of the items -monitoring of local distributions based on the latent space coordinates is not implicitly supported by these approaches. Or, the latter feature is paramount to supporting predictive property landscapes.

GTMs inherit advantages of SOMs:

• they generate 2D maps of customizable topology,

• they allow an Applicability Domain assessment (distance to node/manifold -the so-called LogLikelihood parameter LLh) • they provide an implicit clustering scheme based on compound-to-node mapping.

GTMs depend on user-defined control parameters -foremost, the number of RBFs controlling manifold flexibility. How then to choose parameters in order to obtain good maps? [START_REF] Gaspar | Generative Topographic Mapping Approach to Chemical Space Analysis[END_REF][START_REF] Gaspar | Chemical Data Visualization and Analysis with Incremental Generative Topographic Mapping: Big Data Challenge[END_REF][START_REF] Gaspar | GTM-Based QSAR Models and Their Applicability Domains[END_REF][START_REF] Gaspar | Generative topographic mapping-based classification models and their applicability domain: application to the biopharmaceutics Drug Disposition Classification System (BDDCS)[END_REF][START_REF] Kireeva | Generative Topographic Mapping (GTM): Universal Tool for Data Visualization, Structure-Activity Modeling and Dataset Comparison[END_REF]. A good map is a predictive map! Their predictive propensity may serve as fitness score and GTMs may be evolved to become CS representations with validated Virtual Screening (VS) abilities.

Moreover, a same GTM may host any number of different property landscapes, and hence be predictive with respect to an entire panel [START_REF] Sidorov | Mappability of drug-like space: towards a polypharmacologically competent map of drug-relevant compounds[END_REF][START_REF] Lin | Multi-task generative topographic mapping in virtual screening[END_REF] of activities. GTMs provide a unifying framework in which compound libraries are represented by the cumulated responsibilities of their members. This makes tedious comparison of large libraries as easy as the similarity scoring of two molecules [START_REF] Gaspar | Chemical Data Visualization and Analysis with Incremental Generative Topographic Mapping: Big Data Challenge[END_REF]. Visualization -coupled, if needed, with "zooming" by hierarchical GTM [START_REF] Tino | Hierarchical GTM: constructing localized nonlinear projection manifolds in a principled way[END_REF] -is a tool of choice for the analysis of diversity holes [START_REF] Lin | Diversifying chemical libraries with generative topographic mapping[END_REF]. This article revisits key aspects of GTM technology. First, a brief recall of methodology is given.

Next, GTM-based visualization is intimately linked with the creation of property landscapes, which are at the core of GTM-based predictive models. Predictive propensity serves to select map architectures of maximal relevance for a specific problem, or for a vast panel of different properties -dedicated versus universal maps. Eventually, maps are applied to address specific problems, from drug design to library comparison, to the guidance of de novo compound design.

Generative Topographic Mapping -Principles

GTM was introduced by Bishop, Svensen & Williams [START_REF] Bishop | Developments of the generative topographic mapping[END_REF][START_REF] Bishop | GTM: The Generative Topographic Mapping[END_REF]. Figure 1 outlines the steps of GTM construction. More technical details can be found in the joint Supplementary Information document. A GTM consists of a (typically squared) grid of nodes covering the 2D latent space [START_REF] Gaspar | Generative Topographic Mapping Approach to Chemical Space Analysis[END_REF][START_REF] Horvath | Generative Topographic Mapping Approach to Chemical Space Analysis[END_REF].

Nodes are mapped to manifold points embedded in the D-dimensional CS. The considered manifold (rubber sheet) is flexible, and its degrees of freedom are adjusted such as to maximize the coverage of the molecules (items) present in the CS. Items used for manifold fitting -the Frame Set (FS) of compounds, Figure 1.1 -span the targeted CS. Extrapolation beyond the external FS "borders" is, like in geography, of very limited reliability.

Unsupervised Manifold Fitting

Manifold fitting is unsupervised, e.g. oblivious to molecular properties of FS members. The goal is to find the rubber sheet geometry passing though the vicinity of as many as possible of the FS items, be they active, inactive, not tested -or not even synthesized (enabling cartography of virtual CS). Compound closeness to the manifold is termed LogLikelihood (LLh). Optimization of LLh is typically performed by gradient-based methods, starting from a flat manifold aligned on the two first principal components (PCs) of FS descriptors, as in Figure 1.3. Following gradients, this initial planar surface is "twisted" such as to bring it closer to FS items (Figure 1.4). This is prone to get stuck in local minima and might benefit from more aggressive sampling heuristics [START_REF] Choi | Generative topographic mapping by deterministic annealing[END_REF]. Manifold flexibility is user-tunable, being controlled by the number of considered RBFs: the more RBFs allowed, the easier it will be for the algorithm to mimic highly irregular, nonlinear surfaces. Large FSs imply long computing times and potential memory problems, so that alternative approaches such as incremental [START_REF] Gaspar | Chemical Data Visualization and Analysis with Incremental Generative Topographic Mapping: Big Data Challenge[END_REF] algorithms were designed.

Assessing Neighborhood Behavior: GTM Classification & Regression Models and their

Applicability Criteria

After the manifold was optimized, (new) items can be projected thereon (Figure 1.5), herewith obtaining their responsibility vectors. "Exotic" external compounds, remote from manifold, are identified by low LLh values and discarded. This is a safeguard against attempting to map areas the GTM was not designed to cover, i.e. out of Applicability Domain (AD).

Compounds within AD and having measured properties or categorical labels are then used to "color" the manifold, i.e. to train a property [START_REF] Gaspar | GTM-Based QSAR Models and Their Applicability Domains[END_REF] or category [START_REF] Gaspar | Generative topographic mapping-based classification models and their applicability domain: application to the biopharmaceutics Drug Disposition Classification System (BDDCS)[END_REF] landscape. The similarity principle states that close analogues within a CS sphere centered on a reference compound of property P will likely have property values close to P. Or, one may conceive P as a local characteristic of the CS -like a physical field filling the entire space, not only points where its "sources" (here -the reference compounds) are located. Responsibilities R correspond to the relative intensities of the "field" contributed by the reference compound of property P to each of the map nodes. Structure-activity (SA) information is herewith "disembodied" from its original providers (the training molecules) and transferred to the GTM nodes. Each node is "colored" by a property value obtained as the responsibility-weighed (R-weighed) mean of the properties of its residents or will be assigned the label of the winning class most popular amongst residents. In fuzzy class landscapes for binary classification, real-value node colors correspond to the relative populations of node residents of each class.

There are two criteria of node trustworthiness. The first is the cumulated responsibility of node residents, i.e. the node density. Nodes with cumulated responsibilities below some user-chosen threshold are terra incognita -any predictions based on them is not trustworthy.

The second is the coherence of the property data contributing to a node, i.e. the spread (Rweighed standard deviations) of the resident properties -showing that some map zones may be more NB-compliant than others. Do not use low coherence zones for prediction.

Landscape construction is nothing but responsibility-mediated transfer of structure-property information from the training set onto the nodes. Prediction represents the inverse-first, the compound is projected, and the predicted property is taken as the R-weighed mean of node properties. Actually, compound "positions" as real-value (x,y) coordinates on the map (Figure 1.6, blue arrows) are R-weighted means of node (x,y). The GTM acts like a "transfer agent" of structure-activity information "received" from training compounds and "passed on" to molecules to be predicted. Therefore, computational cost does not depend on training set size, unlike in k-Nearest Neighbors methods.

Landscape predictive propensity can be quantified by cross-validation or external prediction. But landscapes can also be visualized and interactively explored, a plus over all black-box machinelearned models. In Kohonen-style rendering, only the nodes and their properties are plotted. This is a natural choice in multi-class classification landscapes, with nodes colored by winning class.

In continuous landscapes density and color at a map point (x,y) are interpolated from neighboring node values. Supervised Manifold Selection -Dedicated, Multitask and Universal Maps LLh optimization drives manifold fitting as defined by map hyperparameters -grid size, number of RBFs, RBF width and regularization parameter, choice of the FS, but most of all the nature of descriptors picked to define CS. The question of optimal combination of hyperparameters leading to a most useful manifold arises.

Dedicated Maps

A dedicated map is selected such as to maximize the landscape predictive power for a specific property P, represented by its training set (typically also used as FS). At current hyperparameters, the quality of the resulting P landscape is monitored by some cross-validation criterion C (a determination coefficient Q 2 for regression, the Balanced Accuracy BA for classification problems). How to best browse through the hyperparameter space in quest of maximal C depends on the number of available descriptor space options -Genetic Algorithms (GAs) are well suited [START_REF] Horvath | An Evolutionary Optimizer of libsvm Models[END_REF].

When lacking experimental data for molecules to map, prediction propensity-based C may be replaced by technical map quality criteria -penalties for empty nodes, homogeneity of FS distribution (Shannon entropy), etc.

Multitask Maps

A GTM may support not one, but many different predictive landscapes, associated to different properties: the mean quality score <C> over these may be a selection criterion per se. The various landscapes may correspond to related properties, for example a "same" endpoint (antimalarial activity) measured according to distinct protocols [START_REF] Sidorov | AntiMalarial Mode of Action (AMMA) Database: Data Selection, Verification and Chemical Space Analysis[END_REF], making data fusion impossible. It is however possible to search a GTM manifold able to host independent predictive landscape for each of these antimalarial activity scores. Visualizing landscapes on such multitask GTMs immediately highlights zones where two distinct properties are correlated, anticorrelated or not correlated -a first step towards understanding why.

In Figure 2, a multitask GTM supports active/inactive fuzzy class landscapes for two kinases. By projecting a large library and picking members within the appropriate zone(s), one may propose selective (or promiscuous) focused libraries. shows activity with respect to B but was not extensively explored for A. Zone 2 is one of A-specific ligands, by contrast to the rather B-specific zone 4. Last but not least, zone 3 is a "promiscuity" area.

The interest of multitask GTMs is not limited to the emergence of this common reference framework for visualizing landscapes. The selection of a consensual manifold being simultaneously NB-compliant with respect to the tracked properties is a genuine act of multitask learning. The simple fact of selecting, out of the pool of considered descriptor types, the precise molecular descriptor enabling such a simultaneous NB-compliance is of great value [START_REF] Lin | Multi-task generative topographic mapping in virtual screening[END_REF].

Universal Maps

Manifolds challenged to provide predictive models for all the exploitable targets within structure-activity "big data" from public databases such as ChEMBL were termed universal maps [START_REF] Sidorov | Mappability of drug-like space: towards a polypharmacologically competent map of drug-relevant compounds[END_REF][START_REF] Casciuc | Virtual Screening with Generative Topographic Maps: How Many Maps Are Required?[END_REF]. These are multitask GTMs standing out by the very large number of covered biologically unrelated transmembrane receptors, kinases, cytochromes, oxidoreductase, etc. It is not trivial to assume that a single set of descriptors may be NB-compliant with respect to all these targets, dimensionality reduction notwithstanding, yet several ISIDA fragmentation schemes [START_REF] Ruggiu | Isida Property-labelled Fragment Descriptors[END_REF][START_REF] Varnek | Isida -Platform for virtual screening based on fragment and pharmacophoric descriptors[END_REF] performed unexpectedly well. The best map accommodates highly predictive activity class landscapes (cross-validated BA >0.7) for 536 of the 618 considered targets, and virtually all (609/618) landscapes have BA >0.6 (clearly better than random BA=0.5). The seven "top" universal maps are close in terms of the average predictive propensity, while predictivity of any target may significantly vary from one to another. The combination of the different universal maps offers a kaleidoscopic view of CS from several perspectives: connectivity, topological pharmacophores, etc. Consensus predictions from the seven maps are more robust than output of any single map [START_REF] Casciuc | Virtual Screening with Generative Topographic Maps: How Many Maps Are Required?[END_REF].

A dedicated map is likely to outperform universal maps for its assigned target, because it has the freedom to pick the absolutely best descriptor for it. Universal maps favor compromise description spaces with overall acceptable NB compliance. They are tools of choice for analysis of (very) large and diverse libraries and serve as pharmacological profile predictors (see §3.4).

Chemography and Property Prediction -Practical Applications of GTM in Compound Design.

The following is a brief review of GTM usage in drug discovery. Other applications, for example mapping of conformational space [START_REF] Horvath | Generative Topographic Mapping of the Docking Conformational Space[END_REF][START_REF] Horvath | Monitoring of the Conformational Space of Dipeptides by Generative Topographic Mapping[END_REF][START_REF] Horvath | Generative Topographic Mapping of Conformational Space[END_REF], applications in materials science [START_REF] Higuchi | Prediction of the Glass-Transition Temperatures of Linear Homo/Heteropolymers and Cross-Linked Epoxy Resins[END_REF][START_REF] Marcou | In Silico Design, Virtual Screening and Synthesis of Novel Electrolytic Solvents[END_REF], chemical reactivity analysis and prediction [START_REF] Glavatskikh | Predictive Models for Kinetic Parameters of Cycloaddition Reactions[END_REF][START_REF] Glavatskikh | Visualization and Analysis of Complex Reaction Data: The Case of Tautomeric Equilibria[END_REF] and in chemical engineering [START_REF] Escobar | Combined generative topographic mapping and graph theory unsupervised approach for nonlinear fault identification[END_REF] will not be discussed here.

GTM as Library Comparison Tool

The cumulated R vector of the members of a compound library is a descriptor of the library. It can be used to estimate its Shannon entropy, high if library homogeneously covers the CS; low if focused on narrow CS areas. Libraries can be compared in terms of cumulated R vector similarity scores, representing the degree of "overlap" of libraries in CS [START_REF] Gaspar | Chemical Data Visualization and Analysis with Incremental Generative Topographic Mapping: Big Data Challenge[END_REF][START_REF] Lin | Mapping of the Available Chemical Space versus the Chemical Universe of Lead-Like Compounds[END_REF][START_REF] Volochnyuk | Evolution of commercially available compounds for HTS[END_REF]. This is very cost-effective: it merely requires the N+N' compounds of the two libraries to be mapped, instead of N×N' pairwise comparisons in initial descriptor space. Comparison of property landscapes is even more instructive. These can be generated for calculable molecular properties, such as size, number of aromatic rings, number of chiral centers, predicted lipophilicity. The approach [START_REF] Lin | Mapping of the Available Chemical Space versus the Chemical Universe of Lead-Like Compounds[END_REF] was perfectly suited to compare >10M real "fragment-like" compounds (of ≤ 17 heavy atoms) from public databases to a core of 10M fragment-like structures extracted from 166 billionstrong GBD-17 library [START_REF] Visini | Fragment Database FDB-17[END_REF][START_REF] Ruddigkeit | Enumeration of 166 Billion Organic Small Molecules in the Chemical Universe Database GDB-17[END_REF] of feasible compounds. The real-world bias in favor of aromatic ring-rich molecules and against chiral compounds can be directly read from property landscapes.

Library Analysis with GTM

GTM-based library visualization typically provides a global "satellite view". However, details reaching out to individual compounds can be highlighted, either by hierarchical zooming [START_REF] Tino | Hierarchical GTM: constructing localized nonlinear projection manifolds in a principled way[END_REF][START_REF] Lin | Diversifying chemical libraries with generative topographic mapping[END_REF] or by using alternative chemoinformatics approaches to analyze zone-specific sublibraries. These include scaffold analysis [START_REF] Kayastha | Privileged Structural Motif Detection and Analysis Using Generative Topographic Maps[END_REF][START_REF] Klimenko | Chemical Space Mapping and Structure-Activity Analysis of the ChEMBL Antiviral Compound Set[END_REF], Maximal Common Substructure (MCS) detection [START_REF] Lin | Diversifying chemical libraries with generative topographic mapping[END_REF], or alternative "detail-friendly" representations of compounds within the sublibrary -for example molecular networks [START_REF] Kayastha | From bird's eye views to molecular communities: two-layered visualization of structure-activity relationships in large compound data sets[END_REF][START_REF] Stumpfe | Exploring Activity Cliffs in Medicinal Chemistry[END_REF]. MCS patterns that are underrepresented in a corporate library but occur in commercially available compounds have been evidenced after "breaking up" the large libraries into GTM zone-specific sets, small enough for an effective MCS search [START_REF] Lin | Diversifying chemical libraries with generative topographic mapping[END_REF].

GTMs are very flexible with respect to possible definitions of map "zones of interest".

Responsibility Patterns (RPs) define subsets of molecules which project in the same way on the map. Compounds with R vectors rounding up to a same RP correspond to cell-based clusters in R vector space and were shown to share significant common structural patterns. Interestingly, these patterns may differ in terms of "resolution". Some RPs are characterized by a common scaffold, while others are even more specific: common substituted scaffold. Below scaffold-level resolution are RPs corresponding to pools of closely related scaffolds (like N heterocycles with varying positions of N atoms). Some RPs are characterized by even less stringent rules assimilable to a topological pharmacophore, for example (aromatic ring)-variable size linker-cationic group. By analogy to the concept of "privileged scaffold" it is possible to define privileged RPs seen to preferentially occur within active molecules. This approach is more "open-minded" -it may "privilege" whatever best describes a local cluster: scaffold, family of scaffolds, topological pharmacophore, etc. The analysis of ChEMBL following these lines proposed a coherent way to look at target-specific structural requirements, sometimes matching and sometimes completing the human scaffold-centric viewpoint [START_REF] Kayastha | Privileged Structural Motif Detection and Analysis Using Generative Topographic Maps[END_REF]. This kind of analysis was successful for both protein binding affinity and more complex biological activities (antiviral activity [START_REF] Orlov | Getting to Know the Neighbours with GTM: The Case of Antiviral Compounds[END_REF], notably).

GTM-driven Virtual Screening (VS)

In our hands, GTM landscape-driven VS performed robustly [START_REF] Lin | Multi-task generative topographic mapping in virtual screening[END_REF][START_REF] Casciuc | Virtual Screening with Generative Topographic Maps: How Many Maps Are Required?[END_REF], though was not unexpectedly outperformed by similarity screening, or by machine-learned models using initial descriptors. The selection [START_REF] Casciuc | Pros and cons of virtual screening based on public "Big Data": In silico mining for new bromodomain inhibitors[END_REF] of a 3K pool of likely to bind Bromodomain BRD4 binders out of the Enamine compound pool is to our knowledge the only prospective, experiment-backed up VS using GTM landscapes amongst other machine-learned models, and docking. The modest enrichment factor in BRD4 actives (×2.7) over an analogous random screening campaign can be traced back to the low correlation between public activity data used to create the GTM landscapes (activity classes based on ChEMBL-reported IC50 values) and the differential calorimetry data by which the hit rate was calculated. Yet, "big data" and activity landscapes are not needed for successful discovery of actives on GTMs. It is straightforward to rephrase the similarity principle "similar molecules have similar properties" as "molecules of a same RP have similar properties". The hypothesis that molecules of a same RP have similar properties is weaker than actual NB compliance in full-blown descriptor space but helps to quickly prune obviously dissimilar candidates. RPs privilegedly populated by anti-(flavo-and entero-)viral compounds were highlighted [START_REF] Orlov | Getting to Know the Neighbours with GTM: The Case of Antiviral Compounds[END_REF], and commercial compounds within privileged RPs were similarity-scored against reference antivirals within same RP, herewith avoiding number-crunching of >10 12 Tanimoto scores of >1000-dimensional vectors between each InterBioScreen candidate compound and each reference antiviral.

Candidates closest to their references were actually tested with an excellent hit rate: 23 out of 44 had antiviral activities within or below micromolar.

Polypharmacological profiling with Universal GTMs

As the GTM is a common frame for all the (precomputed) activity landscapes, in Silico polypharmacological profiling of millions of compounds (prediction of a compound×target profile matrix, reporting the likelihood to be active of each compound for almost 800 targets) can be achieved in hours. Relying on several universal maps significantly improves the consensus prediction. This profiling tool (Figure 3) covering 749 distinct biological activities is freely accessible at the Laboratory of Chemoinformatics of Strasbourg (http://infochim.ustrasbg.fr/webserv/VSEngine.html, under "QSAR-based Property Predictions"). Its strength is that training sets of individual activities are independent (testing every compound on each target is not required). Alternatively, with such a complete matrix, "Stargate" GTM [START_REF] Gaspar | Stargate GTM: Bridging Descriptor and Activity Spaces[END_REF] may "connect" descriptor space and activity profile space (or any other vector space), a distinct paradigm of multitasking GTM.

Targets are the 749 most data-rich proteins with reported dose-response data in ChEMBL v.24.

Dose-response values were converted to Active/Inactive labels and each target-specific compound series generated fuzzy binary class landscapes, on each of the seven universal maps.

"Pure" landscapes only include compounds that were actually tested on the target. They cover target-specific zones -compounds of other chemotypes would project into terra incognita and be considered out of AD. "Decoy" landscapes depict the confirmed actives against confirmed inactives supplemented by 5% of remaining ChEMBL compounds (considered inactive). "Pure" and "decoy" landscapes typically tend to return converging predictions, but also might complement each other, in several possible ways. Figure 3: Sample html output of consensus "hits" discovered in the GTM-predicted polypharmacological profiling against 749 major single protein targets covered by ChEMBL (http://infochim.ustrasbg.fr/webserv/VSEngine.html). Each of the 14 landscapes of a target ("pure" and "decoy" × 7 universal maps) returns a fuzzy class score within [START_REF] Oprea | Chemography: the art of navigating in chemical space[END_REF][START_REF] Papadatos | Analysis of Neighborhood Behavior in Lead Optimization and Array Design[END_REF] (1 → inactive, 2 → active, 1.5 → in-between, undecidable). The mean and standard deviation of scores is taken over only those landscapes for which the compound passes AD criteria. If the mean value exceeds 1.5 plus the standard deviation, the compound is a "virtual hit" for the target, and its structure, the concerned target and final scores ("mean" and "corrected mean" = mean -standard deviation) are output

De Novo compound design with GTMs.

Deep Neural Networks [START_REF] Thomas | Application of Generative Autoencoder in De Novo Molecular Design[END_REF][START_REF] Barzilay | Junction Tree Variational Autoencoder for Molecular Graph Generation[END_REF] (DNNs) based on an autoencoder/decoder architectures can reversibly translate brute molecule representations (SMILES, graphs) to a latent vector of few hundred real numbers. This latent vector is a molecular descriptor "designed" by Artificial

Intelligence and contains all the information needed to reconstruct the structure -which is precisely the role of the decoder. By finding the structure associated to every point of the latent space, decoders are an elegant solution for the "hard" part of the inverse QSAR [START_REF] Miyao | Inverse QSPR/QSAR Analysis for Chemical Structure Generation (from y to x)[END_REF][START_REF] Baskin | Solving the inverse problem of structure-property relations for the case of topological indexes[END_REF] problem: "What structure is associated to given descriptor values?" For the other, "easy" subproblem of inverse QSAR -"What are the descriptor values that correspond to the desired property?" -GTMs provide an elegant answer (Figure 4). "Active" nodes can be traced back to descriptor space, and vectors in their immediate neighborhood can be generated by some normally distributed random perturbation. In order to use GTMs in focused de novo compound design, the following steps are required, after calibration of the autoencoder/decoder DNN.

• Build and validate a latent vector space-based GTM following to the universal map paradigm.

• Select SAR data sets for predictive landscape building. In our proof-of-concept study [START_REF] Sattarov | De Novo Molecular Design by Combining Deep Autoencoder Recurrent Neural Networks with Generative Topographic Mapping[END_REF], actives and tested inactives on the Adenosine receptor A2a were taken from ChEMBL.

• Select "interesting" nodes associated to targeted property values. Here, nodes with a high density of active residents were selected. Other criteria could apply -recall Figure 2.

• Generate normally distributed vectors in the neighborhood of selected node(s). Use the decoder to unveil their associated SMILES strings and apply chemical consistency check and synthesizability index estimators to rank new molecules by practical interest.

• Alternatively, use a Genetic Algorithm for unconstrained browsing thru latent vector space.

Decode the visited point and assess synthesizability. Discard if not satisfactory. Otherwise, enter new structure into the Darwinian selection process, with its A2a activity (read from the landscape) as fitness.

Both sampling strategies above were operational in discovering novel structures that seem feasible and which dock well into the A2a active site (awaiting experimental testing, docking was used as "orthogonal" validation). 

Conclusions

This review article targeting a non-linear dimensionality reduction technique, GTM, visited virtually all key aspects of chemoinformatics: the similarity principle, chemography, QSAR and machine learning, VS, library design, de novo compound design. This convincingly illustrates its multivalence. No application is GTM-specific: SOMs were tools of choice for library comparison. However, the fuzzy-logics based GTM allows for genuine property prediction. On SOMs, the node level is intrinsically the highest-resolution cluster level the method can provide.

On GTMs, the number of possible responsibility patterns is virtually infinite -allowing for a much finer clustering resolution.

Property landscapes can be plotted in the plane of the two main principal components -but the non-linearity of GTM provides a significant competitive edge. Should a distribution really be "flat", GTM is seamlessly able to mimic PCA -no risk taking in preferring GTM.
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 1 Figure 1: Key steps of GTM construction

Figure 2 :

 2 Figure 2: The ability to deploy distinct property landscapes on a same multitask GTM allows the intuitive discovery of CS zones of interest. Color coding represents the local percentage of active residents. Zone 1shows activity with respect to B but was not extensively explored for A. Zone 2 is one of A-specific ligands, by contrast to the rather B-specific zone 4. Last but not least, zone 3 is a "promiscuity" area.

Figure 4 :

 4 Figure 4: Principle of GTM-driven navigation in the Encoder/Decoder latent space, towards the discovery of novel species of desired properties

GTM-based models provide intuitive AD criteria, derived from mapping and landscape building.

They are thus compliant with every request of "good QSAR practice". Their predictive propensity is robust but not outstanding. Instead, they are outstanding in terms of a feature that is altogether absent in "black-box" machine-learned models: the ability to visualize and intuitively compare property landscapes stemming from a common multitask or universal manifold. Support for multiple predictive models, rendered within a common reference frame, is a key advantage of GTMs.