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Abstract 

In this paper, hexagonal germanium dioxide (GeO2) nanostructures with different 

morphologies and sizes were synthesized successfully by a simple and fast 

electrodeposition method. We investigated the electrochemical growth mechanism, the 

structural and optical properties of the products through Fourier transform infrared 

spectroscopy (FTIR), dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) and 

cathodoluminescence (CL). The results reveal that the electrodeposited GeO2 

nanostructures are pure, dense, and highly crystalline. The XRD analyses indicate that 

grown GeO2 crystals only shows peaks related to α-quartz structure. CL measurements 

exhibit strong blue and green lights emissions related to oxygen vacancies in the core of 

GeO2 crystals. The obtained nanostructures may have potential application in future 

integrated optical devices. 

Introduction 

Nanoscale germanium‐based materials exhibit a variety of novel properties and benefit a 

wide range of applications [1]–[10]. Germanium dioxide (GeO2) nanostructures are 

versatile materials that have been explored in depth due to their unique thermal, optical and 

electrical properties. GeO2 is thermally stable, has a high dielectric constant with large 

band gap energy (5 eV) [11], a high mechanical strength [12] and exhibits a refractive 

index that is slightly higher than that of SiO2 [13], [14]. GeO2 is also an attractive candidate 

for lithium-ion batteries (LIBs) due to its high theoretical reversible capacity (1125 mA h 

g−1 based on 4.25 mol Li per mol Ge) and low operating voltage, as well as long cyclability 

[15]–[17]. In addition, this nanomaterial shows a good blue photoluminescence behavior, 

which is highly sought after for optical waveguides and optoelectronic communication 
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devices [18], especially, electro optical modulators, piezoelectric glass materials, optical 

fibre materials and non-linear optics [19]–[21]. Due to this all, so far, different approaches 

to synthesizing nanostructured GeO2 have been elucidated in the literature, including 

thermal treatment of Ge [22], vapor transport [23], carbothermal reaction [24], carbon 

nanotube confined reaction of Ge [25], chemical vapor deposition [26], supercritical fluid-

liquid-solid synthesis [27], electro-spinning [28], e-beam evaporation [29], [30], sol-gel 

deposition [31], [32], radio frequency (RF) magnetron sputtering [33], [34], and laser 

ablation [35]. These techniques allow the synthesis of various GeO2 shapes with tuned size 

such as nanoparticles, nanofibers, nanosheets [36], nanocubes, nanospindles, nanocapsules 

[37], [38], nanowires, nanorods [39], [40], and porous structures [41], [42]. However, GeO2 

nanoparticles fabricated from electrochemical processes have some distinctive advantages 

over nanoparticles fabricated by other methods mainly because (i) they are conveniently 

synthesized potentiostatic control, enabling electrophoretic deposition from the electrolyte, 

(ii) high density of nanocrystals, (iii) pure material (free of contaminants and chemical 

residues), (iv) high specific surface area, (v) coupled optical properties, (vi) can be 

transformed to powder by grinding and dispersed in a solution. In addition, the 

electrochemical process is standard, scalable that is already well integrated within an 

industrial fully automatic environment. Such a process meets the criteria, which provide 

an attractive solution for some specific applications. 

This paper reports the successful synthesis of hexagonal GeO2 nanostructures (nano-bundle 

aggregates and nanowires) by a simple and fast electrodeposition method with a plausible 

growth mechanism. The prepared GeO2 nanostructures are characterized by scanning 

electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), energy-
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dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) measurements. Finally, 

we focus on performing a comprehensive optical characterization of GeO2 nanostructures 

by cathodoluminescence (CL).  

Experimental: 

GeO2 nanostructures synthesis was accomplished using a conventional three-electrode 

single-compartment electrochemical cell. GeO2 nanostructures were potentiostatically 

deposited on p+ type Ge wafers, (100) oriented with a nominal resistivity of 0.025 Ω cm 

(working electrode WE). A platinum sheet was used as counter-electrode (CE) and 

saturated calomel electrode (SCE) as reference electrode. All solutions were prepared from 

analytical grade reagents and double distilled water. As germanium tetrachloride (GeCl4) 

is most widely used germanium source for germanium electrodeposition in ionic liquids, 

electrodeposition of GeO2 was conducted in a hydrogen peroxide solution containing 10% 

of germanium tetrachloride solution (GeCl4:H2O2, with the ratio of 1:9 by volume) at room 

temperature (20 °C). A wide range of GeO2 morphology as a function of applied potentials 

was studied and a controlled structure, morphology and phase composition was sought. All 

potentials are reported with reference to the SCE scale. As surface conditions and 

activation are critical to electrocrystallisation nucleation and growth, Ge wafers were 

immersed in hydrofluoric acid (49%) to remove the native oxide before anodization. All 

deposition processes were carried out under stirring (700 rpm) using a cylindrical PTFE-

coated magnetic stirrer bar of 12 mm long and 4.5 mm diameter with a pivot ring of 6 mm 

diameter, placed between the WE and the CE. At the end of the deposition process, all the 

wafers were rinsed with deionized water and dried under a high purity nitrogen gas flow. 

The chemical composition of the exposed surface is verified by energy-dispersive X-ray 
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(EDX) spectroscopy. Powder X-ray diffractograms have been measured with a Philips 

X’Pert diffractometer in the 2θ range from 10 to 65◦. The cathodoluminescence (CL) 

spectra and images are acquired at room temperature, in the same SEM setup as the one 

used for imaging the surface. Our CL system, in association with a spectrometer, allows 

monochromatic CL (GATAN MonoCL2) imaging as well as acquisition of CL spectra on 

localized spots of a sample with a spectral resolution of 0.5 nm. The accelerating voltage 

used in the CL characterization is 20 keV. 

Results: 

 Electrochemical characterization and morphology: 

The electrochemical characterizations such as cyclic voltammetry measurements help us 

to identify oxidation reduction processes potentially undergone by the system of interest 

and to choose an appropriate potential [43], [44]. The electrochemical window of this ionic 

liquid was found to be 3.5 V (-2.0 V to 1.5 V) on platinum. Figure 1(a) shows cyclic 

voltammetry scan performed between -1.5 V to +0.5 V at a scan rate of 20 mV s-1. The 

spectrum reveals a large reduction wave on the cathodic scan corresponds to two reduction 

reactions for Ge4+ ions: one leads to Ge2+ ions and the other to Ge [45]. The reduction 

waves at -0.6 and -1.1 V versus SCE were assigned to the reduction of Ge4+ to Ge2+ and 

Ge2+ to Ge, respectively [46]: 

Ge4+ + 2e− → Ge2+        (1) 

Ge2+ + 2e− → Ge          (2) 
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The nucleation and growth of GeO2 crystals are chemical steps and depend on the pH [47]. 

The nucleation started when the produced Ge2+ ions react with OH− ions in the solution to 

form GeO2: 

Ge2+ + 2OH− → GeO2 ↓ +H2        (3) 

The current-time transients of the deposits produced at the -0.8, -1 and -1.2 V for the first 

20 s were shown in figure 1(b). The shape of the curve can clearly indicate the nucleation-

growth mechanism. At the beginning of the applied potentials, a high cathodic current was 

observed for a short time of 2 s compared to the deposition of 20 s which indicates the 

formation of GeO2 on the surface of Ge substrate. The curves i(t) show also a normal 

dependence with the applied potential. The increase of the current density with the applied 

potential indicates that the process of the electrodeposition becomes faster. Figure 1(c-e) 

shows planar-view SEM images of the samples obtained at the -0.8, -1 and -1.2 V during 

20s. The nanoparticles accumulate mostly on the side of the Ge wafer oriented toward the 

counter electrode during deposition. For all cathodic deposition potentials, the grains are 

assembled into a network of rounded agglomeration so-called “nano-bundle aggregates”. 

Their density increases by increasing the cathodic potential. A closer observation of an 

individual nano-bundle shows different forms and shapes: (i) a nanorod -like morphology 

at low deposition potential (-0.8 V), with a particle size of few nanometers (Fig. 1c), (ii) a 

mixt of nanowires and quartz-like at deposition potential of -1 V (Fig. 1d), and (iii) a pure 

quartz-like morphology at high deposition potential of -1.2 V (Fig. 1e). Similar GeO2 

shapes have been obtained by heating of Ge powders [48]. Figure 2(a) shows a defined 

edge of the formed GeO2 with the rest of the substrate, indicating that the nanostructures 

are correctly and orderly electrodeposited on the emerged part of the substrate.  
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In order to understand the effect of current density on the growth mechanism, the 

deposition time is increased from 20 s to 300 s under the same applied potentials of -0.8 V, 

-1 V, and -1.2 V. The resulting forms are presented in Figs. 2b, 2c and 2d, respectively. 

The nanorods shape obtained at -0.8 V are transformed into a criss-cross network of 

nanowires with an average diameter of 200 nm and an average length of 3 microns.  The 

mixed structure obtained at -1.0 V become denser with packed wire-like particles 

surrounding the spherical shapes. The dimensions of the nanowires are smaller than those 

at -0.8 V with a diameter ranging from 50 nm to 100 nm. The quartz-like shapes obtained 

at -1.2 V appears to be faceted or hexagonal submicrometer crystallites with typical 

diameters up to 1µm. The images show that the density and the dimension of the formed 

nanostructures increase with the deposition time, while the different morphology obtained 

at each applied potential reflects a growth mechanism differs. In fact, the growth often 

occurs according to the 1D growth mode at low potential (-0.8V) and to the 3D growth 

mode at high potential (-1.2V). However, the full process could be confirmed and better 

understood with further experimental work. 

 Chemical and structural Analyses 

In order to verify the chemical composition of the formed nanostructures, the samples were 

investigated and characterized through Fourier transform infrared spectroscopy (FTIR), 

energy-dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). Figure 3(a) 

shows the absorbance obtained by FTIR of bulk Ge sample after immersion in HF 49% 

solution. The dominant feature of this spectrum is at 2050 cm-1, which corresponds to the 

stretching mode of the GeHx bonds [49], [50]. GeHx bending modes are also present and 

centered at 840 cm-1 [51]. Figure 3(b) shows the absorbance after anodization at -1.2 V 

during 300 s. The large band at 780 cm-1 is attributed to the vibration of Ge-O, assuming 



8 
 

an oxidized surface and/or GeO2 precipitates [50], [51]. Vibrational measurements show 

clear evidence that following the anodization process; the hydrogen-terminated Ge surface 

is completely converted to contain GeOx bonds. 

Figures 4a-d and 4e-h show the EDX mapping of the electrodeposited samples at -0.8 V 

and -1.2 V, respectively. The figures reveal the uniform distribution of Ge and O contents 

in the formed nanowires and quartz structures. The enclosed EDX spectrum in Fig. 4i 

confirms the constituents of both nanostructures, which are only Ge and O since the 

characteristic peaks of Ge and O only appear in EDX spectra.  

Powder XRD measurements were performed to investigate the crystal structure of the 

electrodeposited Ge oxide. The diffraction signals between 10° and 60° of the 

electrodeposited samples at -0.8 V and -1.2 V are shown in Fig. 5. All sharp peaks can be 

clearly determined as having a hexagonal GeO2 with lattice constants of 4.98, 4.98, 5.64 

(A°) and angles of (90°, 90°, 120°). No reflection peaks from impurities, such as unreacted 

Ge or other germanium oxides (tetragonal with a structure of rutile), were observed, within 

the detection limit of our technique (2-2.5 nm), indicating a high purity of the product [52]. 

The observed diffraction peaks from (100), (101), (110), and (102) planes can be indexed 

to those of the α-quartz GeO2 (space group P3221) [53]. The intensity of the (101) peak is 

very strong and its width at half maximum is relatively narrow, indicating a good 

crystallization state. 

 Light emission from electrodeposited GeO2 nanostructures 

To investigate the optical properties, GeO2 nanostructures were examined by room-

temperature cathodoluminescence spectroscopy. The morphology and CL characteristics 
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of the electrodeposited samples at -0.8 V and -1.2 V are reported on the spatial mapping 

(Fig. 6 a-d) which reveal luminescence only from the GeO2 nanostructures. Fig. 6e shows 

the typical room temperature emission spectra from both samples. Two distinct emission 

peaks are observed in CL spectra, i.e. at 411 nm and 560 nm. The strong and dominated 

peak appeared at 560 nm (2.2 eV) can be related with the green emission while the presence 

of a broad peak at 411 nm (3.0 eV) can be referred as blue emission. Both blue and green 

light emissions are correlated to radiative recombination of defects in quartz-like GeO2 

crystals [18], [24], [54]. In fact, oxygen vacancies and germanium-related oxygen 

vacancies act as luminescence center and contribute to the observed luminescence from 

GeO2 nanostructures such as single oxygen vacancy (OV) or double oxygen vacancy 

(DOV) [55]–[57]. No violet emission has been observed in the CL spectra from tetragonal 

GeO2 crystals [48]. Because of their characteristic emission properties, these GeO2 

nanostructures may have potential application in future integrated optical devices. 

Conclusions  

In summary, tuning size and morphology of GeO2 nanocrystals are made possible by 

electrodeposition. The formed nanostructures were characterized in detail in terms of their 

morphological, structural, and compositional properties which revealed that they are pure, 

grown in very high density, and highly crystalline. XRD analysis confirms the crystalline 

nature of the electrodeposited GeO2 having α-quartz type hexagonal structure. The CL 

measurements showed that the structures have a strong blue and green light emissions 

assigned to radiative recombination of defects in GeO2 crystals. This study demonstrates 

that the electrodeposition technique can be used for the synthesis of large quantity GeO2 
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nanostructures which could be a promising candidate for the fabrication of cost-effective 

optoelectronics devices. 
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Fig. 1: (a) Cyclic voltammogram recorded in a GeCl4:H2O2 solution, with the ratio of 1:9 by 

volume. The potential scan rate is 20 mV s−1. (b) Current transients for GeO2 nanostructures 

deposited at different applied potentials. Planar-view SEM images of GeO2 nano-structures 

electrodeposited at -0.8 V (c), -1 V (d) and -1.2 V (e) on Ge substrate during 20 s. 
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Fig. 2: Planar-view SEM images shown the emerged substrate limit in the electrolyte (a) of GeO2 
nano-structures electrodeposited at -0.8 V (b), -1 V (c) and -1.2 V (d) on Ge substrate during 300 

s. The inset shows high-resolution SEM image on the nano-assembled structures. 
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Figure 3: Typical transmission-FTIR spectra of the Ge surface before (a) and 
after electrodeposition of GeO2 nanostructures at -1.2 V during 300 s (b), which 

is dominated by a large band correlated to the vibration of Ge-O bonds. 
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Fig. 4: EDX mapping of GeO2 nanowires (a) and quartz structures (e) electrodeposited at 0.8 V 

and 1.2 V respectively. The top view SEM image and the EDX element maps for (b,c) Ge, (f,g) 

O elements, (d,h) a mixture of Ge and O and (i) EDX spectra acquired in SEM at the top view 
sample.  
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Fig. 5: Powder XRD of GeO2 nanowires and quartz structures 

electrodeposited at 0.8 V and 1.2 V respectively. 
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Fig. 6: SEM and CL micrographs taken from the top 

surface of GeO2 nanowires (a,b) and quartz structures 

(c, d) electrodeposited at 0.8 V and 1.2 V respectively. 

(e) The corresponding CL spectra. 
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