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Abstract. Fractional calculus is a branch of mathematics that studies
the use of the fractional operators. The evolution of computing allowed its
application in many areas, including control theory. Fractional operators
are known to well describe memory phenomena, a favorable characteris-
tic for control. Another benefit is that fractional-order of these operators
adds more tunable parameters to the controller, allowing greater flexi-
bility and the possibility of improving its performance. This work aims
to verify the performance of an inverted cart-pendulum control system
using a fractional-order integrators and discover an ideal method for op-
timizing systems using fractional controller. The strategy is to employ
optimization methods like genetic algorithms and cross-entropy, to ob-
tain optimal controller parameters which result in the best control per-
formance, taking into account performance indexes related to the error,
settling time and control effort. A comparison is made with the integer-
order controller to verify the improvement in the use of fractional control.

Keywords: fractional controller, cross-entropy method, nonlinear dy-
namics, genetic algorihm

1 Introduction

The idea of the fractional calculus was introduced in 1695, when L’Hôpital in a
letter to Leibniz questions what would be the mathematical interpretation for the
notation of the derivative dnf/dxn (created by Leibniz) if it has a non-integer
order (n = 1/2, for example). The search to find this interpretation involved
many mathematicians like Euler, Fourier, Laplace, among others. Its first prac-
tical application was made in 1823 by Niels Henrik Abel, to solve problem of
tautochrone curve, for which the time of descent of a body abandoned on it and
subject to the action of gravity is the same regardless of the starting point where
the body is abandoned [1, 2].

During the following centuries, many pure and applied mathematicians con-
tributed to the development of the theory of fractional calculus and many dif-
ferent fractional operators were proposed, including the fractional derivatives of
Grünwald-Letnikov, Riemann-Liouville and Caputo [3].
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The Riemann-Liouville fractional integral [3] of order α, where α ∈ IR and
α > 0, is defined in terms of a convolution type operation between the real-valued
function y(t) and the kernel tα−1

Iαa,ty(t) =
1

Γ (α)

∫ t

a

(t− τ)α−1 y(τ) dτ , t > a (1)

being Γ the Gamma function, and the Riemann-Liouville fractional derivative [3]
is defined in terms of the classical derivative of order n ∈ ZZ+ of this fractional-
order integral

RLDαa,ty(t) =
1

Γ (n− α)

dn

dxn

∫ t

a

(t− τ)n−α−1 y(τ) dτ , (2)

which is a global operator (not local as in classical calculus) that presents
“memory”, being t > a and n− 1 < α < n.

The development of new definitions is an active field of research in math-
ematics [4, 5], including unified definitions [6]. On the other hand, the use in
applications was possible mainly due to the development of numerical methods
to simulate fractional systems [7], which also allowed the use of fractional opera-
tors in engineering analysis [8] and in control theory [9], especially when dealing
with delays [10] or chaotic nonlinear systems [11].

In addition to the favorable feature of fractional-order operators in provid-
ing a natural framework for describing phenomena with memory, the fractional
exponent in control theory also offers a type of additional degree of freedom
to tune a controller, opening up opportunities for further performance improve-
ments in the controller project. In this context, this work proposes a LQR-based
control system to stabilize an inverted cart-pendulum system and analyzes the
possibility of improving the performance of the controller using fractional inte-
grators, comparing this with the integer-order. Performance is evaluated through
indexes related to the control error, the settling time of the system output and
the control effort. To find the parameters that result in the best performance
for the controller, including the possibility of fractional-order, and find the most
efficient method to optimize systems that use fractional control, two methods of
global optimization are used, the genetic algorithm [12] and the cross-entropy
method [13, 14]. The inverted pendulum is chosen as a reference because it is a
classic control problem, a nonlinear system widely studied using integer-order
controllers [15], which it has also started to be tested in the fractional control
literature [16].

2 Nonlinear dynamic system

An inverted pendulum has its center of mass above its pivot point, so when in the
vertical position is in its unstable equilibrium position, and a small disturbance
can bring down the pendulum. Maintaining this equilibrium position or at a
desired reference angle is done by changing the cart position. The inverted cart-
pendulum used in this work is shown in Figure 1 (left), where M is the cart mass;
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m is the inverted pendulum mass; L is the distance from the center of pendulum’s
mass to the fixation point; x is the cart’s horizontal displacement; θ is the angle
between the pendulum and a perpendicular axis through the cart’s centroid; and
u is the force applied to the cart to control the system. The mass of the rod is
neglected, the surface is considered to be frictionless and the mechanical joint is
considered smooth.

The dynamics of the system evolve according to the nonlinear model

(J +mL2) θ̈ −mgL sin θ = −mL ẍ cos θ (3)

(m+M) ẍ+mL θ̈ cos θ −mL θ̇2 sin θ = u (4)

where J is pendulum moment of inertia. As can be seen, the dynamics of the
plant is nonlinear and a suitable controller is needed to keep the pendulum in a
certain position. In this study, are considered the values of m equal to 0.1 kg,
M equal to 2 kg, L is the length of 0.5 m and the moment of inertia J is equal
to 0.006 kg.m2. The upper dot is an abbreviation for time-derivative.

3 Control strategy

3.1 Controller design

Figure 1 (right) shows the LQR-based controller proposed to control the inverted
cart-pendulum system.
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Fig. 1. Schematic illustration of the cart-pendulum system (left), and the proposed
LQR-based controller (right)

In this proposed controller, r is the reference input signal; e is the tracking
error; u is the control signal; K1, K2, K3, K4, Kl are the control gains; Iα1 , Iα2 ,
Iα3 , Iαl are the integrators, if α ∈ ZZ (integer-order) and if α /∈ ZZ (fractional-
order). In this plant the feedback is done through two state variables, angular
speed θ̇ and cart speed ẋ, chosen to be the observed states. Therefore, to obtain
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the angular position of the pendulum and the position of the car, these variables
are integrated by Iα1 and Iα3 , respectively, as defined by the fractional integral
of Riemann-Liouville in Eq.(2). In addition, a feedback in the input through the
integral Iα2 and Iαl of the car position is performed.

To know the performance of an integer-order controller, used as a reference in
the comparisons of this work, the Pole Placement method was used to obtain the
controller gains Ki. This is a classic and widely used method, developed for linear
systems using integer-order controllers, where the location of the poles is chosen
based on the desired performance of the closed-loop system. Since this method
is based on the linear system hypothesis, the inverted cart-pendulum model
is linearized. Using the Matlab to calculate the gains, the following values are
obtained: K1 = −200.6; K2 = −50.3; K3 = −70.1; K4 = −46.8; Kl = −63.8.

3.2 Controller performance

Performance indexes of control systems are indicators of the quality of the elab-
orated project, being possible to evaluate quantitatively the performance of dif-
ferent controllers. Mathematically, a performance index is a function of system
states, inputs and time. In addition, performance indices can also be used as an
objective function for obtaining controllers. In this work, the performance of the
controllers is evaluated using the following criteria:

– Integrated square error: ISE =
∫ t
0
e(t)2 dt

– Settling time (ST)

– Integrated square control signal: ISU =
∫ t
0
u(t)2 dt

The first two indices refer to the state variables (θ, θ̇, x and ẋ). The ISE
index, is related to the area displaced by the car or the pendulum during the
evaluated period until reaching the reference. The settling time, as the name
says, is the time it takes the signal to reach the reference. The latter, the ISU
index, quantifies the control effort during the evaluated period.

4 Controller optimization problem

4.1 LQR-based fitness function

The objective of this work is to find the set of controller parameters that maxi-
mize the performance of the controller. Thus, the design variables chosen for the
optimization problem are the gains and the order of the integrators, especially
the latter that define whether the controller it will be fractional or integer.

The lower and upper bounds of the variables must be defined according to
the computational capacity of the optimization method and in a way that allows
the search for the global maximum, without one or more variables being close
to the stipulated limit. This problem with the bounds of the variables is one of
the reasons for using more than one optimization method.
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As explained in section 3.2, the performance evaluation is made through the
indexes chosen here, however for the optimization process, evaluating the indexes
separately would make a multi-objective optimization of high computational
cost, since the number of design variables is relatively high. Therefore, it is
necessary to develop an objective function that takes into account all these
performance indices, including the one that assesses the control effort. Control
theory has an optimized controller design technique well known in the literature
called linear quadratic regulator (LQR). This technique is used in linear systems
and has a quadratic cost function that includes the state variables and the control
signal, in order to find the optimized gains for the control project [17].

A fitness function based on the LQR was developed mainly because it also
takes into account the state variables and the control signal in the formulation

F =

∫ τ

0

(
w1

x2(t)

ISExI

+ w2
θ2(t)

ISEθI
+ w3

u2(t)

ISUuI

+ w4
ẋ2(t)

ISEẋI

+ w5
θ̇2(t)

ISEθ̇I

)
dt (5)

where t is the time variable, τ is the final evaluation time and the w’s are the
weights for each component of the objective function. It is worth mentioning
that as the reference for the control is zero, the state variables used directly in
the function quantify the error, one of the performance indices evaluated in this
article. State variables are divided by the respective performance value (ISE and
ISU) in integer-order control, minimizing the difference in order of magnitude
of each component, trying to allow the weight to be defined as much as possible
by w1 = w2 = w3 = 0.3 and w4 = w5 = 0.05. Thus, the value of the fitness
function for the classical controller is equal to 1.

Therefore, to obtain a better performance F < 1 must be obtained, that is,
the objective function must be minimized. To turn this minimization problem
in a maximization problem, as is treated in the optimization methods applied in
the article, it is considered S = −F . The constraints are incorporated into the
objective function through a penalty function

P = 100 (max(0, STθ − ST ∗
θ ))

2
+ 100 (max(0, STx − ST ∗

x ))
2

(6)

where STθ and STx are the settling time of the angular position and the position
of the car, ST ∗

θ and ST ∗
x are the respective values in the classic controller.

4.2 Genetic algorithms

Genetic algorithms (GA) are heuristic search approaches applicable to a wide
range of optimization problems. Invented by Holland (1975, 1992), this stochas-
tic optimization and global search technique are successful methods for use in
problems with difficult solution spaces, for example, if no derivatives are available
and if the fitness scenario suffers from poorly conditioned parts [12].

Using the principle of genetics and natural selection, evolution is the basis
of genetic algorithms, together with their main genetic operators, which are
crossover, mutation and selection. Crossover operators combine the genomes of
two or more solutions. The mutation operator adds randomness to the solutions.
And finally, the selection operator chooses the best solutions in a population for
survival [18].
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4.3 Cross-Entropy method

Global search methods like genetic algorithms are quite effective in overcom-
ing local minimums or maximums, unlike gradient-based methods, however its
control parameters are not intuitive and most of the time its tunning is done
through trial and error, which can lead to loss of performance and accuracy. In
an attempt to overcome such difficulties and succeed in the search for the con-
troller with the best performance, this work uses, in addition to the GA method,
another global search algorithm known as the cross-entropy (CE) method. More
robust and simple, it was proposed by R. Rubinstein in 1997 [13] initially for
simulation of rare events, and then its effectiveness in application in optimiza-
tion problems was observed [19, 20]. The idea of the method is to transform a
non-convex optimization problem into a rare event estimation problem, that can
be solved by Monte Carlo sampling technique. The process consists of:

(i) sample the feasible region according to a given probability distribution;
(ii) evaluate the objective function in each of these samples;
(iii) identify the samples that produced the highest values for the objective func-

tion, this subset being defined as the elite sample set;
(iv) update the parameters of the probability distribution based on the mean

and standard deviation of the elite sample set, modifying the distribution in
order to try to make it as close as possible to the global optimum;

(v) repeat steps (2) to (4) as long as a stop criterion is not met.

This iterative process can be classified into two stages: sampling (i and ii)
and learning (iii to v). Furthermore, this process only requires the user to define
the number of samples Ns, the number of elite samples Ne<Ns, a tolerance of
convergence tol and the maximum number of levels (iterations) lmax [14].

5 Numerical experiments

The numerical experiments presented here, consist of the execution of optimiza-
tions using GA and CE methods through numerical simulations in Matlab, where
several evaluations of the objective function are performed and the ideal param-
eters of the controller that result in its best performance are found. For the
operations of fractional integrators the FOMCON toolbox is employed [7].

The initial conditions for the numerical simulations are defined: x0 = 0 m;
ẋ0 = 0 m/s; θ0 = 10×π/180 rad; θ̇0 = 0 rad/s. Note that the initial condition of
the angular position other than 0 (zero) will force the control system to act to find
stabilization. The dynamics are integrated over the time interval [0; τ ] = [0; 10] s.

The optimizations will be divided into two stages according to the choice of
design variables to be analyzed. In the first round of optimization, it seeks to
find the optimal values of α1 and α3, which results in the best performance for
the controller, keeping the other parameters fixed. The strategy is to use the
controller’s gains, obtained by the linear Pole Placement method and consider
the order of the integers α2 and αl equal to 1. Then, optimizations are performed
with all system parameters (gains and integrators) to find the one that results
in the best control performance.
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5.1 The α1 and α3 optimization

Initially, the GA and CE optimizations are made with the design variables being
α1 and α3, keeping the other controller parameters fixed and equal to 1. The
results obtained in each of these optimizations are presented in Table 1.

Table 1. Optimal values of the design variables (α1 and α3) with their respective
performance indexes and fitness function value

integer fractional fractional
controller controller GA controller CE

parameters

α1 1.00 1.03 1.03
α2 1.00 1.00 1.00
α3 1.00 0.93 0.93
αl 1.00 1.00 1.00
K1 -200.60 -200.60 -200.60
K2 -50.30 -50.30 -50.30
K3 -70.10 -70.10 -70.10
K4 -46.80 -46.80 -46.80
Kl -63.80 -63.80 -63.80

ISE θ 0.021 0.017 -20% 0.017 -20%
ISE θ̇ 0.190 0.204 7% 0.204 7%
ISE x 0.257 0.230 -11% 0.230 -11%

performance ISE ẋ 0.660 0.509 -23% 0.509 -23%
index ISU 23.659 24.412 3% 24.411 3%

ST θ 4.873 4.088 -16% 4.088 -16%
ST x 5.073 5.100 1% 5.100 1%

fitness function 1.000 0.909 -9% 0.909 -9%

The first highlight can be made on the efficiency of the CE method compared
to GA to obtain the same result more quickly and with less computational cost.
Another observation is that the use of fractional-order integrators can improve
the performance of the controller, with an optimization close to 10% of the
overall performance (based on the fitness function) of the controller. The ISE of
the angular position had a reduction of 20% compared to the integer-order. The
ISE of the angular velocity, the settling time of x and the control effort were
slightly higher, however, compared to the improvement obtained in the others,
they are irrelevant. Some of these results are highlighted in Figure 2, with the
time series of the angular position, car position and control effort.

Fig. 2. Time series of the angular position (top-left), car position (top-right) and the
control signal (bottom) for results firsts optimization
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5.2 Optimization of all parameters

Based on the results of section 5.1, the following question is asked: “if the gains
are also optimized, will the integrators also have a fractional order?”. To answer
this question, new optimizations are developed with the GA and CE methods,
now with all the parameters of the controller as design variables. The results are
compared with the integer-order controller, as done previously. Table 2 shows
the configuration of the methods, the bounds of all design variables and the
performance of each method for optimization evaluated with all parameters.

Table 2. Bounds and performance of GA and CE algorithm for optimization evaluated

method
bounds

levels
function

α1,2,3,l K1 K2,3,4,l evalution

GA [0.8 1.1] [-250 -150] [-90 -30] 327 generations 29520

CE [0.5 1.5] [-350 -1] [-150 -1] 88 iterations 4400

Unlike the previous optimization, the optimizations performed with all pa-
rameters required a higher computational cost. However, as shown in Table 3,
the results of the performance indices and the fitness function of the optimized
parameters show that the use of fractional-order integrators together with the
optimal gains can further improve the performance of the controller designed
through the method of Pole Placement. The optimization methods GA and CE
allowed results in general (fitness function) with 27% and 37% better than the
controller used as reference, respectively.

Table 3. Controller configuration with the optimal values of the design variables (all
parameters) and their respective performance indexes and fitness function value

integer fractional fractional
controller controller GA controller CE

parameters

α1 1.00 0.96 0.72
α2 1.00 0.94 0.79
α3 1.00 0.91 1.22
αl 1.00 0.97 0.80
K1 -200.60 -249.98 -205.68
K2 -50.30 -60.08 -86.97
K3 -70.10 -89.96 -67.54
K4 -46.80 -70.35 -124.60
Kl -63.80 -83.01 -65.56

ISE θ 0.021 0.012 -45% 0.009 -55%
ISE θ̇ 0.190 0.169 -11% 0.157 -17%
ISE x 0.257 0.182 -29% 0.136 -47%

performance ISE ẋ 0.660 0.357 -46% 0.283 -57%
index ISU u 23.659 22.158 -6% 21.497 -9%

ST θ 4.873 3.952 -19% 3.949 -19%
ST x 5.073 4.899 -3% 5.100 1%

fitness function 1.000 0.730 -27% 0.630 -37%

This difference in methods is linked to the better efficiency of the CE in
relation to the operational cost (time/function evaluates). Because in GA, due
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to the CPU time and the number of variables in the problem, it was necessary to
establish lower bound limits of each parameter/design variable for the method
to run. This problem can be seen in the values of K1 and K3, which were very
close to the lower bounds established for them. Another important highlight is
how errors can be reduced by up to 50% with fractional integrators, yet requiring
9% less effort from the controller. The time series of the angular position, the
car position and the control effort are shown in Figure 3, with the comparison
of the result of each method with the integer controller.

Fig. 3. Time series of the angular position (top-left), car position (top-right) and the
control signal (bottom) for results optimization of the all parameters

6 Concluding remarks

This work used the stability problem of an inverted cart-pendulum to develop
a study on the performance of fractional controllers compared to those with
integer-order integrators. So there is a nonlinear non-convex optimization prob-
lem that aims to maximize the performance of the control system, taking into
account the error, the settling time and the control effort. For this, two different
optimization methods were used: genetic algorithms and cross entropy. The lat-
ter being faster and more robust for optimization that involves fractional-order
integrators, i.e. the CE method presents better performance for problems with
many variables, which is the case of systems with fractional control.

As in [9], there is an improvement in the performance of the control circuit
that has fractional-order operators, but in this work for a LQR-based controller.
The results show that the use of controllers with fractional integrators instead
of integer-order controllers makes the control more efficient and faster, approx-
imately 20% faster to reach the benchmark (θ = 0 rad), with less error and
requiring less effort of control. With the reduction of all control parameters, in-
tegrators and gains, the fitness function can be reduced by more than a third,
allowing to find a better answer from the results of the Pole Placement method.
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