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Abstract. This work employs the technique known as sparse identifica-
tion of nonlinear dynamics (SINDy) to infer, from a set of information
provided by a given time-series, the evolution law of a dynamical system
of interest, accessing the physical consistency of the obtained dynamic
model. The Duffing oscillator is used as a benchmark due to the vari-
ety and richness of its dynamical behavior. The numerical experiments
attempt to identify whether the method is capable of recognizing the
correct evolution law and respecting basic principles of physics such as
the balance of momentum and energy. The numerical results illustrate
the method’s ability to obtain approximations to the system evolution
law that provides physically consistent behavior for short time intervals.

Keywords: nonlinear dynamics, data-driven dynamical system, sparse
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1 Introduction

Most classical dynamic systems, such as a harmonic oscillator, a simple pendu-
lum have their evolution law inferred through the first principles [1, 2]. However,
some modern dynamical systems such as those that appear in areas like epi-
demiological modeling [3, 4], neuroscience [5–7], have the basic evolution laws
not well understood or even unknown so that the use of first principles to obtain
the governing equations is unfeasible. In other applications, structural health
monitoring [8, 9], for instance, it may be possible that the basic principles of dy-
namics are well understood, but some peculiarities not, which make it difficult
to construct high-fidelity predictive models.

In this context, discover the evolution law for this kind of dynamical system
in an analytical way becomes an almost impossible task. However, with the
emergence of the information age, where data is exponentially generated and
stored, it is natural to try to use information embedded in datasets associated
with the dynamical system of interest to infer its underlying evolution law.

Neural networks (NN) [10–12] have a high capacity to learn complex pat-
terns, which makes them at first glance natural candidates to be used in the
search for mathematical expressions that represent the desired evolution law.
However, despite having incredible power of prediction (interpolation) in the
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domain spanned by the training data, several NN architectures lack in provid-
ing interpretable expressions for the identified dynamic model, which makes it
difficult to generalize (extrapolate) system behavior for unknown conditions.

Alternatively, regression techniques are more proper for providing the in-
terpretability that NN does not have, which makes them an attractive tool
to extract dynamic evolution laws from datasets [13]. In this scenario, stands
out the technique known as sparse identification of nonlinear dynamical systems
(SINDy) [13–16], a sparse regression method to identify evolution equations from
data that proven to be efficient in different areas and problems, and stands out
for three aspects: (i) interpretability of the obtained equation; (ii) excellent gen-
eralization (extrapolation) capability; (iii) computational efficiency. As several
dynamic systems have evolution laws with only a few terms, SINDy looks for a
sparse and parsimonious differential equation that best fits the known data.

If the method is applied in a system where the first principles are unknown, it
is interesting to have some guarantee that the identified evolution law respects
fundamental physical laws since their violation can translate into a dynamic
behavior that is divergent from the original one. For instance, if the balance of
momentum is not respected, mass or velocity are affected, potentially changing
the inertial effects. When the energy balance is violated, the contribution from
kinetic/potential energy to the mechanical energy can be in a proportion far
from the original system, which can imply changes in the displacement/velocity.
Even when a qualitatively good result is observed, small differences in the system
parameters can significantly change quantitatively the long-term behavior.

This work aims to verify the physical consistency of the evolution law ob-
tained by SINDy, checking if the identified dynamical system respects physical
principles such as the balance of momentum and energy, and if the underlying
balance of these quantities is an accurate approximation for those associated
with the original system. For this purpose, the Duffing oscillator is used as a
benchmark, where the underlying evolution equation is obtained from synthetic
data that emulate experimental measurements for the displacement time-series
of this dynamical system.

The rest of this manuscript is organized as follows. In section 2, it is presented
a brief explanation of the Duffing oscillator and the methodology used to identify
the dynamic evolution laws. Some examples and test results are presented in
section 3. Finally, in section 4, the final remarks are highlighted.

2 Methodology

The dynamical system chosen to test the physical consistency of the identified
dynamic laws obtained with SINDy is the Duffing oscillator, once this kind of
oscillator has many possible applications, such as structural dynamics and energy
harvesting [17–22], and a very rich and well known dynamic behavior. Fig. 1
shows a schematic of a vibratory system that behaves like a Duffing oscillator,
in which the dynamic behavior evolves according to

ẍ+ δ ẋ+ αx+ β x3 = γ cos(ωt) , (1)
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where the function x = x(t) is the displacement of the beam tip, and the ẋ
and ẍ are respectively the first and second derivative of x, i.e., the velocity and
acceleration [23]. The parameters in the equation of motion are the damping co-
efficient δ; the linear stiffness α; the nonlinear stiffness β; the external excitation
amplitude γ; and the external excitation frequency ω.
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Fig. 1. Schematic of Duffing oscillator driven by a sinusoidal external excitation.

2.1 Sparse identification of nonlinear dynamics

The SINDy method can handle first order dynamical systems of form

ẋ = f(x) , (2)

where x is the state vector, ẋ is the time-derivative of the state vector, and
f(x) is the unknown evolution law. Higher-order systems may be written as a
first-order system by increasing the state dimension. For instance, the Duffing
oscillator in Eq.(1) can be rewritten as

ẋ1 = φx2,

ẋ2 = −δ x2 − αx1 − β x13 + γ cosx3, (3)

ẋ3 = ω.

To determine the dynamic evolution law f it is necessary to have observations
(time-series) of the system state x and velocity ẋ, which are organized as follows

X =


xT (t1)
xT (t2)

...
xT (tm)

 =


x1(t1) x2(t1) . . . xn(t1)
x1(t2) x2(t2) . . . xn(t2)

...
...

. . .
...

x1(tm) x2(tm) . . . xn(tm)

 , (4)

Ẋ =


ẋT (t1)
ẋT (t2)

...
ẋT (tm)

 =


ẋ1(t1) ẋ2(t1) . . . ẋn(t1)
ẋ1(t2) ẋ2(t2) . . . ẋn(t2)

...
...

. . .
...

ẋ1(tm) ẋ2(tm) . . . ẋn(tm)

 . (5)
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After having the data arranged in a matrix form, it is possible to build a
library (dictionary) of candidate functions Θ(X) to construct the evolution law
terms. In general, this library includes polynomials, trigonometric, exponential,
logarithmic functions (among other possibilities), i.e.,

Θ(X) =

1 X XP2 XP3 XP4 . . . XPk sin(X) cos(X) eX

 , (6)

where each column in this matrix represents a candidate function, the XPn

notation indicates all possible n-order polynomials formed by combining the
state variables.

What SINDy does is to solve the following regression problem

Ẋ ≈ Θ(X)Ξ, (7)

where the coefficient matrix Ξ is determined by minimizing a misfit function
that measures the discrepancy between Θ(X)Ξ and Ẋ, i.e.,

Ξ∗ = arg min
Ξ

||Ẋ−Θ(X)Ξ||2 + λ ||Ξ||1 , (8)

where || · ||2 and || · ||1 denote the norm-2 and norm-1, respectively.

Note that, to produce a sparse solution, a user-controlled λ parameter is
introduced, which acts as a threshold. A first least-squares regression results
in a vector with estimated values for Ξ. Coefficients that represent the exact
evolution law have more meaningful value than those that are not. After that,
the absolute values of the coefficient vectors Ξ, which is smaller than a λ, have
their values changed to zero. This process, known as sequential thresholded least-
squares, is repeated until a parsimonious evolution law is discovered [13]. For
systems where the best parameter λ is unknown, machine learning techniques
for model validation are necessary to ensure a good result, e.g., cross-validation,
among others [24].

2.2 Training dataset

In a typical scenario, the dataset used to infer the evolution law of the dynamic
system are observations obtained with some type of sensor, in the field or in the
laboratory. To emulate a set of displacement and velocity measurements for the
Duffing oscillator, synthetic data are considered in this work. The corresponding
time-series are generated with the aid of the numerical integrator ODE45 from
MATLAB, fixing the time step as ∆t = 0.01. Concretely, a dataset with 151
equally spaced samples between 0 and 15 seconds is obtained with the numerical
integrator and polluted with a zero-mean Gaussian white noise (with variance
η2) to emulate the fluctuations in experimental measurements.



On the physical consistency of evolution laws obtained with sparse regression 5

2.3 Balance of energy and momentum

The total energy, for both the original and the identified system, is the sum of
the kinetic and potential energy

E =
1

2
x22 +

1

2
αx21 +

1

4
β x41. (9)

Although this scalar quantity is not conserved, as the considered dynamics is
dissipative, the balance between the mechanical energy of the system and the
work done by external and dissipation forces must be respected, i.e.,[

1

2
x22 +

1

2
αx21 +

1

4
β x41

]t
0

=

∫ t

0

[
−δ x22(τ) + γ cos (ωτ)x2(τ)

]
dτ. (10)

Similarly, the linear momentum variation has to balance the impulse of the
forces acting on the system

x2(t)− x2(0) =

∫ t

0

[
−δ x2(τ)− αx1(τ)− β x31(τ) + γ cos (ωτ)

]
dτ. (11)

Therefore, if SINDy identifies the correct candidate functions, the balance of
energy and momentum is respected by construction. However, even in this case,
a question persists: Compared to the original dynamics, how representative (in
quantitative terms) are these balance principles?

3 Results and discussion

Two parameter settings are used to evaluate the balance of energy and momen-
tum in the SINDy method, nominally, the unforced conservative case, and the
forced dissipative dynamics. For all the numerical experiments done and the
database used, SINDy obtained enough parsimonious results to activate just the
right candidate functions.

In the first case, the unforced conservative dynamics, 151 equally spaced
time-samples are used in the training step, with a library of polynomial func-
tions up to third-order without trigonometrical terms, with λ = 0.2, and initial
conditions x0 = 2 and v0 = −2. Table 1 shows the values that SINDy inferred for
two different noise intensities. The more noise, the less similar is the identified
dynamics to their original counterpart.

In Fig. 2 the reader can see a verification test that estimates if the identified
dynamics present an energy/momentum balance that is compatible with the
invariances intrinsic to the original dynamics. The right side of Eqs.(10) and
(11) are computed for both the identified dynamics and the original dynamics,
and the differences between the respective quantities are computed, to estimate
the balance error due to deviations in the identified coefficients. It is possible to
notice that the error in the momentum balance is directly proportional to the
noise intensity, emphasizing the importance of obtaining good quality data.
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Table 1. Parameters of the original and identified dynamics in the conservative un-
forced case, with noise intensities equal to η = 0.001 and η = 0.010.

δ α β γ ω φ

Original value 0.0 1.0 -1.0 0.0 0.0 1.0
Identified value (η = 0.001) 0.0 0.9998 -0.9999 0.0 0.0 1.0000
Identified value (η = 0.010) 0.0 0.9976 -0.9993 0.0 0.0 1.0002
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Fig. 2. The difference in the balance of energy and momentum between the original
and identified dynamics for the unforced conservative case, with η = 0.001 (left) and
η = 0.010 (right). The two insets below each graph show a zoom from the upper
rectangles, where it is possible to see the symmetrical format of the curve. The velocity
is plotted together with the momentum error, to show that the error in the momentum
is a local maximum whenever the oscillator velocity is zero.

Therefore, despite identifying candidate functions correctly and with coeffi-
cients close to the original, the difference in both balances is a sinusoidal growing
function over time. For the two noise intensities, the coefficients identified for
the linear stiffness are lower than the original, while the nonlinear stiffness is
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slightly higher. Both systems after a long time become out of phase with the
original one. For the systems with η = 0.010, this is achieved early than the case
where η = 0.001, with time for that bigger than 300.

In Fig. 3 a case without noise is considered, to assess the fundamental limit
of noiseless measures. Note that, for different initial conditions, the error in the
momentum balance is comparable to floating point noise, so that for any practical
effect, SINDy can be considered to respect the linear momentum balance.
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Fig. 3. The difference in the balance of energy and momentum between the original
and identified dynamics with noise-free data, for different initial conditions. On the
top, the initial conditions are x0 = 2 and v0 = −2, on the middle x0 = 3 and v0 = 2,
and for last, on the bottom x0 = 1 and v0 = 2.5.

Now the dissipative forced Duffing oscillator is considered. Two different noise
intensities, η = 0.001 and η = 0.010, are employed once again, as well as the
library of polynomial functions up to third-order with trigonometrical terms,
151 equally spaced time-samples, and λ = 0.02, initial conditions x0 = 2 and
v0 = −2. The SINDy is able to identify the correct terms with great accuracy,
despite the small amount of data, as can be seen in Table 2, which shows the
system parameters for the original and the identified dynamics.

The balance of energy and momentum are plotted for this second case in
Fig. 4, where it is possible to notice a richer oscillatory pattern, for both the
momentum and energy errors, when compared to the first case. Looking at the
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energy error, initially, the local pikes and valleys are coinciding with those from
the momentum error curve, but after some time, they become out of phase.

Table 2. Parameters of the original and identified dynamics in the dissipative forced
case, with noise intensities equal to η = 0.001 and η = 0.010.

δ α β γ ω φ

Original value -0.1 1.0 -1.0 1.0 2.0 1.0
Identified value (η = 0.001) -0.0999 1.0001 -1.0000 0.9998 2.0000 1.0000
Identified value (η = 0.010) -0.0992 1.0006 -1.0001 0.9976 1.9996 1.0003
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Fig. 4. The difference in the balance of energy and momentum between the original and
identified dynamics for the dissipative forced case, with η = 0.001 (left) and η = 0.010
(right).

The difference in the balance of momentum and energy have both the same
asymptotic behavior as in the conservative case, but now it is possible to observe
an oscillatory pattern that is completely different from the conservative unforced
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case. A transient is noticed that is quickly dampened giving rise to a periodic
stationary response, with an amplitude that increases (very slowly) with time.

4 Conclusion

This work presented a study on the physical consistency of the evolution law
inferred from a given dataset employing the SINDy method. Two configurations
of the Duffing oscillator are used to investigate the difference in energy and
momentum balance with respect to the original dynamics. In all cases, SINDy
identified the right candidate functions, therefore the balance of energy and
momentum is respected. However, analyzing the difference in the energy and
momentum balance identified in relation to the original, that function is growing
rapidly over time. This implies that for long time periods, the identified dynamic
will be out of phase to the original.
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