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Abstract

Quantitative NMR is intrinsically dependent on precise, accurate, and robust

peak area calculation. In this work, we demonstrate how the use of complex-

valued peak descriptions can improve peak fitting in the frequency domain —

incorporating phase and baseline correction as well as apodization while working

with commonly used Fourier-transformed data. The method has been imple-

mented in an open source R package called rnmrfit that is available for down-

load on GitHub (https://github.com/ssokolen/rnmrfit). Application to

real data suggests that this approach can also result in dramatically higher pre-

cision than can be achieved with existing software. Simulation data indicates

that coefficients of variation below 0.1% can be readily achieved at signal to

noise (SNR) ratios of approximately 100. The use of complex-valued data in

the frequency domain is demonstrated as a relatively simple and effective means

of improving peak fitting for quantitative NMR analysis.
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1. Introduction

The calculation of NMR resonance peak areas is a key aspect of NMR analy-

sis and forms the basis of so-called “quantitative” NMR (typically referred to as

qNMR). This quantification relies on the basic principle that the area of a reso-

nance is proportional to the number of nuclei that corresponds to that resonance

[1], allowing the calculation of relative compound concentrations from ratios of

peak areas (and the calculation of absolute concentrations with the addition of

an internal standard). qNMR has been used across a wide array of applications

that include metabolomics [2], natural product analysis [3], drug discovery and

development [4], as well as isotopic analysis (the most demanding application

as it requires coefficients of variation less than 0.1%) [5]. And whereas there are

considerable differences across these different fields, one thing they all have in

common is the need for precise and accurate peak area calculation.

The basic method of area quantification is the integration of the NMR line-

shape between two chemical shifts. Malz and Jancke [6] have shown that the

simple integration of isolated peaks can achieve 95% confidence intervals as low

as 1.5% of the compound concentrations. However, particularly in the analysis

of natural products and biofluids typical of metabolomics, isolated peaks may

be few and far between. Furthermore, the same researchers [6] have also com-

mented that the integration of even well isolated peaks can result in relative

uncertainties of 11% with even “slightly wrong” phase and baseline corrections

[6]. The general alternative to direct integration of the spectrum is some form

of lineshape fitting with the overall goal of separating the contribution of dif-

ferent chemical species from each other and confounding components such as

baseline and phase error. Roughly speaking, this process can be divided into

two steps — the identification of the chemical species (or residues) that make up

the observed resonance and their subsequent quantification. In many cases, the

compounds or residues to be quantified are known in advance — making the fi-

nal step of quantification the more general of the two. And in many applications

of qNMR, the basic challenge is how to achieve the most precise quantification
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of resonance peaks [5, 7].

From a mathematical perspective, one of the basic divisions of existing line-

shape fitting approaches is whether the NMR lineshape is modelled in the time

or frequency domain. In the time domain, an NMR resonance is typically mod-

elled as a decaying sinusoidal function (more specifically, a complex-valued ex-

ponential) with constraints added to account for multiplet relations. The use

of Bayesian inference to estimate the number of resonances as well as reso-

nance frequency, decay rate, and intensity has been described as early as 1990

[8, 9, 10]. Some of the more recent advances include the improvement of the

Markov Chain Monte Carlo technique used to draw samples [11, 12], the imple-

mentation of downsampling for isolating specific regions of interest [13], and the

introduction of more generalized lineshapes to account for distortions [14]. In

the frequency domain (following the Fourier transform of the FID), lineshapes

are typically fit as Lorentz peaks using real-valued data following phase cor-

rection. Most approaches rely on a database of compounds, whether generated

in-house or available online [15, 16, 17, 18], and many of these are also based

on Bayesian inference [16, 17, 18]. The use of libraries can be very effective for

standardized samples and pulse sequences (such as those used in metabolomics),

but their application is limited to specific combinations of compounds, biolog-

ical matrices, and pulse sequences on which the database is built. However,

individual peaks (with constraints to define multiplet relations) have also been

fit using classical non-linear optimization techniques based on the least-squares

fit [19, 20].

Some general trade-offs can be identified when considering the various ap-

proaches. Lineshape fitting in the time domain has the advantage of being more

general, with the use of complex-valued data allowing for built-in phase correc-

tion. However, even a relatively crowded NMR spectrum contains large areas of

relatively signal-free regions in the frequency domain that only contribute noise

to an overall fit in the time domain. Although it is possible to downsample [13],

this adds extra processing steps and potential for artefacts, whereas the Fourier

transform is already a well accepted means of isolating frequencies of interest
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and disregarding more problematic ones. Fitting in the frequency domain can

be used to target specific peaks of interest while greatly speeding up the fit pro-

cess (by simply considering fewer points). There is a similar trade-off between

Bayesian and classical non-linear optimization techniques. Bayesian approaches

are more general as they seek out a global solution whereas optimization based

on gradient descent or related techniques require good initial guesses to avoid

getting trapped in local solutions that are not globally optimal. On the other

hand, Bayesian fitting methods are also considerably slower for high precision

calculations.

The method proposed in this work bridges some of these trade-offs by con-

sidering a more generalized form of fitting in the frequency domain. One way

that is accomplished is by describing NMR peaks as complex-valued functions.

There are a number of practical and theoretical advantages to this approach.

First, phase correction can be implemented as part of the fitting process in the

frequency domain, thus avoiding user-dependent phasing that affects the accu-

racy and precision of peak area determination. Second, baseline distortions can

be better separated from the peak shapes as one set of peak parameters is used

to describe two different shapes (as they appear in the real and imaginary com-

ponents). Third, the broader shape of typical Lorentz/Voigt peaks in the imagi-

nary domain allows for more robust gradient-descent style optimization — initial

guesses at peak position can be further away from their real positions without

resulting in a spurious fit. It should be noted that the use of complex-valued

data in the frequency domain has been suggested in the past (e.g. [21]), but to

the best of our knowledge, the approach has not been described or explored in-

depth. On top of using both real and imaginary data, the proposed method also

adds a convolution term that can be used to incorporate changes in peaks shape

that result from truncation or different forms of apodization. The proposed

approach is implemented in an open source R package called rnmrfit that is

available for download on GitHub (https://github.com/ssokolen/rnmrfit).

Here, we present the theory underlying this approach, as well as an evaluation

of its performance on both simulated and experimental data.
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2. Theory

2.1. Complex-valued Lorentz function

Using the general notation of Keeler [22], a simple description of a magnetic

resonance singlet in the time domain is that of a decaying complex exponential

expressed as:

S(t) = S0 exp(iΩt) exp(−Rt) (1)

where the signal (S) is a function of time (t), relative intensity (So), resonance

frequency (Ω), and relaxation rate constant (R, which can also be expressed as

the reciprocal of the relaxation time 1/T2). The Fourier transform of Equation 1

is the complex-valued Lorentz function:

FT [S(t)] = S0(A(ω) + iD(ω)) (2)

= S0

(
R2 + iR(ω − Ω)

R2 + (ω − Ω)2

)
(3)

where ω is frequency and A and D are the absorption and dispersion lineshapes.

Written explicitly:

A(ω) =
R2

R2 + (ω − Ω)2
(4)

D(ω) =
R(ω − Ω)

R2 + (ω − Ω)2
(5)

S0 is generally taken to have arbitrary units while ω, Ω, and R are all in the

same units of frequency, so a variable transformation can be used to make the

peak function dimensionless:

f(z) = S0

(
1 + iz

1 + z2

)
(6)

z =
ω − Ω

R
(7)

As z is dimensionless, the units of Ω and R will be ignored for the rest of this

section (with Hz and ppm used interchangeably).
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2.2. Parameter estimation

Observed Fourier transformed data can be considered as a collection of (x, y)

pairs, where y has both a real <(y) and imaginary =(y) component. Minimizing

the sum of squared deviation of both real and imaginary data offers a convenient

optimization condition. Considering the fit of a single Lorentz peak to j points,

the deviation of the fit from the observed data is expressed as:

z =
x− Ω

R
(8)

f(z) = S0

(
1 + iz

1 + z2

)
(9)

ε = y − f(z) (10)

SS =
∑
<(ε)2 + =(ε)2 (11)

where x and y are vectors of data points and SS is the total sum of squares across

all points. The calculation of analytical derivatives allows for the convenient use

of gradient-descent optimization algorithms:

∂ε

∂S0
= −

(
1 + iz

1 + z2

)
(12)

∂ε

∂z
= −S0

(
−2z + i(1− z2)

(1 + z2)2

)
(13)

∂ε

∂Ω
=
∂ε

∂z

∂z

∂Ω
(14)

∂ε

∂R
=
∂ε

∂z

∂z

∂R
(15)

Thus, the derivative of SS with respect to any parameter θ can be calculated

as:
∂SS

∂θ
=
∑

2<(ε)<
(
∂ε

∂θ

)
+ 2=(ε)=

(
∂ε

∂θ

)
(16)

2.3. Gauss and Voigt functions

The same principles can be expanded to consider both Gauss and Voigt

functions. The Voigt function can be seen as an extension of the Lorentz, where

the signal decay rate is not constant, but takes on normally distributed values

— essentially leading to convolution of the Lorentz and Gauss peaks. Although
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it is possible to approximate the Voigt function using a sum of Lorentz and

Gaussian terms, performing the optimization with complex values allows for

a more concise representation. The optimization relies on the same general

equations as above (10, 11, 16), with the specific parameters outlined in Table 1.

It should be noted that the direct evaluation of exp(−z2)erfc(−iz) is numerically

unstable, so it is necessary to use a numerically optimized implementation of the

Voigt function for the calculation (often referred to as the Faddeeva function)

[23].

Table 1: Summary of Lorentz, Gauss, and Voigt functions, where S0 is relative intensity of the

peak (its relative height), Ω is the resonance frequency (relative peak position), and R is the

relaxation rate constant (relative peak width). The RG term in the Voigt function relates to

the distribution of possible R values (it can be seen as the Gaussian component of the overall

peak).

Lorentz Gauss Voigt

f(z) S0

(
1 + iz

1 + z2

)
S0 exp(−z2)erfc(−iz) S0 exp(−z2)erfc(−iz)

z
x− Ω

R

x− Ω√
2R

x− Ω + iR

i
√

2RG
∂f(z)

∂z

−2z + i(1− z2)

(1 + z2)2
−2zf(z) +

i2√
π

−2zf(z) +
i2√
π

2.4. Baseline and phase correction

Apart from considering Lorentz, Gauss, and Voigt peak functions, f(z), it

is also possible to add baseline terms fb(z). In rnmrfit, fb(z) is modelled as a

complex-valued spline polynomial with a variable order and a variable number

of equidistant knots. The result is that the baseline is expressed as a piece-

wise polynomial that is capable of modelling most observed baseline distortions.

Baseline smoothness can be indirectly controlled by both polynomial order and

knot number – with 2nd or 3rd order polynomials and 1 or 2 interior knots

sufficient for correcting minor distortions. In principle, the baseline for the real

and imaginary domains should be the same. In practice, however, differences can

arise from a number of possible sources. For example, baseline distortions caused

by macromolecules will naturally have different real and imaginary components.
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Furthermore, peaks are considerably wider in the imaginary domain than in the

real and therefore feature a greater degree of overlap, so fitting a subsection

of the spectrum may feature contributions from outside of the selected region

that only appear in the imaginary data. To deal with these discrepancies, the

default option in rnmrfit is to fit separate real and imaginary baselines, but extra

precision can be gained by forcing a single common baseline where appropriate.

Despite the use of two different baselines, peaks are estimated using a single set

of parameters, so more information is nonetheless captured than if the imaginary

domain is entirely ignored.

The use of complex-valued data also allows the inclusion of phase correc-

tion directly in the fit. A phase transform in the frequency dimension can be

expressed as y′, with the real and imaginary components calculated as:

<(y′) = <(y) cos(φ) + =(y) sin(φ) (17)

=(y′) = =(y) cos(φ)−<(y) sin(φ) (18)

with the corresponding change in ε to ε′:

<(ε′) = <(y′)−<(f(z)) (19)

=(ε′) = =(y′)−<(f(z)) (20)

Apart from the difference in nomenclature, this change does not impact any of

the previously developed equations. But it does add another set of derivatives

to fit the local phase angle φ:

∂<(ε′)

∂φ
= −<(y) sin(φ) + =(y) cos(φ) (21)

∂=(ε′)

∂φ
= −=(y) sin(φ)−<(y) cos(φ) (22)

2.5. Apodization

Apodization and truncation can be expressed as a simple product in the time

domain or a convolution in the frequency domain. Although the time domain

calculation is naturally more efficient, the difference in computation time is less

pronounced when considering that the frequency domain fit typically considers
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only a fraction of the data points. The addition of a convolution term can be

directly included in the model fit, transforming Equations 10 and 13 into:

ε′′ = y − f(z) ∗ g (23)

∂ε′′

∂z
= −∂f(z)

∂z
∗ g (24)

where g is a convolution vector with a Fourier transform. Examples of g include

the Fourier transforms of a step function to represent truncation or common

apodization functions such as exponentials and sinusoidals. The result is that

the change in shape of the peak resulting from truncation (the formation of

“sinc wiggles”) or apodization (line sharpening/broadening) can be incorporated

directly in the fit. The apodization can be combined with any of the peak

functions as well as baseline and phase correction. Furthermore, g can take on

any function that has a Fourier transform — allowing the application of reference

deconvolution or other forms of signal correction in addition to apodization.

2.6. Multiple peaks

Although the above derivation considers the fit of only one peak at a time,

multiple peaks can be fit by including a sum of all peak contributions, with

minimal changes to the derived equations. The definition of multiplets requires

the use of constrained optimization algorithms, where the distance between

multiple peaks and intensity ratios can be specified. The rnmrfit package allows

for both hard (linear) and soft (inequality) constraints to allow for approximate

multiplet definitions when the coupling constant may not be known exactly.

3. Materials and methods

3.1. Software implementation

The proposed algorithm has been implemented in pure R in the rnmrfit

package by leveraging the nloptr [24] and RcppFaddeeva [23] packages (which

provide R wrappers around the C/C++ NLopt and Faddeeva code developed by

the Ab Initio group). Of the various optimization algorithms available through
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NLopt, the sequential quadratic programming (SQP) algorithm for nonlinearly

constrained gradient-based optimization (SLSQP) was chosen for its ability to

support both inequality and equality constraints. The rnmrfit package provides

the user with a relatively simple API for defining, fitting, and plotting NMR

multiplets within 3-5 lines of code. An in-depth tutorial for the package is

available on GitHub (https://github.com/ssokolen/rnmrfit).

3.2. Simulated NMR data

Sample NMR data was generated in the frequency domain using the Lorentz

and Voigt lineshapes (with the Gauss component of the Voigt lineshape set

to 50% of the Lorentz). Three peak combinations were chosen to compare

algorithm performance with various levels of overlap: a singlet, a singlet and a

doublet, and two doublets. Each dataset was generated with 256 real and 256

imaginary data points, with the width of each peak at half height corresponding

to approximately 10-20 points. The ideal peak shapes were distorted using

different levels of noise as well as phase and baseline errors. Gaussian noise was

applied to generate signal to noise (SNR) ratios of 5, 10, 50, and 100, where

SNR is calculated as the variance of the pure peak data divided by the variance

of the noise. Baseline errors were generated as quadratic polynomials with the

position of the maximum/minimum randomly selected to fall within the domain

of the data and the magnitude set to 20% of the maximum peak intensity. Phase

errors were added at three different levels: 0◦, 15◦, and 30◦, with the sign of the

phase error chosen at random.

3.3. Cholesterol NMR data

For the basic illustration of the fitting approach, a 13C-NMR spectrum of

cholesterol was recorded using the adiabatic INEPT pulse sequence reported in

[25]. 90 mg of cholesterol was dissolved in 600 µL of CDCl3. The spectrum

was recorded on a 500 MHz Bruker Avance-III spectrometer equipped with a

5 mm dual 13C/1H cryoprobe (tuned to the 13C recording frequency of 125.76

MHz). The temperature of the probe was set to 288 K. The 90◦ 1H and 13C pulse
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widths were calibrated to 10 µs and 11 µs, respectively, with an acquisition time

of 0.8 s, recovery time of 10.8 s, 4 dummy scans, and 16 scans. Both inversion

and 1H decoupling were performed with an adiabatic full-passage pulse [26].

Refocusing was achieved with a composite adiabatic pulse.

3.4. Vanillin NMR data

1H-NMR spectra of vanillin were used to evaluate the accuracy and precision

of the algorithm on real data (previously reported in [27]). Briefly, 77 mg of

DMSO2 and 250 mg of vanillin were dissolved in 510 µL of acetone-d6 (with

11.76 mM Cr(acac)3 relaxing agent). 1H-NMR spectra were recorded using

the recently published pulse sequences for high-precision 1H quantitative NMR

(DWET, MWET and PWET) [27] on a 400 MHz Bruker Avance-I spectrometer

equipped with a 5 mm dual 13C/1H probe. The temperature of the probe was

set to 303 K. The 90◦ 1H pulse width was calibrated to 10 µs, with an acquisition

time of 4s, delay time of 5s, 2 dummy scans, and 4 scans.

Seven spectra were collected for each pulse sequence using a single sample

to estimate precision and accuracy. Peak areas were calculated using PERCH

Software (Perch solutions Ltd, Kuopio, Finland), global spectral deconvolu-

tion (GSD) implemented in Mnova 12.0 (Mestrelab Research, S.L., Santiago de

Compostela, Spain), as well as the proposed algorithm. The overall spectra were

divided into 5 regions, corresponding to the methoxy, aromatic, hydroxy, and

aldehyde groups of vanillin along with the DMSO2 peak. All but the aromatic

regions were fit with one singlet each, while the aromatic region required four

singlets.

3.5. Synthetic mixture and plasma NMR data

1H-NMR spectra of a synthetic mixture and a human plasma sample were

used to provide examples of algorithm performance on more complex data. The

synthetic metabolite mixture consisted of 2.27 mM valine, 2.12 mM lactate,

2.25 mM n-acetylaspartate, 2.31 mM methionine, 2.28 mM glutamate, 2.06 mM

creatine, 2.31 mM phenylalanine, 2.35 mM taurine, 2.22 mM histidine, 2.33 mM
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glycine, and 0.167 mM TMSP as reference. All compounds were purchased

from Sigma-Aldrich and dissolved in a 50 mM phosphate buffer. The pH of the

solution was adjusted to 7.4 using a 1 M hydrochloride solution. The spectrum

was recorded on a 500 MHz Bruker Avance-III spectrometer equipped with a

5 mm dual 13C/1H cryoprobe (tuned to the 1H recording frequency of 500.13

MHz). The temperature of the probe was set to 288 K. Five consecutive spectra

were acquired with the noesy-1d sequence, 64 scans and 16 dummy scans, a

sampling period of 1.5 s, a recovery delay of 4.5 s, and a spectral width of

16 ppm.

4. Results and discussion

4.1. Basic fit

A basic demonstration of the fit is shown in Figure 1 using 13C-NMR analysis

of a cholesterol sample. Although a similar high quality fit of the basic lineshape

can be expected using existing approaches, Figure 1 demonstrates the versatility

of the proposed algorithm in correcting phase and baseline errors as well as the

incorporation of apodization directly in the fit. The incorporation of resolution-

enhancing apodization is likely to be useful for fitting highly overlapping spectra

or dealing with highly truncated spectra without the need for significant line

broadening. The overall fit including phase and baseline correction is achieved

in a fraction of a second on a mid-range laptop with an i7-2640M processor

(with the apodization adding a couple of extra seconds). Although the overall

calculation time scales with increasing numbers of peaks, there is potential for

speed improvement by translating the main optimization code from R into C++

using the Rcpp package [28] — ensuring rapid calculation even at larger scales.

4.2. Varying noise and error

The impact of signal to noise ratio (SNR) as well as baseline and phase errors

was explored using simulated data. Three different resonance combinations were

considered as simple test cases — a singlet, a singlet and doublet, as well as
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Figure 1: Demonstration of proposed algorithm using the C2, C7, and C8 resonances of

cholesterol (see Figure S2 in the Supplementary Information for reference). The data fit in

the first row is the original data with 2 Hz line broadening, the data fit in the second row had

simulated baseline and phase errors added to it, and the data fit in the third row has had sine

bell apodization applied.

two doublets. A summary of the results is presented in Figure 2. Overall

neither phase errors of up to 30◦ nor quadratic polynomial baseline errors with

a magnitude of up to 20% of the signal contributed to the overall accuracy and

precision of the fit. With an SNR of 50, the median error of the calculated

peak area was approximately 0.25% and the coefficient of variation (CV) was

approximately 0.35%. If an SNR of 100 can be achieved, then both values fall

below 0.1%. Reducing the SNR down to 5 modestly increases both accuracy

and precision to approximately 2-3%.

Although Figure 2 presents the data for only the Lorentz peak shape, the re-

sults were practically equivalent for the more general Voigt shape (see Figure S1
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in the Supplementary Information). It was found that the extra flexibility of-

fered by the Voigt shape (in modulating the relative width of a peak at different

peak heights) led to an increased possibility of optimization divergence. Effec-

tively, a dramatic change in the baseline and phase terms led to a sub-optimal

(global) convergence before the peak width could be correctly fit. However, this

effect was eliminated by fitting Lorentz peaks first and using the results as an

initial guess to fit the Voigt peaks. Overall, the best results were obtained by

fitting Lorentz peaks without phase or baseline correction, refitting with the

addition of a phase term, and then changing the Lorentz peak type to Voigt for

a final fit. It should be noted that the rates of divergence were rarely higher

than 1%, meaning that a direct Voigt fit should be sufficient for most general

cases.

4.3. Varying initial parameter values

Despite the potential for a high degree of precision and accuracy, iterative

optimization algorithms can be very sensitive to the initial parameter values

used to begin the optimization. However, the use of both real and imaginary

data has made the proposed algorithm more robust to poor initial values. As it

is currently implemented, the algorithm requires the user to supply an estimate

of only the multiplet chemical shift (as well as the coupling pattern) — the

peak heights are estimated as the intensity value corresponding to the chemical

shift of the singlets that make up the multiplet and the initial peak width is

taken as 1 Hz (which was found to be sufficient for all real data tested, although

there is an option to override the default value). The ability of the algorithm

to converge onto a global optimum was tested on a simulated singlet with an

SNR of 5, with and without phase and baseline error correction. The results

are summarized in Figure 3. Despite the significant noise and phase or baseline

errors, 100% convergence was achieved for any initial chemical shift that fell

within approximately 25% of the maximum peak height. With no baseline or

phase errors, the initial chemical shift could be as far away as 5% or 10% of

maximum peak height while ensuring convergence. Such estimates could be
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Figure 2: Summary of Lorentz peak fit accuracy and precision as a function of SNR as well as

phase and baseline error. 100 peaks were randomly generated for each condition — combining

an SNR of 5, 10, 50, or 100 with a phase error of 0◦, 15◦, or 30◦. A quadratic baseline with

a magnitude of up to 20% of the maximum peak height was added at each condition. A

Example spectrum at an SNR of 100 with 0◦ phase error. B Example spectrum at an SNR

of 5 with 30◦ phase error. C Median error of calculated area as a percent of the true area.

D Coefficient of variation of the calculated area (standard deviation divided by the average

area).

made by eye or with the aid of separate peak-picking software. The initial peak

width was found to have minimal impact (data not shown) and was set at 3×

narrower than the true width for the simulation. Some complex combinations
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of multiplets may suffer from worse performance, but it is unlikely that these

can be identified a priori. Performing an initial fit without phase or baseline

correction to improve on the initial chemical shift values was sufficient to ensure

convergence in all practical cases tested (data not shown).
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Figure 3: Impact of initial chemical shift on global convergence with and without baseline

and phase error correction. A Example singlet with an SNR of 5 and no phase or baseline

error. B Percent convergence based on 1000 iterations as a function of initial chemical shift.

When present, the phase error was set to ±30◦ and the baseline error was set to a quadratic

function with a magnitude of up to 20% of the maximum peak height.

4.4. Application to high precision data

The performance of the proposed approach was assessed in the context of

high precision quantitative 1H-NMR using recently published data [27]. 1H-

NMR spectra were obtained with the DWET, MWET and PWET pulse se-

quences capable of yielding a high degree of precision on peak areas from suc-

cessively recorded spectra, as required in the context of isotopic analysis for
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which they have been developed. Briefly, these pulse sequences combine several

spatial encoding elements to remove the effect of radiation damping in con-

centrated samples with the goal of determining the relative amount of internal

standard at a higher level of accuracy that would be possible with gravimetric

analysis. Seven 1H spectra of vanillin for each pulse sequence were fit using the

proposed algorithm and the resulting precision was compared to that achieved

by PERCH [29] and Mnova software. PERCH is commonly used for NMR peak

fitting and is recognized by the qNMR community for its good performance —

particularly in the field of isotopic NMR where it acts as a reference, whereas

Mnova offers the added benefit of automated peak-picking on top of spectral

deconvolution. The results of the comparison are summarized in Figure 4 with

the complete area quantification data available as a Microsoft Excel file in the

Supplementary Information (the Mnova CV values are excluded from the figure

as they were considerably higher than both of the other methods). Overall, the

proposed approach was found to be more precise across practically all spectral

regions and all three of the pulse sequences tested, in both absolute terms (Fig-

ure 4C) and when normalized by the area of the DMSO2 peak (Figure 4D).

The magnitude of the difference, however, varied considerably across the dif-

ferent regions. The absolute quantification of DMSO2 and methoxy peak areas

using the proposed approach was observed to have a coefficient of variation

in the range of 0.02%-0.05%, approximately five times more precise than with

PERCH. As shown in Figure 4B, the signal to noise ratio for these two peaks

was visibly larger than for the other spectral regions and suggests that the pro-

posed approach can take advantage of strong signal data — at smaller signal to

noise ratios, the fitting algorithm is unlikely to have as much impact. However,

it should be noted that the primary strength of the proposed algorithm is its

robustness and generality, with the increase in precision serving as a useful side

benefit.
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Figure 4: Comparison of peak area quantification precision between rnmrfit and PERCH Soft-

ware based on the analysis of 7 1H-NMR spectra of vanillin (see Materials and methods for

more detailed sample description). A Hydrogens corresponding to each spectral region high-

lighted with parentheses. B Example spectra corresponding to each spectral region fit with

the software. C The coefficient of variation (in percent of mean value) from the quantification

of area for each spectral region. D The coefficient of variation (in percent of mean value)

from the quantification of area for each spectral region, normalized by the area of the DMSO2

peak.

4.5. Application to more complex data

Whereas the analysis above has focused on relatively simple spectra, the pro-

posed approach can also be used for more complex data, featuring significant

spectral crowding or baseline distortions. The following examples are not in-
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tended to be comprehensive but offer a glimpse of what the approach is capable

of. Moving beyond basic singlets, a mixture of 17 peaks with some light overlap

(stemming from glutamate, methionine, creatine, histidine, and phenylalanine

in the 3.70-4.05 ppm range) could be fit within a couple of seconds and achieve

a coefficient of variation of approximately 0.5% for the peak area correspond-

ing to each compound (see Figure 5 for a visualization of the fit). The peaks

were fit as four double doublets and one singlet, with the J-coupling frequency

obtained from the Human Metabolome Database (HMDB, [30]) — rnmrfit can

also make use of inequality constraints to allow for cases where the J-coupling

frequency estimates may not be exact. An example from a human plasma sam-

ple featuring a complex baseline is presented in Figure 6. Modelling the complex

baseline required the number of interior baseline knots to be increased from 2 or

3 (used in the previous examples) up to 25, but the resulting fit appears to be

quite good — the baseline estimate follows the general contour of the data while

leaving a sufficient gap at the base of the peaks. Despite the increased sample

complexity, the median coefficient of variation for the peak area was found to

be approximately 2%, with the fit taking several seconds per spectrum.

Although rnmrfit is primarily intended to be used for fitting spectra where

the identity of many compounds are known ahead of time (and their correspond-

ing NMR spectra can be defined as a series of multiplets), the fit algorithm itself

can also be used in the context of global spectrum decomposition, where a com-

plex spectrum is broken down into a series of singlets (or other simple spectral

features). An example from a human plasma sample featuring complex spectral

crowding is presented in Figure 7, where the proposed approach demonstrates

a very good fit of the data using 86 singlets and a baseline with 20 interior

knots. Despite the good fit, it is also important to note a number of key limita-

tions. First, the initial position of the singlets was identified by eye. Automated

peak selection is a challenging task that was deemed to be outside the scope

of the current implementation, which focuses squarely on the fit process itself1.

1Future versions of the software may include an implementation of an existing peak-picking
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Figure 5: Demonstration of proposed algorithm on a subspectrum of a simple mixture (see

Materials and methods for more details). A Overlap of the overall fit (black lines) over the

observed data (gray fill). B Breakdown of the overall fit into constituent peaks.

Second, achieving a reasonable fit of complex data required liberal use of opti-

mization constraints. Once picked, peak positions were not allowed to vary more

than 1% of the subspectrum ppm range (or 0.004 ppm for the 0.4 ppm range of

data being fit) and peak widths were constrained to be in the range of 0.5-2 Hz

to better separate peak and baseline contributions. Furthermore, singlets were

constrained from “passing” or completely overlapping each other during opti-

mization — thereby limiting the possibility of the optimization converging on

a non-useful local minimum. Phase correction was also constrained to within

approximately 10◦ as it was expected that dedicated phase correction software

method (e.g. [31, 32, 33]) or present a novel approach
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Figure 6: Demonstration of proposed algorithm on a subspectrum of a human plasma sample

(see Materials and methods for more details). A Overlap of the overall fit (black lines) and

estimated baseline (dashed line) over the observed data (gray fill). B Breakdown of the overall

fit into constituent peaks.

should be capable of getting relatively close to the true value. Although rnmrfit

assumes rational defaults for all of these constraints, the default values may not

be suitable in all cases. Third, increasing the number of peaks in a single fit

considerably slowed down the overall optimization time. The time it takes to

achieve a reasonable overall fit increases approximately linearly with each peak

and baseline knot — so 50-100 peaks can be fit within a couple of minutes.

However, a small fraction of peaks require considerably more time than the rest

of the peaks to achieve a good fit, slowing down computation to more than an

hour to ensure high levels of precision for all peaks. One solution to this problem

is computational — implementing the minimization function in Fortran sped up
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computation by a factor of 10-100 but the resulting code had to be dropped as

it was not easily portable across all platforms (a C++ version is planned for the

near future). Another solution is to segment the overall spectrum into smaller

regions prior to fitting, thereby preventing one or more problematic peaks from

slowing down the fit.
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Figure 7: Demonstration of proposed algorithm on a subspectrum of a human plasma sample

(see Materials and methods for more details). A Overlap of the overall fit (black lines) and

estimated baseline (dashed line) over the observed data (gray fill). B Breakdown of the overall

fit into constituent peaks.

5. Conclusion

The imaginary component of NMR data is not typically considered when

fitting peaks in the frequency domain. However, adding this component is rela-

tively straightforward and enables the incorporation of both phase and baseline
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correction as well as apodization directly in the peak fitting process — resulting

in the robust fit of small or overlapping peaks with the added computational

efficiency of working in the frequency domain. Application to real data sug-

gests that this approach can also result in dramatically higher precision than

can be achieved with commonly used PERCH software (although the increase

in precision is not uniform across different spectral regions or different spectra).

The proposed algorithm has been implemented in the rnmrfit package for the

R programming language (which has been made available on GitHub), but it

is not specifically tied to this particular software. The implementation of this

approach in other software is likely to be of benefit for a broad community of

qNMR users.
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