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Abstract—The level lane location problem of sensor equipped
vehicles circulating within arbitrary highway infrastructures is
addressed. A first approach of a flexible probabilistic decision-
making policy is developed utilizing sensor signals. Unmanned
vehicles independently of the automation degree are related to
challenging executive schemes such as adaptive cruise control
systems, real time routing models involving lane changing options
and speed control, platoon formation operations etc. An adaptive,
closed loop methodology is presented localizing suitable detections
while involving uncertainty within data, sensor vagueness and
trust. The whole scheme is associated with low computational
complexity where no additional investment on external devices
is required. The outlined framework pronounces a significantly
progressed study regarding a previously presented elementary
pattern. The new model focuses in the case of invalid sensor detec-
tions due to traffic context, various environmental disturbances
and failures for which no response was previously available.
The effectiveness of the suggested scheme is measured when
applied to detailed simulation scenarios fed by ground truth
data. Different complex spatiotemporal contexts elicit varying
driving profiles and pragmatic behavior-change interventions
unaccessible from direct recordings provided by professional
drivers. The proposed methodology is compared with a non-
probabilistic model. Analysis illustrates noteworthy accuracy,
precision and frequency on the resulting responses.

Index Terms—Highly Automated Driving Functions (HADF),
lane identification, real time path and target tracking control,
data mining, road navigation, autopilot perception, environment
perception, adaptive policy for smart sensor utilization

I. INTRODUCTION

During the last years, a significant increase in the number of
the driving abilities of automated vehicles is observed which
is also accompanied by an increase in the complexity of the
involved functional components. Perception modules destined
for “planning and control” such as navigation, guidance,
stabilization are associated with complicated, pertinent tasks
which at least must remain manageable if not optimized.
Since the DARPA challenge [1] deep knowledge was obtained
implying that accurate and reliable vehicle positioning is a
key feature for automated vehicles. Experiences have shown
that navigation based on a global positioning system incor-
porated with an Inertial Measurement Unit (IMU) and digital
cartography implies a satisfactory solution for the positioning
of autonomous vehicles [2], [3]. Decisions on lane change
possibilities taking into consideration perception uncertainties
are examined in [4] by means of a dynamic Bayesian net-
work and an unscented variance transform. Moreover, other

transportation fields involving autonomous cars also demand
accurate environmental detection. Thus, the mesoscopic and
macroscopic modeling of traffic flow comprised of vehicles
moving according to intelligent cruise control (ICC) and co-
operative driving is studied in [5]. A methodology identifying
the lane position of the GPS-instrumented vehicles when
located in a queue of a signalized intersection associated with
multiple lanes is presented in [6]. It is shown that the Optimal
Bayes Rule employing probability density functions estimated
using bivariate statistical mixture models was found to be
effective in identifying the lanes. The work confirms that the
lane identification is an important step required prior to the
queue length estimation. Considering that density distribution
may be highly heterogeneous among the different lanes of
a highway, real-time lane assignment strategies may have
significant advantages in traffic management. Lane policies
and lane advice may be achieved if real-time traffic state
information per lane is available [7].

The current study proposes a closed loop methodology
allowing dynamic level lane positioning of a sensor equipped
car (ego vehicle) where the whole scheme is associated with
low computational complexity. It merits to specify that the
suggested approach does not require any additional devices, it
exploits basic measurements provided by the required technol-
ogy of existing automotive vehicle procedures. Similar works
suggest procedures simultaneously resolving multiple prob-
lems: definition of the total number of lanes within the road
segment, road markers detection and finally determination of
the object lane [8], [9], [10]. Due to the increased complexity
of the dealing problem, a decomposition into subproblems of
different nature is here considered. Since sensor observations
are often noisy, the model presented in [11] was considered
elementary as it deals only with valid detections for which
a unique solution is provided by the associated algorithm.
A probabilistic aspect was necessary to be conceived, a
first approach of which is here presented aiming at accurate
performance of the proposed scheme even under invalid data.

The remainder of the paper is organized as follows. §II for-
malises the dealing problem. §III presents a first performance
appraisal of the suggested scheme where it evaluates the proba-
bilistic versus the deterministic approach. §IV summarizes the
goal of this work and introduces the next shortcoming findings.



II. STUDY SCOPE

A. Towards a stochastic approach

With the aim of defining a flexible level lane estimation
approach a probabilistic model is going to be constructed.
Under the assumption that a laser equipped car (ego-vehicle)
moves within an arbitrary but non-isolated road infrastructure,
a methodology estimating the associated lane positioning will
be determined based on noisy detections as provided by the
vehicle equipments, a laser sensor and a smart camera.

The new scheme is comprised of two main criteria cate-
gories:

1) The first category is composed of algorithms detecting
mobile objects, moving on the same direction as the ego
vehicle, located within the boundary lanes on the related
road segment.

2) The second type uses recently collected past data and
potentially previous estimations to determine the new
vehicle behavior during a period where no valid infor-
mation is available.

Each lane estimation alternative is employed within a specific
context, hence a well-defined strategy is developed able to deal
with temporary noisy data.

At any detection time t after a specific treatment multiple
metrics related to current sensor observations are available
such as the object velocity, Cartesian coordinates associated
with the associated object regarding the ego vehicle position,
other measurements qualifying each detection etc. Moreover,
the two distances between the ego vehicle and the right and
left lane marks are also available by the smart camera. When
the current sensor information is judged valid a real time
database set is constructed comprised of well selected metrics
of interest. Figure 1 illustrates how the vehicle environment is
defined at a detection instant. Based on reliable information
provided by the database set, the ego vehicle lane position
can be defined by computations allocating observations one
the extreme lanes (under regular or dense traffic flows).
However, invalid metrics maybe returned due to a sensible
sensor functioning (saturated traffic density, light brightness,
failures, meteorological conditions, etc.) within a frequency
depending upon the current the vehicle context. Whenever this
occurs the previous approach can not be utilized for defining
the ego vehicle position. With the purpose of identifying the
vehicle location at a regular decision frequency similar to the
one regarding the sensor operation, a probabilistic scheme is
going to be determined, examining whether and how previous
estimations can be combined and at which reliability level.

B. Building a level lane decision scheme - probabilistic model

At a given moment t, laser scanners detect multiple mobile
or immobile objects within a multi-plane and long range
vision angle. For each tracked element, the relative lateral and
longitudinal distance coordinates are computed with respect to
the vehicle, the reference point of which is considered to be
located at the ordered pair (0, 0) (see also Figure 1).
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Fig. 1. System architecture

Hence, if N(t) describes the total number of points detected
at time t by the selected vehicle sensors, a set of reference
points P can be constructed at time t potentially involving
any captured object. Thus,

P(t) = {pi(t) = (xi(t), yi(t)), such thet:
vi(t) > 0, i = 1, . . . N(t)}.

(1)

with

card(P(t)) =

{
> 0, if N(t) > 0

0, otherwise.
(2)

Due to sensor temporal failures (visibility limitations etc.)
or currently saturated traffic state, no appropriate object may
be detected at the considered time instant. Thus, set P may
become empty at t. That is what Equation 2 expresses.

Remark 1: In the present study detections obtained but
a laser sensor are only employed. However and since au-
tonomous cars are often equipped with different sensor types
one could decide of which technology is preferable to utilize
at the decision instant.

Taking into account that the reference ego vehicle is located
at a particular candidate lane, a dynamical coordinate system
is progressively created. For such a system, the y coordinate
of each lane boundary at time t can be computed.

Set Bj(t) = {(yli,j(t), yri,j(t)), i = 1, . . . ,m} can be
defined, where
• m is the total number of lanes in the reference vehicle

direction (available information by a GPS cartography)
• j is the considered candidate lane where the system origin

is placed, j ∈ [1,m]



• yli,j(t) is the y coordinate of the left boundary of lane i
regarding lane j at time t

• yri,j(t) is the y coordinate of the right boundary of lane
i regarding lane j at time t.

Let w denote the lane width and dr, dl the right and left
distances of the ego vehicle from the right and left lane
boundaries respectively then the right and left boundaries of
lane i, yli,j and yri,j regarding the candidate lane j at time t
can be determined as follows:

yli,j(t) =

{
dl(t) + (j − i)× w, if i < j

−(dr(t) + (i− j − 1)× w), otherwise.
(3)

yri,j(t) =

{
dl(t) + (j − i− 1)× w, if i < j

−(dr(t) + (i− j)× w), otherwise.
(4)

Remark 2: In order to simplify notations, the same lane
width is taken everywhere in the network, at the current
stage of the study. However, this value may vary according to
the road infrastructure (when counting narrow lanes or road
shoulders frequently employed for decreasing the required
right-of-way).

Likewise, each element of set P(t) can be potentially iden-
tified by taking the orthogonal projection of the y coordinate
onto the Y axis. Combination of fine criteria intelligently
selecting collected sensor observations and a favorable current
vehicle environmental context will allow a well constructed
set P(t) comprised of objects located at a close neighborhood
V(t) of the reference vehicle. Consequently, in that advanta-
geous case a unique candidate lane should verify that all points
of set P(t) belong to the considered region V(t). Nevertheless,
multiple solutions may arise from a roughly constructed set
P(t). Hence, advanced decision schemes should be determined
permitting to define an optimized vehicle neighborhood V(t)
and consequently an efficacious observation set P(t).

Thus, if ε defines a desired positive number, then, at time t,
set Vε should define constraints determining the region within
which the desired observations should be located, that is

Vε(t) = {p(t) ∈ P (t), d(p(t), p′) ≤ ε, p′ = (0, 0)}. (5)

where distance d and parameter ε should explicitly be deter-
mined. In order to ensure that the selected observation set
will be non-empty, parameter ε can be increased progressively
until a desirable set Vε is reached. Moreover, if Q denotes
the number of the considered quantitative constraints, then the
constraint set C is comprised of all the quantitative constraints
that an observation should satisfy

Cq = {cq, q = 1, . . . , Q}. (6)

where each constraint cq should be also explicitly defined.
Consequently, the set of the selected observation points Pε

will be comprised of observations in the vehicle neighborhood
Vε satisfying all constraints in set C, that is

Pε(t) = {p(t) ∈ Vε(t), s.t
cq′(p(t)) satisfied ∀cq′ ∈ Cq

with cq′ concerning point p}.
(7)

Considering a candidate lane j, set O can be constructed
defining two reference points of set Pε(t) belonging to the
first and last lane respectively.

O(t) = {pk(t) = (xk(t), yk(t)), k = 1, 2 :

pk(t) ∈ Pε(t), k = 1, 2,

y1(t) ∈ [yl1,j(t), y
r
1,j(t)],

y2(t) ∈ [ylm,j(t), y
r
m,j(t)]}.

(8)

Depending upon the definition of the observation set Pε(t)
some reference points may be shifted and Equation 8 can be
satisfied by multiple observations which do not necessarily
belong in the considered candidate lanes. Since multiple
responses may be implied by this decision criteria additional
or complementary schemes should be employed in order to
restrict acceptable responses. Furthermore, due to multiple
causes set O may become empty at any time t. For instance,
this would be the case if at least one constraint of Equation 6
is not satisfied and thus set Pε will be empty for any vehicle
neighbourhood Vε. Such outcomes may also occur whenever
the laser detection region is limited e.g. large objects located
close to the ego vehicle. In order to deal with similar situations
and hence be able to provide a reliable estimation regarding
the level lane of the ego vehicle at the sensor functioning
frequency a confidence indicator is going to be involved. More
precisely, whenever validated sensor data are associated with a
unique response, through a defined probability low, a probabil-
ity value will be determined regarding the available solution.
This value will vary according to multiple parameters. For
example, for a vehicle of.a relatively constant or increasing
speed superior to a given threshold, the confidence value will
decrease with the time. Thus, only recent estimations will be
considered in such a context.

Let’s consider function θ taking strictly positive values when
a unique lane estimation is available that is, θ : R+ −→ R+

with

θ(t) =

{
> 0, if lane identification is achieved at time t
0, otherwise.

(9)
Moreover, the following notations are considered:
• t0 : time at which the first sensor detection is associated

with valid data
• tk : the last time with sensor detection for which the lane

id was determined (computed or estimated value)
• tc : the current instant with t0 < tk < tc.

Set D can be determined at any time t < tk comprised
of all the time instants where the ego vehicle level lane was
defined,

D(t) = {t ∈ [t0, tk] s.t θ(t) > 0}. (10)



Let ρ : D −→ [0, 1] be the probability function defined on
set D with ρ(t) measuring the reliability of the response θ(t).

For each element of set D a reliability measure can be
associated at time t and thus set R can be constructed at time
t such that

R(t) = {(t, ρ(t)) : t ∈ D(t)}. (11)

Remark 3: Since set R will be updated at the sensor
operation frequency, at each decision time it would be wiser
to consider an appropriate subset of interval [t0, tk] for which
the vehicle level lane was identified.

If at time tc invalid data are available or a non unique
response is computed a relatively recent solution can be
searched as an element of set R(tk). If such solution is
feasible a reliability measure will be also allocated the value
of which will depend upon the considered probability law.
Thus, for this first probabilistic approach of this study a quite
restrictive probability distribution is defined allowing reduced
confidence indicators to estimations provided when invalid
data are involved.

Let’s define parameters εr1 and εr2 corresponding to strictly
positive numbers such that
• εr1 will be associated with the acceptable age of the past

estimations
• εr2 will involve the reliability indicator for trusting a

previous response
• εr3 will be associated with the acceptable elapsed time

between the last estimation and the current time tc.
These two parameters may be defined as constants (e.g. mean
values) or they can be dynamically defined so as to adapt to
the current vehicle context and thus providing a more realistic
value.

Consider that at time tc no lane estimation is possible. Let
n(t) denote the number of lanes at the related road segment
where the ego vehicle moves at time tc, c̃ is a constant value
related to the road infrastructure. If equation

| tc − tk |≤ εr3 (12)

is satisfied, suppose that exists t̃ ∈ D such that:

| t̃− tk |< εr1 (13)
n(t) = c̃,∀t ∈ [t̃, tc] (14)

ρ(t̃) > εr2 . (15)

Then the ego vehicle level lane at tc could be the one at time
t̃, that is θ(tc) = θ(t̃). An appropriate reliability indicator ρ(tc)
should be associated to θ(tc) and time tc, (tc, ρ(tc)) should
be elements of sets D(tc) and R(tc) respectively.

When a constant value is associated with parameters εr1
and εr3 a rough approach would be to consider the max
necessary time required by the vehicle to realize a lane change.
Taking into consideration both the driver behavior and current
vehicle context (traffic flow, mobile objects in the vehicle
neighborhood, etc.) could provide a more precise estimation
for εr1 and εr3 .

Similarly a strict value for parameter εr2 would be to
consider a t̃ ∈ D, for which all constraints 13, 12, 14, 15
are satisfied and such that there exists t

′ ∈ D with t
′ ≥ t̃

and for which ρ(t̃) > ρ(t
′′
) ∀t′′ ∈ D with t

′′ ≥ t
′
. In other

words one could select the most reliable and recent (within
the acceptable time limits) lane identification value. However
involving strict values for these three parameters could limit
the flexibility associated with the proposed algorithm.

Remark 4: Equation 12 ensures that only recent past
predictions can be employed. One may think that constraint
expressed by Equation 14 may disrespect the previously made
assumption considering recent estimations. However, con-
straint 15 eliminates this possibility. As previously mentioned
whenever Equation 12 is satisfied values ρ(t) of set R(t)
are updated for any t ∈ [t̃, tk]. The reliability value of an
estimation is a decreasing function regarding time. The older
an estimation becomes the smaller reliability is allocated.

III. FIRST ASSESSMENT

The benefits of the new lane identification decision approach
are going to be evaluated when the probabilistic scheme is
applied to a series of complex scenes. Thus, simulation scenar-
ios supplemented by real recordings are employed modeling
multiple traffic contexts under various designs of road infras-
tructure. The road environment and the related constraining
effects imply confounding situations imposing varying driver
profiles across time and space. The latter element is very im-
portant since under professional drivers recordings are biased
due to a non realistic driving behavior. Hence critical elements
are absent from such recordings compromising the outcomes
of the study. The impacts of behavior-change interventions
as provided by detailed simulation data form a precious
source of inspiration for an optimal tuning of the suggested
probabilistic methodology. The considered scenario is of one
hour and half (5, 400 secs) where the sensor frequency is
of 25Hz. The performance of the suggested methodology is
compared to the one resulting within the same scenario when
a non probabilistic approach is utilized. The first evaluations
noticeably accentuate the importance of the new stochastic
scheme where a non deterministic behavior occurs everywhere
in the model (traffic and road context, sensor functioning,
driver behavior).

A. Measuring Accuracy

The real value of the followed lane id is illustrated in
Figure 2 through the grey thick line as a function of time.
In the same figure the estimated value of the vehicle lane id
is also depicted by a thiner pink line. As one may observe
the two plots coincide for the majority of the trip duration.
However, an incompatibility is observed as shows the pink
line in Figure 2 plotted outside the grey line localizing the
vehicle at lane two where the real vehicle position at this
moment is lane three. Additionally, on the same figure the
total number of lanes of the road segment associated with each
detection time is also represented by the red line. Despite the
observed incompatibility the estimated lane never exceeds the



total number of lanes at the corresponding highway stretch.
A micro statistical analysis will explain this observation. For
any time within interval [620, 679] the real vehicle position
is lane three. However, the estimated value as provided by
the level lane decision algorithm positions the ego vehicle at
lane two during a period of 10 secs occurring within the time
interval [645, 655]. A similar result was observed within period
[680, 695]. Dense traffic is observed during these time periods
creating temporary congestions. The laser detector placed in
the front part of the ego vehicle has a limited detection area
as it is closely surrounded by large cars almost immobile. As
soon as these vehicles are able to move the laser detection area
clears and moving objects in all lanes of the associated road
segment are detected. It is of worth to accentuate that despite
the congested flows the sensor provide valid data. Thus, the
probabilistic approach is not utilized in this case. Employment
of additional decision schemes detecting lane changes would
prohibit this error to occur. Such schemes are not developed in
this study and consequently not applied. Alternatively, taking
into consideration the variation of the vehicle speed (low
values) one could avoid this erroneous estimation.

Fig. 2. Vehicle lane trajectory

B. Probabilistic versus Deterministic Approach-First Compar-
ison

The response frequency is measured when separately the
probabilistic and deterministic approaches are employed under
the same scenario describing the vehicle trajectory.

As Figure 3 represents the deterministic algorithm provides
no response during the 20.3% of the total decision time. This
is due to various reasons such as invalid data, multiple feasible
solutions etc. When the new introduced probabilistic approach
is employed, the percentage of no response falls down to 9.3%.
Figure 4 illustrates this case. At this stage of the study and as

the probabilistic approach is recently developed a rather strict
model is considered when defining the probability distributions
associated with each response at a given time instant t. As
previously discussed, these numbers concern the current data.

Remark 1: Under more flexible rules the percentage of no
response is even more significantly reduced as the outcomes of
the ongoing study show. However, this work is not developed
here where a first approach of the probabilistic model is
introduced.

Although the considered trip scenario is rather complex
and relatively long, many more data are required and further
improvements should be considered in the proposed structure
in order to provide definite conclusions. Regarding the current
scenario, the traffic flow is relatively fluid on average. Traffic
congestions are not very frequent and when they occur a
short duration is observed. Under a different traffic context,
sensors will present a different behavior involving a higher
density of invalid data. The response frequency related to the
deterministic scheme will certainly be reduced. This subject
is part of a research in progress and will not be profoundly
developed at present. Additional work is required for providing
solid conclusions.

Fig. 3. Response quantification - non probabilistic scheme

C. Quantifying Related Error

The related error associated with the response ability of
the proposed scheme is now considered. During the 5, 400
seconds of the associated ego vehicle trip, 135, 000 decisions
should be taken concerning the vehicle lane position. As we
previously saw, the considered methodology responds during
the 90.7% of the total decision time, that is a response is
provided for 122, 445 decisions. Moreover, for 25 seconds in
total an erroneous solution is provided. Figure 5 represents
the error quantification when the proposed decision scheme
is applied to the considered data. Hence for the 99, 5% of
the total decision instants for which the suggested algorithm
provided a solution a correct lane identification was returned.
However, at this stage of the study this number represents only
the error of the considered scenario. Under different entry



Fig. 4. Response quantification - probabilistic scheme

patterns a different number could be implied. That is one
reason justifying the importance of realistic simulation data
where rich environmental conditions can be easily created at
no risk and reduced costs. The considered methodology can
be then profoundly studied. Analysis of the system behavior
will lead to improvements covering many particular cases
requiring explicit treatment. Hence, performance guarantees
will be provided which is the ultimate goal of this work.

Fig. 5. Error quantification

IV. DISCUSSION-FUTURE WORK

A stochastic approach detecting the level lane position of a
vehicle equipped with a laser detector and a smart camera is in-
troduced. The proposed scheme is mainly based on noisy sen-
sor detections and for which a previously developed work was
unable to respond. Due to technology sensibility, traffic context
and failures observations frequently are judged invalid. Nev-
ertheless, under reliable sensor outputs the proposed decision
making scheme can provide accurate response regarding the

vehicle position, crucial information for the effective control
of automotive structures. A probabilistic approach was judged
necessary to be developed, where the main algorithm localises
the ego vehicle lane by allocating appropriate detections on the
extreme lanes of the road segment within the vehicle direction.
Whenever sensor outputs are judged unreliable, probability
laws are employed quantifying suitable confidence indicators
associated with recent past estimations. The effectiveness of
the proposed methodology was examined in carefully designed
simulation experiments for a real highway stretch and real traf-
fic scenarios. Thus many realistic complex contexts were now
involved which would be impossible to study and analyze un-
der recordings provided by professional drivers which mainly
maintain a rather good driver behavior. A first evaluation of
the suggested approach highlights the benefits and necessity
of the probabilistic profile. The low computational complexity
associated with the advantages of the decision making scheme
encourages for a real-world application involving:
• the use of the closed loop decision model which now has

a probabilistic and thus realistic aspect
• the extensive use of limited and available sensor data,

devices with which autonomous cars are equipped for
multiple purposes and hence no extra investment is re-
quired

• the use of low cost calculations.
It is of worth to be emphasized that despite the encouraging

results, further improvements are required in order to gen-
eralize the efficiency of the lane estimation policy and thus
provide robust guarantees regarding the response frequency
and accuracy.
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