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Abstract

Graph-theoretic approaches have relevant applications in landscape genetic analyses. When
species form populations in discrete habitat patches, genetic graphs can be used i) to identify
direct dispersal paths followed by propagules or ii) to quantify landscape effects on multi-
generational gene flow. However, the influence of their construction parameters remains to be
explored. Using a simulation approach, we constructed genetic graphs using several pruning
methods (geographical distance thresholds, topological constraints, statistical inference) and
genetic distances to weight graph links (FST, DPS, Euclidean genetic distances). We then
compared the capacity of these different graphs to i) identify the precise topology of the
dispersal network and ii) to infer landscape resistance to gene flow from the relationship
between cost-distances and genetic distances. Although not always clear-cut, our results
showed that methods based on geographical distance thresholds seem to better identify
dispersal networks in most cases. More interestingly, our study demonstrates that a sub-
selection of pairwise distances through graph pruning (thereby reducing the number of data
points) can counter-intuitively lead to improved inferences of landscape effects on dispersal.
Finally, we showed that genetic distances such as the DPS or Euclidean genetic distances
should be preferred over the FST for landscape effect inference as they respond faster to
landscape changes.
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1 Introduction
Landscape connectivity is defined as the degree to which the landscape facilitates or impedes
movement among resource patches (Taylor et al., 1993). Such dispersal events reduce metapop-
ulation extinction risk (Den Boer, 1968; Hanski, 1998) and give rise to gene flow, thereby pre-
venting inbreeding depression and maintaining local adaptation potential (but see Crispo et al.
(2011), Richardson et al. (2016) and Lenormand (2002)). Therefore, understanding dispersal
patterns is crucial for biodiversity conservation.

Landscape genetic approaches have been increasingly used to assess landscape influence on
dispersal (Balkenhol et al., 2016; Dyer, 2015a; Manel et al., 2003; Storfer et al., 2007) because
genetic data based inferences provide insights into effective movements that led to reproduction
when inferences drawn from mark-recapture data or GPS tracks mostly identify current move-
ments (Mateo-Sánchez et al., 2015; Zeller et al., 2018). Although advances have been achieved
in landscape genetics in the last 15 years (Manel and Holderegger, 2013; Storfer et al., 2010),
there are still methodological and theoretical challenges, to analysing and interpreting genetic
data especially (Balkenhol et al., 2009a,b; Dyer, 2015a).

Graph-theoretic approaches are particularly relevant when dispersal events occur between
patchy populations forming a network (Greenbaum and Fefferman, 2017). A genetic graph is
made of i) a set of nodes corresponding to gene pools sampled from different sites, and ii) a set
of links connecting them through gene flow. The graph is basically a pairwise adjacency matrix
with 0 and 1 reflecting absence or presence of links between populations, but the links can also
be weighted by measures of genetic differentiation. In this case, it is often recommended to prune
the complete graph, in other words to remove links between some node pairs, e.g. indirectly
connected through intermediate nodes, to make the topology easier to visualise and to keep only
the most relevant links in light of the study aim.

Genetic graphs are flexible tools that can be used in multiple fashions in landscape genetic
studies, offering a great potential for inferring models of network flow (Murphy et al., 2015).
Indeed, a certain level of gene flow between two populations can result from direct exchanges
of propagules and/or indirect exchanges through intervening populations in a stepwise way over
several generations. Although considering only the genetic distance between two populations
does not indicate whether gene flow occurred in a direct or indirect way, estimating genetic
differentiation between a population pair conditionally upon other populations should make it
possible to disentangle direct versus indirect gene flow between them (Dyer, 2015b). Hence,
using the conditional independence principle (Magwene, 2001; Whittaker, 2009) can be a way
to identify the precise topology of the dispersal network (i.e. the set of links depicting dispersal
of propagules between populations), in other words identifying the set of edges that represents
contributing connections among nodes (Murphy et al., 2015).

Alternatively, a genetic graph can be used for quantifying landscape feature resistance to
gene flow through distance-based analyses (Garroway et al., 2011). Assessing the correlation
between genetic distances and geographical or effective landscape distances is a way to identify
the hypothesis that best fits the genetic data, and thus reflects landscape influence on gene
flow, among several hypotheses of landscape feature resistance (Cushman et al., 2006; Khimoun
et al., 2017; Peterman, 2018; Ruiz-Gonzalez et al., 2015). Although such inferences are usually
based upon complete matrices of distance, several authors have suggested that reducing these
matrices to a subset of population pairs may improve their robustness (Van Strien et al., 2015;
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Van Strien, 2017; Wagner and Fortin, 2013; Zeller et al., 2016). Graph pruning precisely involves
selecting a subset of population pairs which therefore makes genetic graphs particularly relevant
in this context.

Reducing the dataset by removing population pairs in order to improve inferences of land-
scape resistance is somehow counter-intuitive, but it lies on the following rationale. Assuming
that dispersal is generally spatially limited, several theoretical models of populations genetics
predict that measures of genetic differentiation are linearly and positively correlated with ge-
ographical distance, provided enough time has elapsed for this equilibrium pattern to become
established (Guillot et al., 2009; Kimura and Weiss, 1964; Slatkin, 1993; Wright, 1943). Models
also predict that the spatial scale over which this pattern of Isolation by Distance (IBD) has
reached its stationary state should increase with time following the establishment of popula-
tions (Slatkin, 1993). In other words, before complete equilibrium has been reached, IBD is
only observed between nearby populations but not between more distant ones. Note that all
these models assume that the landscape exerts an homogeneous effect on dispersal, and most
of them exclude spatial variation in population density (Guillot et al., 2009). However, most
real landscapes are heterogeneous, and a common way to consider landscape feature suitabil-
ity for dispersal is to replace Euclidean distances by landscape distances (e.g. cost-distances
or resistance distances) in the analysis of population genetic structure (Balkenhol et al., 2016;
Coulon et al., 2004; Peterman, 2018). If the isolation by landscape resistance (IBLR) model
extends the IBD model in heterogeneous landscapes, its theoretical expectations have been less
strongly investigated. Nevertheless, a model developed by McRae (2006) predicts a linear pos-
itive relationship between genetic differentiation and landscape distances. Here again, some
time is needed for patterns of differentiation to reflect the influence of landscape features on
dispersal, and model assumptions are more likely to be verified at shorter landscape distances
before the complete equilibrium has been reached (McRae, 2006). Hence, better inferences of
landscape resistance to gene flow may be obtained when selecting the subset of populations
pairs that are within a certain spatial distance. This issue is critical as landscape genetic studies
are frequently performed in human-shaped landscapes which have undergone recent modifica-
tions potentially affecting demography (Manel and Holderegger, 2013; Storfer et al., 2010), but
the relevance of the different graph pruning methods in this context has been rarely investigated.

In this study, we used a simulation approach to compare the relative efficiency of several
graph pruning methods, genetic distances and analysis parameters of a genetic graph regarding
two objectives in inferring network flow: i) identifying the precise topology of the dispersal
network and ii) assessing the capacity of landscape distances to predict genetic distances. First,
we assessed the efficiency of three kinds of criteria used for excluding graph links: geographical
distance thresholds (leading to the exclusion of links corresponding to geographical distances
larger than a threshold value), topology (involving topological constraints in graph pruning),
and statistical inference of conditional independence based on genetic data (Dyer and Nason,
2004). Second, we compared some of the numerous genetic distances used to weight graph links
(Murphy et al., 2015): FST (Keller et al., 2013; Munwes et al., 2010), DPS (Naujokaitis-Lewis
et al., 2013; Keller et al., 2013), genetic Euclidean distance (Excoffier et al., 1992). Finally,
we compared two common practices in distance-based analyses. The first one relies on the
correlation between genetic and landscape distances corresponding with population pairs that
are directly connected in the genetic graph. The second one is based on the same correlation,
but considering all pairwise genetic distances (between population pairs directly connected or
not), by summing genetic distances along the shortest direct or indirect path between these
populations on the graph. Dyer et al. (2010) revealed a higher correlation of this conditional
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genetic distance (cGD) than pairwise FST with landscape distance. Yet, these two matrices (cGD
vs complete FST matrix) involved two different genetic distances (Euclidean genetic distance and
FST) and two kinds of links (paths made of direct dispersal paths only vs direct plus indirect
paths) at the same time, thereby introducing a confounding factor in the comparison. Therefore,
the ability of these practices in distance-based analyses to infer landscape effects on dispersal
still needs investigation.

2 Material & Methods

2.1 Landscape data
We simulated 10 landscapes using spatially correlated Gaussian random fields models (au-

tocorrelation range: 10)(Schlather et al., 2015) with NLMR package in R (Sciaini et al., 2018).
Land cover proportions were close to those encountered in agricultural landscapes dominated by
crops and grasslands with small remaining forest fragments. Cost values were assigned to five
cover types to simulate the dispersal capacities of a forest specialist species. These cost values
and land cover proportions were the following: crops (cost: 60, proportion: 35 %), grassland (40,
35 %), forest (1, 15 %), shrubland (5, 7.5 %) and artificial areas (1000, 7.5 %). We based these
costs on values already employed to analyse ecological connectivity in forest species (Gurrutxaga
et al., 2010; Schadt et al., 2002), and their range (1-1000) matches that inferred from field data
in other empirical studies on a wide range of taxa with contrasted dispersal capacities (Khimoun
et al., 2017; Pérez-Espona et al., 2008; Ruiz-González et al., 2014; Wang et al., 2008).

The resulting landscapes were square raster grids of 3600 square kilometres with a resolution
of 100 m. We randomly selected 50 population locations within the forest patches, separated
by a distance larger than 3 km from one another. Ten population location distributions were
created for each landscape in order to vary the cost-distance value distribution. Each population
contained 30 individuals during the simulation.

2.2 Gene flow simulation
We used cdpop (Landguth and Cushman, 2010) to simulate gene flow. Population size and

sex-ratio (equal to 1) remained constant throughout the simulation of 500 generations. At each
generation, individuals mate in their own population and juveniles may disperse to establish in
other populations. The number of offspring per female follows a Poisson distribution (λ = 3).
Once every population is occupied by 30 native or dispersing individuals, following individuals
immigrating die. Mating is done with replacement for males only, and generations are non-
overlapping. Individual genotypes were simulated for 20 loci with 30 alleles per locus, thereby
emulating the frequent use of microsatellites in landscape genetic studies (Storfer et al., 2010).
Initial genotypes were assigned randomly at generation 0 as starting allele frequencies do not
affect the overall final pattern of genetic differentiation (Graves et al., 2013). There was no
selection but mutations could occur (k-alleles mutation model, µ = 0.0005).

Gene flow depended on simulated landscape resistance. With respect to the second objec-
tive, i.e. assessing the capacity of landscape distances to predict genetic distances, we aimed at
simulating contrasted patterns of genetic structure in terms of spatial scale at which IBLR was
observed. We first explored several simulation settings before retaining the following one. For
every 100 combinations of landscape and distribution of populations, a landscape graph with
50 nodes was built. Each node corresponded to a habitat patch occupied by one population.
Cost-distances (CD) between habitat patches were calculated following Adriaensen et al. (2003)
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as the accumulated cost along the least-cost path between each pair of habitat patches, using
Dijkstra’s algorithm on Graphab software (Foltête et al., 2012). Then, these CD values were
used to weight the links of the graph, which initially had a complete topology. Using the edge-
thinning method (Urban and Keitt, 2001), we removed links one by one in descending order
of CD until we identified the link whose removal would have disconnected the graph into two
components. The CD associated to this link was the "percolation threshold" (Rozenfeld et al.,
2008). During gene flow simulations, dispersal probabilities associated with links whose CD val-
ues were above 1.1×percolation.threshold were set to 0. 1.1×percolation.threshold is therefore
the maximum dispersal distance. The resulting population networks were made of the set of
direct dispersal paths which could possibly be followed by individuals and thus represented the
potential dispersal network. It had a single component, thereby preventing single populations
from being totally isolated, which is theoretically necessary for populations to survive (Allendorf
et al., 2007; Frankham et al., 2004).

The decrease of individual dispersal probability according to CD was modeled by a negative
exponential function (Clobert et al., 2012; Hanski et al., 2000; Urban and Keitt, 2001), such
that: p(CD) = e−βCD. β values were calculated such that the CD associated with a dispersal
probability of 0.01 was equivalent to 5 % of the percolation threshold. Preliminary tests revealed
that these settings resulted in proportions of migrants akin to those empirically described by
Bowne and Bowers (2004).

For each simulation scenario (i.e. combination of landscape and distribution of populations),
gene flow was simulated 10 times (1000 simulations in total). We used genotypes from genera-
tions 50 and 500 to construct genetic graphs. After each simulation, a "realised dispersal graph"
was built. Its links were all the links that had been followed by at least one individual during
the simulation. Genetic graphs built in order to recover the topology of the dispersal network
were supposed to reproduce the topology of this realised dispersal graph.

2.3 Genetic graphs
We constructed genetic graphs using several pruning methods and genetic distances to weight

the links (see table 1 for the list of combinations).
2.3.1 Pruning method

We pruned the genetic graphs using nine pruning methods based upon three criteria: i)
geographical distance thresholds, ii) topology and iii) statistical inference.

First, we pruned graphs by removing all the links between nodes separated by a geographical
distance larger than a given threshold. We used 4 thresholds: 10, 15, 20 and 30 km (GEO-10,
GEO-15, GEO-20 and GEO-30, respectively). We chose this range of values to keep most graphs
connected (Naujokaitis-Lewis et al., 2013) and because above 30 km, the resulting graphs were
complete graphs given the size of the landscapes. We used thresholds in geographical distance
units instead of cost-distance units because in practice researchers are not supposed to have
previous knowledge of cost values associated with land cover types.

The second pruning criterion aimed at constructing graphs with a specific topology, in agree-
ment with the species dispersal pattern hypothesised a priori. Genetic graphs were first given
the topology of a Gabriel graph (GAB)(Arnaud, 2003). This type of graph in which only neigh-
bouring populations are connected assumes a stepping-stones migration model. We also created
minimum spanning trees (MST)(Naujokaitis-Lewis et al., 2013) as they reflect the "backbone" of
the dispersal network (Bunn et al., 2000). Here again, we assumed that cost values of landscape
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features are unknown and GAB and MST connections were computed based on geographical
distances as in Arnaud (2003) and Keller et al. (2013).

Third, graph pruning was based on a statistical procedure selecting the minimal set of links
explaining population genetic structure. Based upon the conditional independence principle
(Magwene, 2001; Whittaker, 2009), it is supposed to select links corresponding with direct disper-
sal paths and discard links associated with genetic similarities due to stepping-stones dispersal.
We used the original method of Dyer and Nason (2004) but we also modified some of the calcula-
tion steps implemented in the popgraph package (cf. section 3 of supporting information). This
method involves the calculation of a genetic covariance matrix from a genetic distance matrix
that must have Euclidean properties, following Gower (1966). Therefore, we used a PCA-derived
Euclidean genetic distance as well as the Euclidean genetic distance computed by default when
using the popgraph package. From a strict mathematical point of view, the formula used to
calculate the covariance cij from the distance dij between populations i and j is the following:
cij = −1

2 ×(d2
ij−d2

i•−d2
•j+d2

••) (Everitt and Hothorn, 2011; Smouse and Peakall, 1999), although
the formula implemented in popgraph package is: cij = −1

2 × (dij − di• − d•j + d••) (Dyer and
Nason, 2004)(di• and d•j correspond respectively to the sum of distances over a column/row
of the distance matrix). In our modified version (CI), we used the former formula while we
also implemented the latter for comparative purposes (CI2). We also added a p-value adjust-
ment, following sequential Bonferroni procedure (Holm, 1979), to limit type-I errors. In sum, we
constructed genetic independence graphs relying upon the conditional independence principle
using either our modified method (CI) or the original method of Dyer and Nason (2004) (CI2),
with either PCA-derived Euclidean distance (PCA, cf section 3 of supporting information) or
popgraph derived Euclidean genetic distance (PG), and either adjusting (ADJ) p-values or not
(Table 1).

Finally, we constructed complete genetic graphs (COMP) because graph topologies some-
times include all the potential links between nodes (Naujokaitis-Lewis et al., 2013). Besides,
these complete graphs constituted a baseline to assess the relevance of graph pruning.

2.3.2 Genetic distance
Four genetic distances were used to weight the graph links. First, we used the linearised

FST (i.e. FST/(1-FST)), hereafter noted FST (Rousset, 1997). Second, we also used the "inter-
population version" of DPS (DPS), a genetic distance based on the dissimilarities of population
allele pools computed as 1 - the proportion of shared alleles (Bowcock et al. (1994), cf. section
4 of supporting information). This commonly used genetic distance is supposed to reflect recent
gene flow changes (Murphy et al., 2010b, 2015; Naujokaitis-Lewis et al., 2013). Third, we com-
puted a Euclidean genetic distance by first performing a PCA of the matrix of allelic frequencies
and then computing the Euclidean distance between populations in the space defined by all
independent principal components to derive a PCA-based Euclidean genetic distance (PCA),
following Paschou et al. (2014) and Shirk et al. (2017a). Finally, we used the Euclidean genetic
distance computed by default in popgraph package (PG).

Genetic independence graph links were weighted only with the two Euclidean genetic dis-
tances. The links of the other genetic graphs were weighted using the FST, the DPS and the
PCA-derived genetic distance. Every genetic distance, including that computed with the origi-
nal popgraph method, was used to weight the links of the complete graphs in order to provide a
baseline for the comparison of all pruning methods. In sum, 30 genetic graphs were constructed
at generations 50 and 500 for every simulation (Table 1).
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2.4 Graphs analyses
The dispersal pattern of the simulated species is reflected by the realised dispersal graph

topology, and simulated gene flow was driven by the cost-distance values between populations.
Hence, a genetic graph can be considered accurate if i) its topology reflects well the direct paths
of the realised dispersal graph or if ii) the genetic distances derived from its links are highly
correlated to the cost-distance values between populations.

2.4.1 Topology similarity analyses
We assessed the topological similarity between realised dispersal graphs and genetic graphs.

To that purpose, we created contingency tables classifying the potential links of both types of
graphs into two categories: absence or presence (see Fletcher et al. (2011)). Then, we calculated
the Matthews correlation coefficient (Matthews, 1975), considered as a reliable index of binary
classification quality because it takes into account all the elements of the contingency table and
is calculated with respect to a random baseline (Baldi et al., 2000). A Matthews correlation
coefficient of 1 is reached when both graphs are identical, whereas a 0 value means that they are
no more similar than if they were built by selecting links randomly. In our case, a large value
indicates that a genetic graph recovers well the realised dispersal graph topology.

2.4.2 Distance-based analyses
We calculated the Mantel correlation coefficients r (Mantel, 1967) between genetic distances

and CD values. For each simulated genetic dataset, we considered three sets of genetic distances:
i) the subset of "raw" genetic distances associated with population pairs directly connected in
genetic graphs (see Van Strien et al. (2015)), ii) the graph-based genetic distances between every
population pair, calculated as the sum of link weights along the shortest path between nodes (an
extended use of the "cGD" introduced by (Dyer et al., 2010) to other types of genetic graphs) and
iii) the full set of "raw" genetic distances between every population pair derived from complete
graphs. Large r values indicate that the set of genetic distances derived from genetic graphs
reflects well the simulated landscape effects on gene flow. This approach is commonly used in
landscape genetics (Graves et al., 2013; Shirk et al., 2017b; Van Strien et al., 2015; Zeller et al.,
2016) as the use of Mantel correlation coefficients is relevant when the hypothesis can only be
formulated in terms of distances (Legendre and Fortin, 2010). We focused on the correlation
coefficient values rather than on statistical significance because it has been shown to provide reli-
able results when few hypotheses are compared (Shirk et al., 2017b; Zeller et al., 2016). Besides,
type-I error rate is high with Mantel tests (Balkenhol et al., 2009b), which limits their relevance.

2.5 Simulation results ordination
We performed a large number of simulations by varying landscapes and population loca-

tions. Given our objectives, we intended to reproduce in our simulations the cases I and IV from
the hypothetical classification of the relationship between genetic and geographical distances
proposed by Hutchison and Templeton (1999). Although case I corresponds to an equilibrium
between gene flow and drift over the whole region, case IV corresponds to a transient situation
where this equilibrium has been reached at a smaller spatial scale because of the time lag of
the genetic response. The case I is characterised by a linear increase of genetic differentiation
with increasing geographical distances over the whole region considered. In contrast, the case
IV depicts this positive correlation up to a certain geographical distance threshold above which
the relationship flattens out. This distance threshold was defined by Van Strien et al. (2015)
as the distance of maximum correlation (DMC), i.e. the geographical distance threshold below
which the subset of population pairs maximises the linear correlation between genetic and geo-
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graphical distances. The highest DMC occurs for case-I patterns of IBD as it should be equal to
the maximum inter-population distance whereas it decreases when case-IV patterns of IBD are
observed. Thereby, we used the DMC as a proxy of the spatial scale above which equilibrium has
not been reached, and below which genetic structure depends both on gene flow and drift, which
does not necessarily mean that equilibrium has been reached. Considering the linear positive
relationship between genetic differentiation and landscape distances expected under an IBLR
model (McRae, 2006), we aimed at reproducing the cases I and IV defined by Hutchinson and
Templeton but considering cost-distances instead of geographic distances.

We determined the DMC by iteratively computing the Mantel correlation coefficients be-
tween i) the CD values driving the simulation and ii) the FST and the DPS, using increasing
threshold values. We also visualised scatter plots of the relationship between genetic distances
and CD to identify the type of IBLR pattern corresponding to each simulation and time step.
We could thus check for potential biases in Mantel r values. Most graph analyses were performed
using graph4lg package in R (Savary et al., 2020).

To extract the main trend among the results of 1000 simulations, we applied a Principal
Component Analysis to eight variables describing the simulation parameters (proportion of
migrants per population, CD threshold used to build the potential dispersal graph, number of
links in the realised dispersal graph, mean CD covered by migrants) and their genetic output
(DMC computed at generation 50 and 500 for FST and DPS). These variables were averaged over
the 10 runs for each configuration combining a landscape and a population spatial distribution.
We carried out a hierarchical clustering from the PCA factors in order to distinguish the main
trend in the PCA results.
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Graph name Pruning method Genetic distance
COMP-FST No pruning FST
COMP-DPS No pruning DPS
COMP-PCA No pruning PCA-derived Eucl. dist.
COMP-PG No pruning Eucl. gen. dist. (from popgraph)
GEO-10-FST Geo. dist. threshold (10-km) FST
GEO-10-DPS Geo. dist. threshold (10-km) DPS
GEO-10-PCA Geo. dist. threshold (10-km) PCA-derived Eucl. dist.
GEO-15-FST Geo. dist. threshold (15-km) FST
GEO-15-DPS Geo. dist. threshold (15-km) DPS
GEO-15-PCA Geo. dist. threshold (15-km) PCA-derived Eucl. dist.
GEO-20-FST Geo. dist. threshold (20-km) FST
GEO-20-DPS Geo. dist. threshold (20-km) DPS
GEO-20-PCA Geo. dist. threshold (20-km) PCA-derived Eucl. dist.
GEO-30-FST Geo. dist. threshold (30-km) FST
GEO-30-DPS Geo. dist. threshold (30-km) DPS
GEO-30-PCA Geo. dist. threshold (30-km) PCA-derived Eucl. dist.
GAB-FST Topological (Gabriel graph, geo. dist.) FST
GAB-DPS Topological (Gabriel graph, geo. dist.) DPS
GAB-PCA Topological (Gabriel graph, geo. dist.) PCA-derived Eucl. dist.
MST-FST Topological (MST, geo. dist.) FST
MST-DPS Topological (MST, geo. dist.) DPS
MST-PCA Topological (MST, geo. dist.) PCA-derived dist.
CI-PCA Condit. indep. PCA-derived dist. (covar. from

squared dist.)
CI-ADJ-PCA Condit. indep. PCA-derived dist. (covar. from

squared dist.) with Holm-Bonferroni
adjustment

CI-PG Condit. indep. Eucl. gen. dist. (from popgraph, covar.
from squared dist.)

CI-ADJ-PG Condit. indep. Eucl. gen. dist. (from popgraph, co-
var. from squared dist.) with Holm-
Bonferroni adjustment

CI2-PCA Condit. indep. PCA-derived Eucl. dist. (covar. from
dist.)

CI2-ADJ-PCA Condit. indep. PCA-derived Eucl. dist. (covar. from
dist.) with Holm-Bonferroni adjust-
ment

CI2-PG Condit. indep. Original popgraph method
CI2-ADJ-PG Condit. indep. Original popgraph method with Holm-

Bonferroni adjustment

Table 1: Genetic graph construction parameters. Cf. section 2 of supporting information for a glossary of the
acronyms
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3 Results

3.1 Simulation results
For each simulation, the realised dispersal graph was connected meaning that each popula-

tion exchanged migrants with at least another population during the first 50 generations. The
overall proportion of dispersing individuals over 500 generations ranged from 13.3 % to 24.1
%. Although all the landscapes were simulated with the same parameters and populations were
located randomly in habitat patches, values of the maximum dispersal distance exhibited sub-
stantial variations (from 1321 to 3564 CD units). Consequently, the number of links in dispersal
graphs ranged from 155 to 858 links (Figure 1), depicting a wide range of gene flow patterns.

0 10 20  km

A B

D

Simulated land use (cost values)

Simulated populations

Dispersal graph's links

C

Mean CD: 627, Max. disp. dist.: 1554

Nb of links: 155

Mean CD: 694, Max. disp. dist.: 2098

Nb of links: 198

Mean CD: 724, Max. disp. dist.: 2306

Nb of links: 280

Mean CD: 948, Max. disp. dist.: 3041

Nb of links: 393

Forest (1)

Shrubland (5)

Crop (60)

Grassland (40)

Artificial (1000)

Figure 1: Four contrasted landscape/distribution of populations configurations exhibiting large differences in the
number of links in the dispersal graph. Mean CD between populations, maximum dispersal distance in CD units

and number of links followed by individuals are indicated in each landscape.

Although a case-IV pattern of IBLR was often observed at generation 50 (Figure 3), DMC
values increased from generation 50 to 500 suggesting that genetic structure reached its station-
ary state at increasing spatial scale over time. Note that DMC values were always larger than
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the maximum CD over which dispersal was possible. PCA results evidenced these variations
(Figure 2). The first principal component (56.6 % of the variance) was positively correlated
with the DMC (based on FST and DPS values at generation 50 in particular), the maximum CD
threshold, the number of links in the realised dispersal graph and to a lesser extent with the
mean CD covered by individuals and the proportion of migrants. The second principal compo-
nent explained a lower proportion of variance (24.9 %) and mainly reflected differences between
simulations due to the interplay between the number of links, the proportion of dispersing indi-
viduals (negatively correlated) and the mean CD covered by dispersing individuals (positively
correlated).

Three main clusters of landscape/distribution of populations configurations were identified
through the hierarchical clustering of the PCA results (Figure 2). The first cluster is charac-
terised by low numbers of links in dispersal graphs because of low maximum dispersal distances
and by low DMC at generation 50 while the third cluster is characterised by high DMC, high
numbers of links and high maximum dispersal distance. In the second cluster, dispersal graphs
counted many links, the proportions of migrants were high and the DMC took intermediate
values.

Figure 2: Principal Components Analysis of eight variables (100 observations) describing the simulation results.
Configurations A to D are also displayed in figure 1.

The first and third clusters included configurations in which case-IV and case-I patterns of
IBLR take form at generation 50, respectively. One objective of this study was to compare
the usefulness of genetic graphs when gene flow influences genetic structure at the complete
landscape scale (case I) or at smaller scale (case IV). In addition, the relative performance of
graph construction and analysis methods exhibited marginal variation along the second principal
component. Thus, for the sake of brevity, we chose to describe the results of the subsequent
analyses based on four configurations (A, B, C, D; displayed on the figures 1, 3 and 2) along
the first principal component which defines a gradient between these two opposite patterns.
Configuration A was typical of a case-IV pattern of IBLR (at generation 50 in particular) and D
of a case-I pattern (Figure 3). Configurations B and C corresponded to intermediate situations.
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Figure 3: Scatter plots of the genetic distance (DPS) plotted against cost-distance at generation 50. Cases A to
D illustrate the gradient of IBD patterns (from type-IV to type-I). Solid vertical lines indicate the maximum

dispersal distance, dashed lines indicate the DMC. See figure S1 for the same figure with the FST.

3.2 Genetic graphs
3.2.1 Topology similarity analyses

Depending on the pruning method used, the mean number of links in the genetic graphs
was highly variable as it ranged from 49 (MST) to 802 (GEO-30)(Table 2 and figure S3). In
contrast, the number of links in the realised dispersal graphs, which genetic graph topologies
were supposed to reproduce, were 155, 198, 280 and 393 in the configurations A to D, respectively.

When the graphs were pruned with methods based on geographical distance thresholds or on
topological constraints, their number of links was stable over generations given these methods
do not rely on genetic data. The number of links of MST and Gabriel graphs (49 and around 90
links, respectively) was also highly stable among configurations and much lower than the num-
ber of links in realised dispersal graphs (Table 2). As a consequence, these topological pruning
methods never performed well in reflecting realised dispersal graph topology (correlation values
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from 0.29 to 0.54; Table 2).

On the contrary, as pruning based on conditional independence takes into account genetic
data, the number of links in the genetic independence graphs varied strongly, from 58.5 to
519.7 in average. The number of links in these graphs tended to increase from generation 50 to
generation 500 even if the number of realised direct dispersal paths was stable, but this trend
was much lower when using genetic distances (CI2), as in the original popgraph method, than
squared genetic distances (CI), as in our modified version. As a consequence, the ability of a
genetic graph topology to reflect the topology of the realised dispersal graph was fairly stable
between generations G50 and G500 when using genetic distances (CI2), whereas it decreases be-
tween G50 and G500 when using squared genetic distances (CI; Table 2). Adjusting the p-values
to assess the significance of the partial correlations almost reduced the number of links by a fac-
tor of 2. When the covariance between allelic frequencies was calculated using squared genetic
distances (CI), the number of links was consistently larger than when using genetic distances
(CI2). In some cases, graphs obtained using the latter formula were not connected, especially
when p-values were adjusted to assess the significance of partial correlation values.

Genetic graphs pruned with geographical distance thresholds presented the topology closest
to that of realised dispersal graphs in all configurations (correlation values above 0.6) except
the least connected one (i.e. configuration A)(Table 2). The closest the geographical distance
threshold (GEO) from the maximum dispersal distance (CD threshold converted into Euclidean
distance) used in the simulations, the better the genetic graph reflects the topology of the re-
alised dispersal graph. In contrast, for the dispersal graphs created in configuration A, which
counted fewer links (Figure S3), the highest correlation values were reached with pruning meth-
ods based on conditional independence. Correlation values above 0.6 were reached every time
covariance was computed from genetic distances (CI2), and only at generation 50 with p-value
adjustment when covariance was computed from squared genetic distances (CI) with our mod-
ified method. For the configuration B, correlation values above 0.6 were also reached when
independence genetic graphs were pruned by computing the covariance from genetic distances
(CI2) whatever the type of genetic distance used (PCA or PG). For the configuration C, the
original popgraph method (CI2-PG) enabled to reach a correlation value of 0.6. Note that when
computing the covariance from squared genetic distances (CI), the genetic graphs included links
between population pairs not connected in the dispersal graph (Figure S3). p-value adjustment
reduced the number of these false long-distance links.

Overall, genetic graphs which succeeded in accurately reproducing the topology of the re-
alised dispersal graphs counted much the same number of links as the dispersal graph (Table
2). However, this condition is not sufficient to explain the correlation values given that in
some cases, relatively low correlation values were obtained with a similar number of links to
the realised dispersal graph (e.g. CI-ADJ-PG, configuration A at G500: Matthews correlation
coefficient = 0.52, with a difference in the number of links between graphs equal to 2.4; Table
2).

3.2.2 Distance-based analyses
The correlation coefficients between genetic distances and CD separating population pairs

which were directly connected in the genetic graphs were highly variable as they ranged from
0.47 to 0.86 in average at generation 50 (Figure 4, see figure S4 for generation 500). In all cases,
Mantel correlation coefficients between genetic distances and geographical distances were lower
than those between genetic distances and CD, showing that the isolation by landscape resistance
model better explained genetic structure than the isolation by distance model did, as expected
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from our simulations.
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Figure 4: Mantel correlation between genetic distances and cost-distances separating nodes directly connected
on the genetic graphs, according to the type of genetic distance and the pruning method at generation 50 (see
table 1 for the graph names). Mean ± SD values were computed for the 10 runs simulated in each scenario.
Blue bars refer to the correlation coefficient between genetic distance and geographical distance, when it is

above 0.3. Black bars refer to the correlation coefficient obtained using every population pair to compute the
correlation. When black and blue bars overlap, the bar is black. Stars indicate graphs counting several

components. The dashed line indicates the maximum r value obtained for each configuration.

When a case-I pattern of IBLR was observed at generation 50 (configurations C and D),
larger correlation coefficients were always those obtained when using genetic distance matrices
derived from complete graphs instead of pruned graphs, except for genetic independence graphs
built with our modified method (CI). Conversely, when a case-IV pattern of IBLR was observed
at generation 50 (configurations A and B), correlation coefficients were almost always larger
when genetic distance values were those associated with the links of a pruned graph, whatever
the pruning method, than when they were associated with all population pairs (Figure 4). At
generation 500, there were few differences between configurations (A to D) given that the re-
lationship between genetic differentiation and cost-distance almost linearised over time in all
cases, and higher correlation between genetic distances and CD were observed with a complete
graph, compared with a pruned graph, except for genetic independence graphs based on squared
genetic distance (CI) which still performed better (Figure S4).

The largest correlation coefficients were always reached when selecting genetic distance values
from genetic independence graphs built without p-value adjustment and based on the compu-
tation of the covariance from squared genetic distances (CI). When computing covariance from
genetic distances (CI2), as in the original popgraph method, correlation coefficients were much
lower. This method never strengthened the correlation obtained with the corresponding complete
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genetic distance matrices (COMP-PG or COMP-PCA), and it provided the lowest correlation
values (Figure 4). For configurations A and B (case IV), correlation coefficients obtained when
selecting population pairs from a Gabriel graph were slightly larger than correlation obtained
selecting population pairs from an MST or by using geographical distance thresholds (Figure
4). In most cases, correlation coefficients between genetic distances and CD were lower when
the genetic distance was the FST rather than the DPS or Euclidean genetic distances.

When we computed the Mantel correlations between CD and graph-based genetic distances,
correlation coefficients values ranged from 0.57 to 0.93 at generation 50 (Figure 5, see figure
S5 for a similar variation at G500). However, differences between configurations were less pro-
nounced when analysing the correlation this way, even at generation 50.
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Figure 5: Mantel correlation between conditional genetic distances and cost-distances separating nodes on the
genetic graphs, according to the type of genetic distance and the pruning method at generation 50 (see table 1
for the graph names). Mean ±SD values were computed for the 10 runs simulated in each scenario. Blue bars
refer to the correlation coefficient between genetic distance and geographical distance, when it is above 0.5.

Black bars refer to the correlation coefficient obtained using every population pair to compute the correlation.
When black and blue bars overlap, the bar is black. Stars indicate graphs counting regularly several

components. The dashed line indicates the maximum r value obtained for each configuration.

The correlation coefficient took its largest values when the graphs were pruned using a geo-
graphical distance threshold or a topological constraint. However, when computing graph-based
genetic distances from these graphs, the correlation coefficients between these genetic distances
and geographical distances were higher than those computed between the same genetic distances
and CD values, supporting an IBD model over an IBLR model despite our simulation settings.
The only exception was when this distance was computed from FST values (Figure 5).

Conversely, when computing graph-based genetic distances from independence graphs, these
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distances were more correlated to CD than to geographical distances (Figure 5). The correlation
coefficients were higher in that case when the pruning relied on the calculation of the covariance
from genetic distances (CI2) rather than from squared genetic distances (CI). However, the cor-
relation between Euclidean genetic distances and CD was higher when considering the complete
graph instead of graph-based genetic distances, except when computing covariance from PCA-
based genetic distances (CI2-PCA). Besides, we reproduced the result described by Dyer et al.
(2010) who showed that landscape influence on gene flow was frequently better recovered when
using these graph-based genetic distances derived from independence graphs (CI2) than when
using the complete matrix of FST. Moreover, scatter plots created using graph-based genetic
distance values revealed that summing genetic distances in case-IV pattern of IBLR tends to
mask the fact that the relationship between genetic differentiation and CD flattens out beyond
a CD threshold (Figure S2).
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Combination A B C D
a) Dispersal graphs
Max. disp. dist. 1554 2098 2306 3041
Max.disp.dist. (km) 13.1 15.1 18.2 20.8
Nb. disp. paths 155 198 280 393
b) Number of links
Generation G50 G500 G50 G500 G50 G500 G50 G500
GEO-10 127.0 127.0 120.0 120.0 120.0* 120.0* 112.0* 112.0*
GEO-15 274.0 274.0 237.0 237.0 253.0 253.0 246.0 246.0
GEO-20 455.0 455.0 384.0 384.0 408.0 408.0 413.0 413.0
GEO-30 802.0 802.0 693.0 693.0 746.0 746.0 757.0 757.0
GAB 92.0 92.0 89.0 89.0 96.0 96.0 92.0 92.0
MST 49.0 49.0 49.0 49.0 49.0 49.0 49.0 49.0
CI-PCA 274.4 427.7 269.7 412.1 283.8 435.0 305.7 458.8
CI-ADJ-PCA 108.2 246.5 107.7 234.6 109.0 251.5 114.8 275.8
CI-PG 325.5 441.3 330.9 397.9 342.8 447.2 375.3 519.7
CI-ADJ-PG 96.8 152.6 101.2* 152.5 95.7* 149.6* 102.2* 165.3
CI2-PCA 132.6 158.9 134.6 161.2 141.8 176.3* 146.9 204.9
CI2-ADJ-PCA 76.7* 85.8* 71.3* 81.4* 65.0* 81.5* 60.9* 70.0*
CI2-PG 135.4* 148.1 134.3* 149.2* 137.5* 155.4 140.5* 153.9
CI2-ADJ-PG 77.8* 80.5* 72.5* 75.6* 63.7* 72.9* 59.4* 58.5*
c) MCC
GEO-10 0.64 0.64 0.68 0.68 0.56* 0.56* 0.44* 0.44*
GEO-15 0.59 0.59 0.73 0.73 0.68 0.68 0.62 0.62
GEO-20 0.47 0.47 0.60 0.60 0.68 0.68 0.69 0.69
GEO-30 0.28 0.28 0.38 0.38 0.44 0.44 0.51 0.51
GAB 0.54 0.54 0.54 0.54 0.41 0.41 0.39 0.39
MST 0.49 0.49 0.43 0.43 0.36 0.36 0.29 0.29
CI-PCA 0.42 0.25 0.39 0.24 0.33 0.19 0.26 0.14
CI-ADJ-PCA 0.60 0.34 0.53 0.33 0.43 0.25 0.34 0.18
CI-PG 0.41 0.34 0.39 0.37 0.35 0.32 0.27 0.21
CI-ADJ-PG 0.64 0.52 0.55* 0.48 0.45* 0.41* 0.35* 0.29
CI2-PCA 0.77 0.69 0.69 0.65 0.58 0.55* 0.46 0.40
CI2-ADJ-PCA 0.65* 0.65* 0.55* 0.57* 0.42* 0.46* 0.33* 0.33*
CI2-PG 0.80* 0.75 0.72* 0.69* 0.59* 0.60 0.48* 0.45
CI2-ADJ-PG 0.66* 0.65* 0.56* 0.56* 0.42* 0.44* 0.32* 0.31*

Table 2: Topologies of the dispersal graphs and genetic graphs. a) Topologies of the dispersal graphs. Maximum
dispersal distances are given in CD units and in kilometres (conversion obtained after performing the linear
regression of CD values against geographical distances values). b) Number of links in the genetic graphs. c)

Matthews correlation coefficients assessing the topology similarity of both types of graphs (genetic and
dispersal), according to the type of genetic distance and the pruning method in the four landscape/distribution

of populations configurations and at two generations (see table 1 for the graph names). Mean values and
standard deviations were computed for the 10 runs simulated in each scenario but standard deviations are not
displayed because they were negligible. Matthews correlation coefficients above 0.6 and corresponding numbers
of links in the genetic graphs are displayed in bold. Values referring to generation 500 are displayed in italics.

Stars indicate that some of the ten graphs created for each combination were not connected.
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4 Discussion
In this study, we demonstrated that the ability of different pruning methods to identify the
precise topology of dispersal networks is highly variable, especially between methods based
either on geographical distance or genetic independence criteria. In addition, we highlighted
the importance of graph pruning for assessing landscape effects on gene flow in non-equilibrium
situations. We provide users with rough guidelines that are schematically illustrated in Figure
6.

4.1 When and why to prune a genetic graph?
On the one hand, graph pruning is hardly avoidable when the objective is to identify the

topology of the direct dispersal network followed by individuals (Figure 6). Indeed, except in
very rare panmictic configurations or when the study area is very small, dispersal events are
not expected between all population pairs (Kimura and Weiss, 1964). On the other hand, our
results show that the relevance of graph pruning for inferring landscape resistance to gene flow
depends on the scale at which gene flow effect on differentiation is detectable. When an IBLR
pattern is observed at the scale of the entire landscape, graph pruning hardly ever improved the
inference made from a complete graph, except when pruning relied on the conditional indepen-
dence principle and squared genetic distances (CI). In contrast, when this pattern is observed up
to a limited scale, graph pruning strengthened the linear correlation between genetic distances
and cost-distance values driving the simulation, suggesting that graph pruning is useful to infer
landscape resistance to gene flow in this situation.

Migration-drift equilibrium is less likely to be reached for the complete set of sampled popu-
lation pairs when dispersal distances are short regarding the study area and/or landscapes have
undergone recent modifications. Such non-equilibrium situations correspond to the case-IV pat-
tern of IBD proposed by Hutchison and Templeton (1999). It has been observed in several
theoretical (Slatkin, 1993) and empirical studies (Ciofi et al., 1999; Clegg and Phillimore, 2010;
Hänfling and Weetman, 2006; Hutchison and Templeton, 1999; Kuehn et al., 2003; Méndez
et al., 2011) and is expected to be frequent in landscape genetic studies dealing with dynamic
human-shaped landscapes (Manel and Holderegger, 2013; Storfer et al., 2010). In such situa-
tions, not pruning a genetic graph might be problematic if the objective is to infer landscape
resistance to gene flow. Indeed, such inferences may involve genetic distances that do not reflect
the long-term effect of landscape on genetic structure. Wagner and Fortin (2013) suggested that
considering a subset of population pairs could increase the power of distance-based analyses
in landscape genetics. Indeed, a few studies reported stronger relationships between landscape
structure and population genetic structure using this approach (Angelone et al., 2011; Coster
et al., 2015; Jaquiéry et al., 2011; Keller et al., 2013; Van Strien et al., 2015). Most of them used
geographical thresholds somehow linked to maximum dispersal abilities and they considered
between populations distances while ignoring their spatial arrangement (but see Keller et al.
(2013) for an explicit graph-based approach). However, Van Strien (2017) argued that popula-
tion topology (i.e., the arrangement of populations throughout a landscape) should be better
incorporated in link-based landscape genetic studies. In this context, graph-theoretic methods
offer great opportunities in link selection (Dyer, 2015b), but to date, the relative performance
of the wide range of graph pruning methods had not been assessed.
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4.2 How to prune a genetic graph to identify the precise topology of the
dispersal network?

Our results show that pruning methods based on topological constraints are rarely suitable
for recovering the topology of the dispersal network. Indeed, minimum spanning trees do not in-
clude any cycles and Gabriel graphs cannot take into account the presence of some long-distance
dispersal events between population pairs. Because topological constraints generally impose a
constant number of links given the number of populations, they lack ecological significance (Ser-
rano et al., 2009).

When dispersal capacities of the study species are precisely known, pruning based on geo-
graphical distance thresholds always makes it possible to recover well the topology of the realised
dispersal graphs, and this method is often the best one. Of course, estimating dispersal capac-
ities is a difficult task (Schneider, 2003; Van Dyck and Baguette, 2005), and even if several
thresholds can be tested in empirical studies, it is impossible to determine which genetic graph
reflects best the true dispersal pattern. As expected, our results showed that a serious underesti-
mation of maximum dispersal distance led to a disconnected graph, thus wrongly suggesting the
existence of landscape barriers to dispersal. The similarity between genetic graphs pruned using
distance thresholds and realised dispersal graphs may also depends on the correlation strength
between cost distances (CD) and geographical distances, which is sometimes high (Marrotte and
Bowman, 2017). However, geographical distance is not always a good proxy of CD (Balkenhol
et al., 2009b), for instance when a barrier prevents dispersal between close populations or less
frequently when large geographical distances are covered by dispersing individuals because they
correspond to low CD values. Ignoring these rare long distance dispersal event may be prob-
lematic given their ecological and evolutionary consequences (Clobert et al., 2012; Greenbaum
and Fefferman, 2017; Nathan et al., 2003).

Our results also suggest that building genetic independence graphs is a suitable option to
recover dispersal network topology when dispersal distances are unknown, especially in less con-
nected configurations (A and B, Table 2). In the latter case, these results can be as satisfactory
as when dispersal distance is known. The topology of the dispersal graphs is better recovered
when the covariance is computed with the original popgraph method from genetic distances
(CI2) instead of squared genetic distances (CI). In the latter case, the presence of links in ge-
netic graphs that were never followed by dispersing individuals during the simulations indicates
that it does not identify direct dispersal paths reliably. The variability in the number of links
among independence graphs was mainly due to the covariance formula, the genetic distance,
the p-value adjustment, and to a lesser extent the generation. In contrast, the expected large
difference in the number of links between very different connectivity configurations (A and D)
was not observed.

It may appear puzzling to infer single-generation dispersal events from genetic structure
shaped by multi-generational dispersal. However, it seems to be the promise behind the genetic
independence graphs as the conditional independence is supposed to recover the actual route
of propagules (Dyer, 2015b). Though our results seem to support this idea in some conditions,
further research is needed on this pruning method. For instance, we expect this method to
perform poorly when sampling is incomplete, which is often the rule in empirical studies, but
the potential bias this introduces in the inferences remains to be estimated.
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4.3 How to prune a genetic graph to infer landscape resistance to disper-
sal?

Genetic graphs reflecting precisely the dispersal network topology are not necessarily those
that enable to quantify well landscape effects on dispersal. Indeed, the distance of maximum
correlation (DMC) was always larger than the maximum dispersal distance in the simulation
(Figure 3), suggesting that the set of genetic distance values to include in link-based analyses,
should not be restricted to direct dispersal paths. Migration-drift equilibrium may become es-
tablished between populations separated by distances beyond dispersal capacities, as expected
under the stepping-stones model of Slatkin (1993), because they may exchange genes over sev-
eral generations even if not connected by direct dispersal paths. We suggest including such
population pairs in link-based inferences because their genetic divergence should reflect land-
scape influence on gene flow. Our view contrasts with the exclusive use of population pairs
that are within migration range of each other recommended by others when assessing the ef-
fect of landscape on gene flow (Keller et al., 2013; Van Strien et al., 2015; Van Strien, 2017).
Therefore, a reliable pruning method to estimate landscape resistance to gene flow should iden-
tify population pairs whose genetic differentiation reflects the long term gene flow between them.

In this context, we do not advise using pruning methods based on fixed criteria (i.e. geo-
graphical distances or topological constraints), even if they provided correlations between genetic
distances and CD that were slightly lower than the maximum correlation obtained for a given
configuration at generation 50, especially when using DPS (Figure 4). Indeed, these methods
seem inappropriate because the spatial scale of IBLR changes over time (McRae, 2006). Pruning
methods relying on genetic data and statistical inference seem to provide the best inference of
landscape resistance as they can account for the dynamic nature of IBLR. Indeed, in case-I and
case-IV patterns of IBLR, the correlation between genetic distances associated with the genetic
graph links and CD values was maximised when using pruning methods based upon the condi-
tional independence principle. However, this result only holds when computing the covariance
from squared genetic distances to stick with mathematical requirements (Everitt and Hothorn,
2011; Magwene, 2001; Smouse and Peakall, 1999). Although the original popgraph method
reproduced the dispersal pattern quite well, it often produced the lowest correlation between
genetic distances and CD. Nevertheless, these methods deserve further investigation because
some connected population pairs in our independence graphs (using our modified method) were
separated by CD values larger than the DMC. Even if the use of the DMC to determine the
spatial scale at which genetic structure depends on both gene flow and drift needs stronger the-
oretical support, this suggests that genetic differentiation between these populations may still
need time before stabilising.

We believe that an essential but tricky issue remains the identification of population pairs
matching migration-drift equilibrium. Ciofi et al. (1999) developed a likelihood-based approach
to assess whether population structure is best explained by a model of migration-drift equilibrium
or by a model of pure drift. However, it seems that this approach fails to detect case-IV
patterns of IBD (Hänfling and Weetman, 2006). Assuming that the DMC may be used as a
proxy of the spatial scale of migration-drift equilibrium, a promising approach would consist
in pruning the genetic graphs with a CD threshold equal to the DMC. This approach requires
knowledge of the cost values associated with landscape features to estimate the CD between
population pairs. However, assessing cost scenarios is often the aim of empirical link-based
analyses (Balkenhol et al., 2016). Recent methods for optimisation of landscape resistance
surfaces have been developed (Peterman, 2018), and a potential improvement would consist in
using genetic graphs pruned with different CD thresholds in such optimisation procedures.
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4.4 Which genetic distance to use and how?
Weighting graph links using the DPS or Euclidean genetic distances always produced a better

inference of landscape influence on gene flow than using FST, even if the difference in perfor-
mance of these genetic distances decreased as pairwise genetic differentiation tends to reach its
equilibrium level (i.e. from G50 to G500). Though FST is an excellent measure of genetic differ-
entiation, using it for particular demographic inferences (e.g. the number of migrants entering
a population every generation) requires assumptions of migration-drift equilibrium to be met
(Neigel, 2002; Whitlock and Mccauley, 1999). Further theoretical work is required to assess the
sensitivity of FST-based inferences of landscape resistance to equilibrium conditions. Besides,
DPS had already been shown to better reflect recent landscape changes than other genetic dis-
tances, including FST (Landguth et al., 2010; Robin et al., 2015). We would expect other genetic
distances such as the Chord distance (Cavalli-Sforza and Edwards, 1967) to provide similar re-
sults as those obtained with DPS.

Once the genetic graph has been pruned, we discourage summing genetic distances along
shortest paths to create a complete matrix of graph-based genetic distances. This approach led
to spurious conclusions by detecting an isolation by distance pattern instead of the true isolation
by landscape resistance pattern when graph pruning was based on geographical thresholds or
topological constraints (Figure 5). Interestingly, landscape influence on dispersal was frequently
better recovered when using these graph-based genetic distances derived from independence
graphs (CI2) than when using the complete matrix of FST (Figure 5). This result has been
previously used to evidence the value of this graph-based genetic distance (Dyer et al., 2010).
However, the correlation between genetic distances and the driver of dispersal (i.e. CD) was
lower when considering these graph-based genetic distances than when using the complete matrix
of corresponding raw genetic distances.

4.5 Limits and perspectives
Our simulations produced contrasted patterns of connectivity, but we acknowledge that our

results are limited to cases where a single functional unit of populations that can somehow ex-
change migrants (i.e. a dispersal network made of a single component) is considered. We still
need to investigate relative performances of graph-theoretic methods in landscapes with com-
plete barriers isolating population clusters. The differences we detected between the compared
methods were informative and promising, yet sometimes subtle. Although the migration rates
we obtained were similar to those reported by Bowne and Bowers (2004), they were larger than
those reported from other empirical data (Meirmans, 2014) or from simulated data reproducing
case-IV patterns (Van Strien et al., 2015). Given that case-IV patterns of IBLR were observed
in situations where dispersal was most constrained, repeating our simulations with more lim-
ited dispersal would have produced stronger contrasts between complete and pruned graphs in
their ability to infer landscape resistance to gene flow and might have made the discrimination
between pruning methods even more straightforward. Considering that low migration rates are
probably the norm, this reinforces the relevance of genetic graph pruning in empirical studies.
However, it remains to be determined whether there is a threshold below which dispersal has
only a marginal effect on genetic differentiation as compared with genetic drift. If this case could
reveal a complete barrier to dispersal, it would prevent from inferring the relative resistance of
the different landscape features surrounding populations.

Our results challenge a common practice in landscape genetics consisting in using the com-
plete matrix of genetic distance to infer the resistance of landscape features. Consequently, it
must be further examined whether and how graph-theoretic methods may improve calibration
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of resistance surfaces. Here, we did not compare different cost scenarios as we knew the "true"
cost values driving the simulation. We therefore assumed that maximising the linear correlation
(Mantel r) between genetic distances and landscape distances measured for a subset of popula-
tion pairs allows for reliably identifying the best graph construction method, i.e. the one that
selects the best subset of population pairs for the analysis (but see Graves et al. (2013)). As we
did not aim at performing a fine-tuned calibration of cost values, we consider our approach as
suitable (Shirk et al., 2017b; Zeller et al., 2016).

In our simulations, we assumed all populations of the study area were sampled. Such a
sampling intensity is rarely achieved in practice although it is often recommended (Keller et al.,
2013; Van Strien, 2017). Assessing how partial sampling of populations affects our conclusions
needs further investigation (as in Koen et al. (2013) and Naujokaitis-Lewis et al. (2013)). In
these situations, the complementarity between genetic graphs and landscape graphs needs to be
explored, because the nodes of the latter are the exhaustive set of potential habitat patches in the
study area (Foltête and Vuidel, 2017). In addition, a growing set of studies in landscape genet-
ics now use individual-based sampling schemes. Though the conditional independence principle
evaluated in our study is not applicable when nodes are individuals, a few studies have applied
genetic graphs to individuals (Draheim et al., 2016; Greenbaum et al., 2016). This possibility
offers a great potential and deserves further investigation.

Lastly, gene flow and drift were the main processes driving genetic differentiation in our sim-
ulations. Drift strength depends on population sizes, which were maintained equal and constant
over generations. Although this choice allowed us to keep drift constant among our simulations
in order to focus only on the effect of landscape on dispersal and to substantially reduce compu-
tation times, we acknowledge that it strongly simplifies the reality. Indeed, landscape changes
also create spatial heterogeneity in effective population sizes, which can be a strong driver of
genetic differentiation (Prunier et al., 2017). Besides, local features such as patch size or habitat
quality can affect gene flow between populations (Pflüger and Balkenhol, 2014; Robertson et al.,
2019; Weckworth et al., 2013), though we did not make it possible in our simulations. In this
context, gravity models seem particularly relevant as they can be based on genetic graphs and
additionally include local variables (Murphy et al., 2010a; Watts et al., 2015; Zero et al., 2017).
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Objective 2:
Infer landscape resistance

to gene flow

Objective 1:
Identify the topology

of the dispersal network
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Figure 6: Guidelines based on our results to build and analyse genetic graphs for i) identifying the topology of a
dispersal network and ii) inferring landscape resistance to gene flow. CI2 (CI): Conditional independence

assessed with (squared) genetic distances.
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