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Abstract Fast growing E. coli cells in glucose-aerobic conditions excrete fer-
mentation by-products such as acetate. This phenomenon is known as overflow
metabolism and can pose a major problem in industrial bio-processes. In this
paper, we study optimal control strategies for feeding a fed-batch reactor subject
to overflow metabolism. We consider that acetate has an inhibitor effect on the
glucose uptake, and we also consider the cost associated to process duration. In
our approach, using the Pontryagin Maximum Principle and numerical solutions
we describe the optimal feeding policy that maximizes biomass productivity and
minimizes the cost duration of the process. We show that a singular regime is
possible, in which cells grow at a slow rate to prevent acetate formation. If the
cost associated to the process is too high, only bang-bang solutions are allowed.

keywords: Dynamics and control; Industrial biotechnology; Fed-batch; Over-
flow metabolism

1 Introduction

Escherichia coli (E. coli) is a bacterium that is naturally found in the intes-
tine of humans and other mammals. This bacterium plays an important role in
the biotechnology industry for large-scale production of proteins for therapeutic
use ( [2]). Glucose is generally the preferred carbon source of E. coli ( [6]), and
depending on growth conditions, E. coli combines two different metabolic strate-
gies to harvest energy from glucose, aerobic respiration (oxygen required) and/or
fermentation (not oxygen required) ( [9]). Respiration is more energy-efficient
than fermentation. Nevertheless, in fast growing cells, some energy is obtained
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Figure 1: A schematic diagram of a simplified fed-batch reactor. The initial
volume of the bacterial culture is V. The volume increases as the fed-batch
reactor is fed at a flow rate F' with a concentration of glucose S;,,. Feeding stops
when the final volume V; is reached. The evolution of the bulk concentrations
of bacteria (X), glucose (5), and acetate (R) depend on the feeding rate F'.

by fermentation, even in excess oxygen conditions. This phenomenon is re-
ferred as overflow metabolism. During fermentation (when overflow metabolism
occurs), acetate is excreted to the medium as by-product. The accumulation
of acetate has an inhibitory effect on cells growth ( [13]), which can pose a
major problem in microbial bioprocesses. Note that overflow metabolism has
been observed in many microorganisms (see the book of [19]). For example, fast
growing yeast excrete ethanol which can inhibit their growth.

Several studies suggest the existence of a threshold glucose uptake rate,
above which overflow metabolism happens (see the work of [3] and the references
therein). Thus, a straightforward strategy to increase biomass productivity, is
to prevent acetate formation by forcing cells to uptake glucose from the medium
below the threshold rate. This can be done in a fed-batch reactor restricting
the feeding rate. Different authors have shown experimentally that this strategy
leads to high density cultures (see for example the works of [12] and [1]). In
the context of yeast cultures, this strategy have been used to construct adaptive
controls or extremum seeking algorithms for increasing biomass productivity
(see the works of [18] and [8]). One problem of this strategy, is that biomass
is generated at a slower rate than the cells are capable of achieving. Therefore,
the optimality of this strategy is not clear.

In this work, we investigate if maintaining the uptake rate of glucose at a rate
that prevents the acetate formation is an optimal strategy in fed-batch reactors
for the production of E. coli. In our approach, we study an optimal control
problem with the criterion proposed by [16]. The criterion aims to maximize
the quantity of bacteria at the end of the process, taking into account the
cost associated to the process duration. To model E. coli growth, we consider
a classical fed-batch reactor model and the recently proposed model by [14].



Thus, we consider the existence of a threshold glucose uptake rate, above which
overflow metabolism happens, and consequently the excretion of acetate.

In the context of fed-batch processes (without overflow metabolism), several
optimal feeding strategies, with respect to different criteria, have been deter-
mined by the use of the Pontryagin Maximum Principle (PMP) (see for examples
the works of [15] and [17]). These strategies are of “bang-bang” type, singular,
or a combination of both. In general, characterizing the optimal solution of
optimal control problems is quite challenging. Numerical solutions are of great
help in this context. To study our problem, we apply the PMP to obtain some
insights into the form of a singular arc. Then, using the software BOCOP ( [5])
(version 2.10), we obtain numerical simulations under different conditions. This
approach allows us to characterize the optimal feeding strategies.

Our paper is organized as follows. In section 2, we describe the optimal
control problem. In section 3, we apply the PMP, and we define a feedback
control. In section 4, we solve numerically the optimal control problem and we
describe the different structures of the optimal solutions. In section 5, we give
some conclusions.

2 Problem formulation

We consider a fed-batch reactor (see Figure 1) with an E. coli population which
density is denoted by x. This population grows at a specific growth rate p(-).
The specific growth rate considers the carbon gain by glucose uptake and the
carbon loss (in form of acetate) due to metabolic overflow i.e.

u(-) = Ysrs(-) = Yrrop(:), (1)

with rg the glucose uptake rate, roy the metabolic overflow rate (or acetate
formation rate), and Yg, Yg yield coefficients. The glucose uptake rate depends
on the glucose concentration (S) and on the acetate concentration (R):

S Kir
Ks+ S Kir +R’

TS(S, R) =TS max (2)
where 7g maqe is the maximal glucose uptake rate, and Kg, K; p are kinetic
constants. Following [3], roy depends on rg i.e. 7of = f(rg), with f defined as
(see Figure 2):

f(rs) == kmax{0,rs — rso}, (3)

with rgp > 0 the threshold glucose uptake rate above which acetate excretion
occurs, and k > 0. We assume the following relation which is verified by the
parameters estimated by [14]:

Ys — kYR > 0. (4)



It is straightforward to verify that (4) implies g—‘s‘ > 0 and g—l‘; < 0. The growth
of bacteria in the fed-batch reactor is modeled by :

dx

at = (M(S7 R) — %) r

ds F

dR F

E = _VRJ'_TOf(S’ R)x (5)
1%

T = F

z(0) = o, S(0) = So, R(0) = Ro,

V(O) = W, V(tf) = Vf

Feed rate F' is the control variable, and V is the volume. The initial values
(at ¢ = 0) of z, S, R and V are specified, as well as the final value of V' (V). We
want to maximize the total biomass production in the reactor together while
minimizing the process duration. We consider the criterion proposed by [16]:

maxp z(tf)V(ty) —ca fttof dt,

6
OSFSFmaxv ()

where ¢; is a composite overall time cost in units of cell biomass per unit of
time, and Fj,4, is the maximal flow rate allowed in the system. The terminal
time ¢ is not fixed in this formulation.

3 Necessary optimality conditions

The classical PMP requires the continuous differentiability of the dynamics with
respect to the state variables. In our model, overflow metabolism is described
by the maximum function, which is not differentiable. Thus, to apply the PMP
to (5)-(6), we consider a smooth approximation of f. Let ¢ be a positive real
number, we define the function fs through the following properties (see Figure
2):

e f5(rs) =0, for all rg < rgo,
o f5(rs) >0, f{(rs) >0 for all rg € (rg0,750 + 9),
o fi(rg) =k forall rg > rgy + 9.

It is clear that f5 — f as 6 — 0T uniformly. The necessary conditions for
optimization of the problem (5)-(6), with f replaced by fs, are determined by
the PMP. The associated Hamiltonian is given by:
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Figure 2: Functions f (continuous line) and f5 (dash line). The function f (3)
relates the acetate excretion rate (r,¢) with the glucose uptake rate (rg). The
function f5 (defined in Section 3) is a smooth approximation of f.

H = —c1+ X (Yors —Yrfs(rs) — &)
+As (%(Sm -S5) - rgx) (7)
+ARr (7%R + fé(?”s)x) + Ay F.
For the adjoint variables, let us define Ag = A\g—YsA, and Ag = Ag—Yg\,.
Then, for A;, Ag, Agr, and Ay, the dynamics are given by:

Le = rghg— f5(rs)Ar + s,

Ds = 2% (As — fi(rs)Ar) + L), .
i = g% (Ag — fi(rs)Ar) + LR,

Dy = F Nz + As(sin — 5) — ARR) .

with A\, (t7) = Vy and As(ty) = Ar(ty) = 0. Since the Hamiltonian is linear
in the control variable (F'), the structure of an optimal control F'is determined
by the sign of the switching function Hp := ‘g—g. Indeed,

j Frae if Hp >0,
~ 10 if Hp <0,
with

1
Hp = V<_)\wx+>\S(Szn_S)_)\RR)+)\V (9)
If Hp vanishes over an interval of time I, a singular regime takes place. The

following result gives necessary conditions for the existence of a singular regime.



Proposition 3.1. Consider the problem (5)-(6) with f replaced by fs and as-
sume that S(0) < Si,. If Hp (defined in (9)) vanishes in a sub-interval of time
I, then:

0 S T,s(t) —Tso S 5, (10)

for allt € 1.
Proof. The proof is given in the Appendix. O

Proposition 3.1 suggests that if an optimal trajectory of (5)-(6) presents a
singular arc during a subinterval of time I, then rg(t) = rgo for all t € T (take &
small enough in (10)). In such a case, the singular arc, denoted Fj;,q, satisfies

B | gmrge = 0 dee. y
rsoZ
Foing = . (11)
SR(Ks19)
Sin =S+ Ro(Kinth)

As we will show in the next section, Fy;ng can be a singular arc of the optimal
solution of (5)-(6). To end this section, based on Fi;,g, we define a feedback
control F' that will be useful for describing the structure of optimal controls in
the next section:

F{O if rg>rgoorV>Vy,

min{ Fraz, Fsing} if rs <rgoand V < Vj. (12)

If the feedback control F is applied when rg > rgo and V < V¢, then the
reactor will be operated in batch mode (F = 0), which results in a decrease of
rs. The batch mode stops when rg equals rgg. After that, F = Fying and rg
remains equal to rgo provided Fying < Frae. If F switches from Fiing to Fraa
(Fsi'n,g > Fee and V < V,c)7 then rg decreases. Thus, rg remains equal than
or lower than rgo until the final volume (V7) is achieved. Then, the reactor is
operated again in batch mode. This feeding strategy (F ) is comparable to that
proposed by [12]. As we will see in the next section, in some cases F' corresponds
to an optimal control.

4 Structure of the optimal control

We solve numerically the problem (5)-(6) for different values of Sy, zo, and ¢,
with parameters from Table 1. We use a direct method implemented in the
sofware BOCOP ( [5]) (version 2.10). The problem is discretized by a two-stage
Gauss-Legendre method of order 4 with 300 time steps. We consider a constant
initialization, and the tolerance for IPOPT NLP solver is set at 10712,

Figure 3 shows the optimal control strategy for different initial conditions
and values of ¢;. For brevity, we only show some plots representing the different
structures that were observed. To describe the different solutions we recall
the feedback control F defined in (12). If zp = 0.1g/L, Sy = 20g/L, and
¢1 = 0.1¢g/h (Figure 3A), the optimal control coincides with the feedback control
F during all the process duration. If 2o = 0.1g/L, S = 0g/L, and ¢; = 0.1g/h
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Figure 3: Optimal solution of the problem (5)-(6) for different values of S, o,
and ¢;. The not-shaded area represents the interval of time while the control F
(defined in (12)) is applied. Parameters are taken from Table 1 A. Sy =20g/L,
29 =0.1¢g/L,and ¢; =0.1g/h. B. So =0g/L, xg =0.1¢g/L, and ¢; = 0.1g/h.
C. So=0g/L, 290 =5¢g/L, and ¢; = 0.1g/h. D. Sy = 20g/L, zg = 0.1g/L,
and ¢; = 0.5g/h.

(Figure 3B), the feeding rate is maximum during the first 30 minutes, and then
the feedback control F is applied until the final time. If zo = 5¢g/L, So =0g/L,
and ¢; = 0.1g/h (Figure 3C), then during a very short period of time the flow
rate is maximum. During this time, the value of rg increases from 0 to rgq.
Then, the feedback control F is applied until the end, keeping almost all the
time the glucose uptake rate set to rgo. If zg = 0.1g/L, So = 20g/L, and
¢1 = 0.5¢g/h (Figure 3D), a bang-bang control, switching from 0 to Fj,qz, is
observed during the startup. Then, the control switches from Fj,q. to F, and
F is applied until the final time.

Figures 4 and 5 show the optimal profile of the optimal control for different
values of Sy and ¢;. Figure 4 shows that as ¢; increases, a singular regime occurs
during a shorter interval of time, and a bang-bang solution (during the startup,
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Figure 4: Optimal feeding profile for different values of ¢;. The not-shaded area
represents the interval of time while the control F' (defined in (12)) is applied.
Parameters are taken from Table 1 (Sy =5¢/L and o = 0.1¢g/L)

shaded area), switching from F,, ., to 0, occurs during a longer time. For values
of ¢; equal than or higher than 0.9 ¢g/L, there is not singular arc. Similarly
to Figure 4, Figure 5 shows the same effect when increasing ¢;. However, the
bang-bang solution associated to ¢; during the startup, switches from 0 to Fiy, 4.

Numerical simulations suggest the existence of a time t* € [0,t;) (the end
of the shaded areas in Figures 3, 4, and 5), such that the feedback control Fis
applied from the time ¢t* until the final time (not-shaded areas in Figures 3, 4,
and 5). If t* > 0, during the interval of time [0, ¢*], the optimal control is equal
t0 Frnaq (Figures 3B and 3C) or is bang-bang, switching from 0 to F,q. (Figure
3D). If ¢* = 0, the optimal control coincides with F (Figure 3A). As shown in
Figures 4 and 5, the value of ¢* is related to the value of ¢;. Indeed, if ¢; is too
high, F is only applied when the final volume is reached (Figures 4 and 5).

Table 2 shows the biomass productivity and the cost duration associated to
Figures 4 and 5. Biomass productivity does not change very much with changes
on c¢;. This is probably due to the initial and final volumes. Unfortunately, we
did not obtain convergence of the numerical method for large volumes to test
this hypothesis.



Table 1: Parameters and initial conditions.

Parameter Value Unit Remark
TS max 1.12 hT [10]
Kg 0.1 g/L [10]
Kion 4 g/l [10]
k 0.25 —
TS0 0.5 h~t
Ys 0.52 9X/gS [21]
Yr 0.4 9X/gR [10]
c1 0.1-12 g/h
Frax 1 L/h
Vo 1 L
Vi 5 L
Zo 0.1-5 g/L
So 0-—20 g/L
Ro 1 g/L
e =0.1 g/h
S
S 05
K
0
0 5 10
1fe; =0.6g/h
&
= 05
Ry
0 5 10
ey =1.29/h
g
= 05
K
0 ; —
0 5 10
Time (h)

Figure 5: Optimal feeding profile for different values of ¢;. The not-shaded area
represents the interval of time while the control F' (defined in (12)) is applied.
Kinetic parameters are taken from Table 1 (Sy =20g/L and zg = 0.1¢g/L).



Table 2: Biomass production (x(tf)Vy) and cost associated to process duration
(e1 . ttof dt) for the different conditions represented in Figures 4 and 5.

ci(g/h) x(t)Vi(g) c [’ dt(g)

Figure 4 0.1 23.3 1.6
0.6 22.2 7.3
0.9 21.25 10
Figure 5 0.1 30.7 1.6
0.6 29.7 8.3
1.2 28.7 14.8

5 Conclusions and future work

The optimal feeding rate changes with the initial conditions, xg and Sy, and the
process duration cost, ¢;. In some cases, the optimal feeding rate is given by
the feedback optimal control (F ). This control prevents acetate formation by
forcing cells to uptake glucose from the medium below the threshold uptake rate
(rso), even if biomass is generated at a slower rate than the cells are capable
of achieving. This confirms that the simple strategy proposed by [12] may be
optimal. However, as the cost associated to the process duration increases,
the optimal feeding strategy combines an initial bang-bang control with the
feedback control. This is explained by the fact that for a high operational cost,
it is convenient to accelerate the process by feeding at maximal rate. Indeed, if
the operational cost is heavily weighted, the optimal solutions are of bang-bang
type, which is consistent with the results of [7]. Feeding at maximal rate during
the startup is not necessarily associated to high operational cost, but to a small
initial glucose uptake rate. Feeding at maximal rate during the startup may
be necessary to increase the glucose uptake rate to a level equal than or higher
than the critical uptake rate (rgg), so that the feedback control F is optimal for
the rest of the process.

As a future work, we will consider the acetate consumption. According to
[20], E. coli can consume acetate, but only after the glucose is totally consumed.
Another future work, follows the works of [11] and [4]. It considers a consortium
with another E. coli strain that grows on consuming acetate.

Appendix

Here we prove Proposition 3.1. We recall the notations of Section 3. If Hpg
vanishes during a sub-interval of time, then % = 0. Let us define W =
As — f5(rs)Ag. It can be shown that:

dHr = Org org
o v <<Sm $) a5 R8R>'

10



Assume that S < S;,. Since %T—SS > 0 and %Lg < 0, the sign of W determines
the monotonicity of Hr. The derivative of W with respect to the time gives:

Y

+W (m%LSS + % — xfg(rs)%%) (13)
+(rsAs — fs(rs)Ar)(Yrf5(rs) — Ys).

Lemma 5.1. Let us define a = z[f5(rs) —rsf5(rs)] and S(0) < S, If Hp =0
in a sub-interval of time I, then for allt € I:

a) alt) #0,
b) Ar(t) = st

Proof. If Hr = 0 in a sub-interval of time, then dfl{—f =W =0. Then, A\ = b,
with A given by

(u—g)m %(Sm—S)—er —%R-i-f&(rs)x F
Yrfs(rs) —Ys 1 —f5(rs) 0

A= Az, As, Ar, Av]T, and b = [¢1,0,0]T. If a = 0, the equality A\ = b leads
to ¢; = 0, which is a contradiction. Thus, a) is proved. Now, for a # 0, any
solution of AN = b satisfies Ag = m + YrA,. From where the

proof b) follows. O O

Lemma 5.2. If S(0) < S;, and Hp = 0 during a sub-interval of time, then
5 (rs) > 0.

Proof. By contradiction, let us assume that Hp = 0 and f§(rg) = 0. In view
of Lemma 5.1, necessarily f§(rs) = k. Since W = 0, we obtain that Ag = kAg.
Recalling (13), we have:

aw

o Ar(krs — f5(rs))(Yrk — Ys).

From Lemma 5.1 and (4), we obtain that:

dt
This contradicts the fact that W = 0. O

dw cl
—;(YRfé(Ts) —Ys) > 0.

Proof. (Proposition 3.1) It follows from Lemmas 5.1 and 5.2.0

11
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