N

N
N

HAL

open science

Spreading nets: a uniform approach to unfoldings
G. Michele Michele Pinna, Eric Fabre

» To cite this version:

G. Michele Michele Pinna, Eric Fabre. Spreading nets: a uniform approach to unfoldings. Journal of
Logical and Algebraic Methods in Programming, 2020, 112, pp.1 - 33. 10.1016/j.jlamp.2020.100526 .

hal-03130461

HAL Id: hal-03130461
https://hal.science/hal-03130461
Submitted on 3 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-03130461
https://hal.archives-ouvertes.fr

Spreading nets: a uniform approach to unfoldings

G. Michele Pinna*

Dipartimento di Matematica e Informatica, Universita degli Studi di Cagliari, Italy

Eric Fabre
Univ Rennes & INRIA, Rennes, France

Abstract

This paper is devoted to the study of the notion of spread net. A spread net is a (safe) Petri nets where
each place is annotated with some information, taken from a suitable information domain, about how such
place can get marked. Spread nets generalize various kinds of nets used to represent the non sequential
behaviours of a safe net, like unfoldings, merged processes or trellis processes. The spreading of a net may
allow to produce more compact (partially unfolded) nets representing the non sequential behaviour of a net,
depending on the chosen information domain. In particular in a spread net it is possible to merge not only
conflicting runs, but also to partially refold time, as spread nets allow loops in time.

Keywords: Multi-clock nets, unfolding of nets, spreading of nets

1. Introduction

One of the most popular motto in Petri nets is that “the semantics of a net is a net” [I]: the executions
of a net IV are represented with the aid of another net and a suitable mapping relating the semantic
net to N. Along this line of thought non-sequential processes have been proposed (]2]), where the causal
dependencies among the transitions of a net are faithfully represented. Non-sequential processes are able not
only to represent causality, but also the concurrency present in a single computation. They cannot however
represent conflicts. To model all the possible non sequential executions of a net, the notion of unfolding has
been proposed in [3] and further investigated in [4] and [5]. The idea is to represent conflicts as branching
alternatives (whence the name of Branching Processes, that are essentially unfoldings [5]).

Though unfoldings were introduced to represent the non sequential behaviors of (safe) Petri nets, their
main application originated in the fact that they offered new techniques for the verification of concurrent
systems: the use of partial orders allows one to have more compact representations of a nets behaviors
with a gain in how the verification can be performed. Still, the data structure obtained by unfolding is in
general infinite or too large. One of the first attempts to overcome this problem was to turn non sequential
processes into an algebra, with a parallel composition and a suitable notion of concatenation ([6] and
further investigated in [7]). An orthogonal approach has been the one pursued in [8] where the unfolding is
restricted to a finite complete prefix in a way that still allows one to infer all information needed to represent
all possible computations of a safe net. Another way to address this problem is to define an equivalence
on some behaviors of (safe) Petri nets, which implies that the data structure adopted cannot be any longer
the one devised for unfoldings or prefixes. The notion of unravel net introduced in [9] and [I0] goes in this
direction requiring that each execution is a partial order, but the overall structure gathering all executions
does not need to be a partial order. Focussing on the dependencies to obtain a more compact data structure

* Corresponding author. Dipartimento di Matematica e Informatica, Universita degli Studi di Cagliari, via Ospedale 72,
09124 Cagliari (Italy), e-mail: gmpinna@unica.it

implies that the net representing more concisely the non sequential behaviours has to fulfill some properties
that are posed on the net as a whole, e.g. some subnets should have certain characteristics like the unravel
nets, or the net should be acyclic. Overcoming the request that (at least locally) the behavior should be
represented using a partial order has led to the introduction of a reveal relation playing the role of causality
[11, [12]. There it is shown how to relate occurrence nets and reveal relations. Still the more compact data
structure has its origin in the partial ordering representing the dependencies in the net, hence it is based on
the unfolding construction.

The approaches limiting the size of the data structure having origin in the work regarding prefixes ([§]
and further investigated in [I3] and [I4]) focus mainly on the time dimension. Still the resulting data
structure may be unnecessarily big, and in the last decade, merged processes [15] and the closely related
trellis processes [16] were introduced to limit the expansion of the structure due to conflicts. The idea
consists in merging runs that result from different choices but produce identical resources, where identical
may mean that the same resource is produced by several alternative activities at the same time (trellis
processes) or the i-th occurrence of the same resource is produced by again alternative activities (merged
processes). These two approaches are quite successful to represent in a compact manner a sufficient set of
runs of a concurrent system. However, they rely on distinct treatments for time and for conflicts.

The problem of representing the non sequential executions of a net, possibly in a more compact way,
can be faced from another point of view. Rather than requiring that the semantic net representing the non
sequential executions of a net obeys to some structural requirements, we define a net where the places are
annotated with pieces of information. The properties that the data structure representing the behaviours has
to fulfill are conveyed through these pieces of information. One of the advantages of this shift in perspective
is that it may relay or derive from local update rules, so we do not necessarily have to count on requirements
like the existence of a partial order among places and transitions or similar ones.

Spread nets ([17]) are nets where each place is annotated, and the annotation depends on the transitions
putting a token in that place and on the annotations of the places feeding these transitions. In this way it is
possible to keep track of the way that place is reached (obtained) in the executions represented by that net.
Based on this notion, we continue the line of research initiated in [I7] for multi-clock nets, and we show how
the notion of spreading of nets can be seen as a unified approach to Petri net unfolding, also for nets that
are not multi-clock nets. While trellises and merged processes had abandoned the requirement that nodes
should not be in self-conflict in the unfolding, the main move here is to abandon also the requirement that
the unfolding should be a (directed) acyclic graph. In other words, we consider structures that partially
unfold time, and then loop back to previously met resources. This parametric approach is flexible enough
to partially or totally expand both conflicts and time, thus capturing previous constructions in a unified
setting. It also assigns an equal treatment to time and conflicts. Places are annotated by values from
an information domain. The notion of information domain associated to a spread net plays a major role.
Indeed, the mechanism guiding the spreading of a net is encoded in the information domain. We illustrate
the intuition with a very simple example, which will allow us to stress how the pieces of information are
gathered.

Consider the net N above (left), with a single place p and two transitions ¢ and b. The net N’ on the
left, which the initial part of an unravel net, can be considered the representation of the non sequential
behaviour of the net on the left where the various computations are made equivalent provided that each
firing of a has to be considered equivalent to each firing of b. This equivalence allows to merge the transitions

2

corresponding to the i-th firing of @ or b in the net on the left. The main difference with respect to other
approaches is that now the places in the net on the right are annotated with a piece of information (in this
case it is an equivalence class). As it emerges from this example, the properties one is interested in are coded
in the information domains, and in this simple example the property one might be interested in could be
that the same number of transitions is executed, regardless if it was a or b. Thus, for instance, in N’ the
place py is annotated with the equivalence class [a].. which contains a and b, or the place ps is annotated
with the equivalence class [aa]. which contains aa, ab, ba and bb.

This approach extends to more complex ways of representing behaviours thanks to the greater freedom
for defining equivalences on the computations. This may allow one to ignore some conflicts but also to refold
time (possibly local one), or to abstract only parts of a computation that are considered not relevant. The
structure obtained by spreading a net with respect to an information domain can be used to check properties
of the system more efficiently, as the spreading may give a more compact structure with respect to previous
approaches to represent the executions of a net, and to focus only on events of interest. The annotated
places of a reachable marking of a spread net represent the state of the system, and they fully describe all
the possible computations leading to that state. All these computations are to be considered equivalent
with respect to their common future. The information domain depends mainly on what one would like to
consider equivalent in the various activities of the system, i.e. indistinguishable from the observations, and
this may involve not only conflicts of abstraction but also the folding of executions, which account to say
that we can fold time. The semantics of the spread net is reflected in the information domain. The spread
net is dependent on it, and in this paper we specify how the domains can be constructed.

We focus mainly on multi-clock nets that are composed of simpler subsystems: basically finite state
automata. These automata synchronize on common transitions (labels). The resulting net gives us the
basic ingredients we want to elaborate on: causality, that coincides with local time in each component,
and conflicts, which are local to a component as well. Each synchronization among finite state automata
determines the expansion of conflicts and causalities to all the components of the system. The information
domains for these kind of nets (multi-clock nets) are called ticking domains and have a particular structure
which depends on the structure of a multi-clock net, and that will be also investigated in this paper.

However the notion of spread net generalizes beyond to multi-clock nets. We introduce it for any kind
of net and then we will study how this notion specializes when considering multi-clock nets. The purpose of
doing so is to stress that in many case the nets we are interested in may be somehow decomposed in simpler
parts, and many times the pieces of information associated to the places in the spreadings may be somehow
composed.

This paper is a revised and extended version of [I7]. Whereas in [I7] only multi-clock nets were considered,
here we generalize the notion of spread net to any kind of net. More importantly we show that classical
unfoldings can be seen as spread nets, by constructing adequate information domains. This points out the
precise relationship among certain information domains and the structure of the resulting spread net. For
instance a place of an occurrence net is naturally annotated with the local configuration corresponding to
the transition which is in the preset of that place, or in the case of an unravel net, the set of the local
configurations. The close relationship among the structure of the spread net is even more evident in the
case the unfoldings are originated by a multi-clock net, and we give here a more detailed account on how
the information domains are obtained in this case. Furthermore we give more precise criteria on how to
construct the ticking domains in the case of multi-clock nets and we discuss various cases of spreading.

Structure of the paper:

The paper is organized as follows. In Section [2] we review Petri nets, and in Section [3| we introduce the
notion of information domain that will be used to annotate nets, obtaining spread nets, which are introduced
in Section In the Section 4| we also show how various kinds of nets, like 1-occurrence, occurrence and
unravel nets can be considered as spread nets over suitable domains, assessing that the notion of spread
net is the appropriate one to capture and generalize some of the various unfolding notions presented in
literature. In Section [b| we review the notion of multi-clock nets and, in sub-section the notion of
ticking domain, i.e. the domains tailored for multi-clock nets, is introduced and discussed. Section [6] shows
that previous unfolding related constructions for multi-clock nets can be seen as spread nets, focussing on

3

the proper ticking domain characterizing them. In Section [7] we generalize and specialize the notion of
ticking domain for a multi-clock net and then we present an algorithm to spread it. We also show that
the spreading of a multi-clock net determined by this algorithm is, under some reasonable assumptions, the
best construction, in the sense that any other spread net with the same ticking domain is part of the spread
net produced by the algorithm. Section [§] illustrates how some useful ticking domains can effectively be
constructed. Some conclusions and directions for future research end the paper.

2. Nets

Notation. Given a set A, by 24 we denote the set of all subsets of A and by 22n the set of finite subsets of
A. With A™ we denote the product of A n times. With N we denote the set of natural numbers.

Let A be a set, a multiset of A is a function f : A — N. The set of multisets of A is denoted by pA.
The usual operations and relations on multisets, like multiset union or multiset inclusions, are defined in
the standard way. A multiset f € pA is a set whenever, Va € A, f(a) < 1, and in the case a multiset f is
a set, we often write a € f instead of f(a) = 1. Obviously any subset of A can be seen as a multiset of A.
Given a multiset f € pA, [f] indicates the set {a € A | f(a) # 0} (thus, with abuse of notation, a multiset
f is a set when [f] = f). The cardinality of a (multi)set f is denoted by [f|, and it is defined as) . , f(a).
When no confusion arises we denote the multiset f € pA as > ., f(a) - a.

Given a finite alphabet A (a finite set of symbols), A* denotes as usual the set of words on A, and ¢
denotes the empty word. The length of a word w € A* is defined as usual and, with abuse of notation, it
is denoted by |w|. Given a word w € A* and a subset X of the alphabet, proj(w, X) is the word obtained
by deleting all occurrences of symbols not belonging to X. More formally, for a fixed X, proj(e,X) = ¢,
proj(a-w,X) = a- proj(w, X) if a € X and proj(a-w, X) = proj(w, X) otherwise. Given a word w € A*, {jwl[}
denotes the set of all symbols of the alphabet A appearing in w, which is defined inductively as {e[} = 0

and {la - wl} = {a} U {wl}.

Nets. We review the notion of Petri net and of token game and then we recall some further notions we will
use in the following.

Definition 2.1. A Petri net is a tuple N = (P, T, F,mg), where P is a set of places and T is a set of
transitions (with PNT =0), F C (P xT)U(T x P) is the flow relation and mg: P — N is called the initial
marking.

A net (P, T, F,m) is as usual graphically represented as a bipartite directed graph where the nodes are the
places and the transitions, and where an arc connects a place p to a transition ¢ iff (p,t) € F and an arc
connects a transition t to a place p iff (¢,p) € F.

Given z € T U P, with *x we denote the set {y | (y,z) € F} and with z* the one {y | (z,y) € F'}.
x and z are called the preset and postset respectively of z. Observe that *z and x® may be considered as
multisets (over places or transitions, depending on) and this will be handy in the following.

A transition t is enabled at a marking m if m contains the preset of ¢, thus if *t < m. If a transition
t is enabled at a marking m it may fire yielding a new marking defined by m’ = m + *t — t*. The firing
of t at m giving m’ is denoted with m [t) m’. We will always consider nets where V¢ € T. *t and ¢* are not
empty. This implies that no transition ¢ can be executed spontaneously (*t # () and that the execution of
a transition has an effect (t* #), though not necessarily observable (e.g. *t = t*, the firing of ¢ at a given
marking cannot be observed only looking at the markings).

Given a marking m, the firing sequence (fs) starting at m of the net N = (P, T, F, mg), is defined as
usually:

1. m is a firing sequence (the empty one, where no transition is fired), and
2. ifm[t1) my -+ mp_q [tn) My is a firing sequence and my, [t) m’ then also m [t1) mq - - - mp_1 [tn) My [ty m’
is a firing sequence.

The set of firing sequences of a net N starting at a marking m is denoted by FS,IX and it is ranged over by o.
We may omit mentioning the superscript denoting the net when it is clear from the context, and the initial
marking m when it coincides with the initial marking of the net.

Given fs o = m[t1) - -+ [tn) My, start(o) denotes the initial marking m and lead (o) denotes the marking
My, finally run(o) denotes the word ¢1...t,. Given a net N = (P, T, F,mg), a marking m is reachable iff
there exists a fs o € FSg0 such that lead(c) = m. The set of reachable markings of N is My = {lead(c) |
s FSﬁO}. Together with the notion of reachable marking we introduce also the one of state of a net
which focuses, for each firing sequence, on the executed transitions rather than on the reached marking.
Let o € FSY be a firing sequence, we define the multiset st(o) of transitions as st(c) = 0 if ¢ = m and
st(o) = t +st(o’) if 0 = m[t)o’, and we call it state of N. The set of states of the net N is the set
St(N) = {st(o) | o € FSh }.

A net N = (P, T, F,mg) is acyclic whenever the transitive and reflexive closure of F is a partial order
over PUT. A net N = (P, T, F,myg) is live iff for each transition ¢ and each marking m € My there exists
a firing sequence o € FSY such that o [t) .

We now recall the notion of safe net.

Definition 2.2. A Petri net N = (P, T, F,mg) is said to be safe iff each marking m € My is a set.

Though safeness is a semantics notion as it is connected with the reachable markings of a net, it can be
enforced structurally by adding suitable places (the so called complementary places). In this paper we
consider safe nets only, and thus we will often identify a marking m with the set [m] and write p € m when
m(p) = 1 and m will be considered as a set.

Nets morphisms. Let N = (P,T,F,mg) and N' = (P, T', F',m{) be two safe nets, a morphism of safe
nets ([]) is a pair (fp, fr) where fp is a relation between P and P’, and fr is a partial mapping from T to
T’ such that

1. fp(mg) = my and for each p’ € m{, there exists a unique p € myg such that p’ fpp,
2. if fr(t) =t’ then the restrictions f2f : *¢ — *t and f7¥ : ¢'* — t* are total mappings, and
3. if (p,p’) € fp then the restrictions fr : *p — °*p’ and fr : p* — p’® are total mappings.

where f7/ denotes the opposite relation of fp.

A morphism f : N — N’ preserves the initial marking and reachable markings as well, as it maps a firing
sequence of N to a firing sequence of N’. When it is clear from the context we may omit the subscript of
(fp, fr) using f instead.

Labeled nets. Let us fix an alphabet Lab of labels.

Definition 2.3. A labeled net over a set of label Lab is a tuple N = (P, T, F,mq,) where
e (P, T,F,mg) is a net, and
e /:T — Lab is a total mapping.

Given a firing sequence o € FS%0 of the labeled net N, with tr(c) we denote the word ¢(run (o)), often
called trace. The set of traces of a labeled net N is denoted with Tr(N). Observe that this set is never
empty, as at least the empty word ¢ belongs to it, which corresponds to the firing sequence mg. The traces
here are not the so called Mazurkievich-traces ([I8]), as each of them represents the sequence of labels of a
single sequential execution of the net.

The notion of net morphism is adapted to labeled nets in the obvious way: let (N, £) be a labeled safe
net over Lab and (N’,#’) be a labeled safe net over Lab’, a morphism is the pair (f,1) where f : N — N’
is a net morphism and [: Lab — Lab’ is a partial labeling morphisms such that [is defined on ¢(7") and
C(fr(t) = 10(D)).

As each safe net N = (P, T, F,mg) can be seen as a labeled net on the set of labels T by taking ¢ as the
identity mapping, we will add such labeling mapping when needed.

5

3. Information domains

We introduce now the notion of information domain over a set A. This notion is different from the
classical notion of Scott domain as defined in the literature (for instance as in [19] and references therein,
or [20]), but we prefer to use the term domain as it conveys a similar idea, namely the one that information
domains contain pieces of information about a system. An information domain will be a non empty set of
elements defined from A (e.g. subsets of A, or languages in A*), and we will use the elements of a domain to
annotate the places of a net. Each element of the information domain will deliver some information about
how the place can be marked, and this piece of information will depend on what one whishes to characterize
and observe. We support this idea with some simple examples, which will be formalized later.

Example 3.1. Let us fiz a set A.

e An information domain can be composed by just one element, say the empty set. This information
domain conveys the idea that it is irrelevant to observe or characterize how a given place is marked.

o An information domain can be the set of words A*. The annotation of a place with a word w in A*
may characterize the fact that some transitions have been executed to mark that place. w € A* may
stress that some transitions are executed more than once top produce that place and that the ordering
in the execution is relevant.

e An information domain can be the set of finite subsets of A, namely 2]’%. In this case we could consider
the annotation of a place as the set of transitions executed, regardless the multiplicity or the ordering.

The elements of an information domain are in any case related to a predefined set A, and we indicate this
fact by saying that the elements are built over A.

The elements of an information domain can be combined. To combine the elements we define some partial
operations. The partial operations take pieces of informations (a multiset of elements of the information
domain) and return (a multiset of) new pieces of information. The operations are partial as we have have
to state when some pieces of information are coherent, and in general it is not the case that all the pieces
of information can be combined together. We define also an updating mapping which takes an element of
the information domain and adds to it the piece of information delivered by an element in A. The updating
mapping is used to calculate new elements starting from an element of the information domain and an
element of the set A. Summing up, we equip information domains with two kind of internal operations: one
kind to combine elements and the other to update. They are partial operations: they applies to coherent
elements.

Formally:

Definition 3.2. Let A be a set, an information domain D (over A) is the 4-tuple (A, Op, T, A) where

1. A is a non empty set of elements with a distinguished element denoted with 0, that will be ranged over
by A, which we call the support,

2. Op is a non-empty set of partial operations op’: A — 24 such that, for each X € pA such that
| X| =i, if op’(X) is defined then op'(X) #), and

3. 7: AxA— A is an updating mapping.

Given A, an information domain D is basically a partial algebra where A plays the role of the generators
of the elements of the algebra. Given op’ € Op, i denotes the cardinality of the multiset on A that the
partial operation op’ receives as argument. The partial operation, when defined, combines the 4 elements
and produce a non empty set of elements of A. The operations op’ will be detailed when we introduce
the specific information domains, the purpose of each operation is to combine i elements in A, that are
assumed to be coherent, and produce elements that can be used by the update mapping. Hence the minimal
requirement that when it is defined then the result is a non empty subset of elements of A. The set Op
is required to be non empty. The final ingredient of an information domain is the updating mapping that,

6

given an element of A and one of A, produces a new piece of information possibly using the elements in A.
We often refer to the support of an information domain as the information domain itself.
We illustrate these operations with some simple examples.

Example 3.3. Given a set A, an information domain over A could be composed by setting A = Z?in where
each element is a finite subset of A, with () as the distinguished element 0. Each operation op’ € Op takes
a multiset X e [1,22,” of size i and returns the union of the elements in A € 2]’§m for which X(A) # 0, i.e.
op'(X) =U{A | X(A) #0}. The updating mapping just adds one a € A to an element A € 2%,“ ie. the

updating mapping returns the union of the set in A € 2An with the singleton {a} € 2An .

Example 3.4. Given a finite set A, let A ={L | L C A*} be the information domain where each element
is a language L C A*. The 0 could be the language {e} (it is not the unique choice, for instance the 0
could also be A*). Each operation op' € Op takes a multiset of languages X of size i and returns a new
set of languages, where each of them is obtained combining the various languages in X by some language
operations. For instance, a partial operation op® can take a set of languages {L4,...,L,} and return the
set of languages {L, N L, | k#l}, or a set of languages {L,...,L;} such that Vk,l € {1,...,i} either
L, €L, or L, CL,, and return the mazimal one. For the updating mapping, we can consider the mapping
that takes £ € A and a € A and returns the language L - a.

As it is, the notion of information domain is rather abstract. We will show how to construct suitable
information domains that should convey the idea that places of a net representing the behaviour of a system
can be enriched with information that characterizes precisely that behaviour. In some cases the elements of
(the support of) an information domain will turn out to be a partial order, but the unique requirement that
we make is that it is non empty, as it should contain the 0, representing the minimal amount of information
available.

We are especially interested in information domains where each operation in Op satisfies some further
constraint.

Definition 3.5. Let D = (A, Op, 7, A) be an information domain over A. We say that D is regular whenever
for each op® € Op and for each X € pA, if op'(X) is defined then op’(X) is a singleton.

An information domain is regular iff each partial operation op’ can be seen as partial mapping op® : A — A.
The information domain in Example [3.3]is regular as each operation returns just one element. This is
not necessarily true in Example

Example 3.6. Given A, let A = {0}. A contains just one element, the 0. Then D, = (A, Op, 1, Lab) where
A = {0}, Op = {op® : pA — A} such that op’(X) = 0 for X(0) =i, and 7(0,a) = 0 for each a € A is an
information domain over A. The D is reqular.

Example 3.7. Let A = {0,«, 3} and let op'(0) = {a}, op'(a) = {«, 8} and op*(B8) = {a}. This infor-
mation domain, regardless of the updating mapping, is not regular, as op*(a) returns a set which is not a
singleton.

Regularity is not the unique interesting property of an information domain, we would have also informa-
tion domains that are revealing, where revealing means that the update mapping produces a new element,
and the pieces of information are updated.

Definition 3.8. Let D = (A,Op,7,A) be an information domain over A. We say that D is revealing
whenever A # {0} and there exists an element A € A and an element a € A such that T7(A,a) # A.

A revealing domain must have a support containing also elements which are not 0 and these elements can
be somehow obtained as the result of the update mapping. The information domain D is not revealing,
whereas the one in Example [3.3] is a revealing one, as we will see in the next section when discussing
occurrence nets as spread nets.

4. Spread nets

In this section we review the notion of spread net and we show that it may be used to describe the true
concurrency semantics of a net, as we pointed out in the introduction. The semantics of a Petri net N has
been often given in term of another suitable net (following the “motto” the semantics of a net is a net, [1]).
Each of the various semantics has relied on an appropriate subclass of nets (e.g [3, 21], 2, 22] and [23] among
many others), and these semantics nets usually defined by some structural characterizations, e.g. they have
to be acyclic, or each transition has to fire just once.

The idea behind the notion of spread net is rather simple: the places of the net are annotated with
information from a suitable information domain D, and the annotation of each place in the postset of some
transition ¢ is related to the annotations of the places in the preset of ¢ using the partial operations op® and
the mapping 7. These annotations fully characterize the spread net, as we will see later. Given a multiset
f € pA and a mapping g : A — B, with g(f) we denote the multiset in B defined as), f(a) - g(a).

Definition 4.1. Let N = (P,T,F,mg,t) be a labeled safe net over Lab, let D = (A,Op,T,Lab) be an
information domain over Lab with 0 € A as distinguished element, and let h: P — A be a total mapping,
called the information mapping, such that

1. for each p € mg h(p) =0,

2. for each t € T, op*(h(*t)) is defined, with i = |*t|,

3. for each p € t*, there exists A € op®(h(®t)) such that h(p) = 7(A,£(t)), and
4. Vpe P, Vt,t' € *p. 7(op'(h(°t)),L(t)) = T(op*(h(°t))), L(t)).

Assume that for each t € T there exists a o € FSY such that o [t). Then N is a spread net with respect to
the information domain D over Lab with the information mapping h, and it will be denoted by Nop p,.

The new ingredient of a spread net, which is a safe net where each transition can be fired, is the information
mapping h. The requirements we put on this mapping are justified as follows:

e condition 1] assures that the piece of information h(p) associated to the initial places is minimal (0),
as initial places represent the beginning of a computation and then no information is available,

e conditions [2| and [3] state that the annotation of a place p in the postset of a transition ¢ is obtained
by the annotations in the preset ¢, combined using a partial operation that should be defined on these
inputs, using the label £(¢) of the transition ¢, conveying the idea that this execution of the transition
t adds some information that is gathered in the places in ¢*, and

e condition [4] ensures that the annotation associated to the place p does not depend on a specific
transition in its preset but it is uniform over the various transitions in *p,

For the time being we do not specify the choice of a specific element from op?(h(*®t)) in condition [3| Observe
that if the information domain is a regular one then the problem of selecting a specific element does not
apply. As a consequence of condition [2| op® is assumed to be defined for the set of annotations related to
the places in the preset of each transition of the net.

We illustrate the idea with a small example, whose purpose is to show how a net can be annotated over
an information domain.

Example 4.2. Consider the information domain D = (A, Op, T, Lab), with Lab = {a,b,c,d, e}, where A =
{0,a, 8,7}, (with the elements defined over Lab, for instance 0 = 0, a« = {a}, 8 = {b}, v = {c} and
§ = {d}), Op contains op* defined as op*(0) = {0,a} and op*(y) = {0}, and op? defined as op?(23) = {5}
and op?(0+a) = {0}, and 7 is defined as 7(0,a) = 0, 7(e,a) = 0, 7(0,b) = 8 = 7(a, b), T(a,c) = 7(3,d) = v
and 7(0,e) = 0. The net in Figure|l|is a spread net with respect this information domain with the following
information mapping h(po) =0, h(p1) =0, h(p2) = a, hips) = h(ps) = B and h(ps) = .

8

Figure 1: A spread net

Each net can be seen as a spread net over the information domain ({0}, Op, 7, Lab) where 7 is the mapping
returning just 0 and each mapping in Op returns the set containing the unique element of A.

Proposition 4.3. Let N = (P, T, F,mq,{) be a labeled safe net over the set of labels Lab, let D be the
information domain over Lab where A = {0}, Op and T are defined as mappings returning always 0, and
let h: P — A be the information mapping defined as h(p) = 0 for each p € P. Then No | 1, is a spread net
over D | .

Proof. D, is a regular domain (see Example as for each i we have that op’(X) = 0 with X (0) =i and
7(0,a) = 0 for each a € Lab. The conditions of Definition are easily verified: to each place in the initial
marking the 0 information is associated, Vp € P such that *p # () (i.e. p € *t for some t € T'), we have that
Vt € *p, op'(h(°t)) is defined and the result is 0, and finally (0, £(¢)) = 0. O

This proposition does not contrast the intuition that a spread net should somehow represent a kind of a
net semantics, as it simply states that also a trivial semantics is always available, namely the one where
no information is provided about the past of a place, hence the net representing the possible behaviours of
another one is just the same net.

Definition 4.4. The spread net No j, over the information domain D is said to be properly spread whenever
for some transition t € T there exists a place p € *t and a place p’ € t* such that h(p) # h(p’).

A spread net is properly spread whenever the annotations of some places in the preset and postset of some
transition are different. The intuition behind this notion is again obvious: when the annotations do not
change, the spreading itself (the annotations on the places of the net) is not revealing.

Definition 4.5. The spread net Np j, is said to be uniformly spread whenever D is a regular domain.

4.1. 1-Occurrence, occurrence and unravel nets seen as spread nets

To give ground to the notion of spread net, we review briefly some subclasses of nets (among many
possible) that have been proposed as the semantics of nets and we see them as suitable spread nets. For
each of them we introduce the information domain that establish this connection. The first one captures
the idea that in the execution keeping track of dependencies or alternatives is not relevant, thus many
computations may be seen as equivalent with respect to dependencies and conflicts; the second captures
the opposite idea: dependencies and alternative are to be preserved faithfully, while the third one allows to
equate some computations.

The elements of the information domain represent the pieces of information that can be associated to a
place p of the net N, namely the piece of information associated to a computation of the net marking the
place p. In the remaining of this section, we concentrate on the semantics nets of N.

9

1-Occurrence nets. A 1l-occurrence net, as introduced in [24], is a (safe) net where each transition ¢ may
fire just once.

Definition 4.6. A safe Petri net N = (P, T, F,mg) is said an 1l-occurrence net if each state in St(N) is a
set.

In an 1-occurrence net all the different ways a place p receives a token have to be considered as equivalent. A
suitable information domain is the one where A has just one element, namely the 0. A labeled 1-occurrence
net N = (P, T, F,mg,{) where ¢ is the identity may be seen as a spread net over the information domain
D, over Lab = T stating that the piece of information attached to each place is 0.

Proposition 4.7. Let N = (P, T, F,mg,{) be an 1-occurrence net where ¢ is the identity mapping, and let
DT = (A,Op,7,T) be the information domain where

o A={0}, with 0 =10,

e Op is such that each op® € Op returns always 0 for all X € pA with |X| =i = | *t| for some t € T,
and

e h: P — A associates to each place p € P the element 0 € A, i.e. Vp € P. h(p) = 0.
Then Npr p is a spread net over DT

Proof. See Proposition [4.3 g

Observe that the 1-occurrence net is not properly spread, and indeed the presence of the information domain
does not add any particular value to the main characteristic of the net, namely the fact that each transition
is executed just once. The information domain is regular but it is not revealing.

Example 4.8. Consider the I-occurrence net in Figure [3 In this net each place is annotated with O.

ta

p 0 0 q

Figure 2: An l-occurrence net annotated with an information mapping on D

We stress here that being an I1-occurrence net does not depend on the chosen information domain, but
this information domain is in general the one tailored for this kind of net, where all the computations are
considered as equivalent.

Occurrence nets. An occurrence net [3, 4] is a safe net where dependencies and conflicts among transition
occurences, called events, can be inferred from the structure of the net itself. The places of an occurrence
net are called conditions and its set is denoted as B, whereas the transitions are called events and its set is
denoted as F.

Definition 4.9. An occurrence net C' = (B, E, W, ¢p) is an acyclic safe net such that satisfying the following
restrictions:

1. Vb S Co, .b = @,
10

2. Vb e B. 3V € ¢y such that b’ W* b,
3. Vbe B. |* <1and *b={ implies that b € co,
4. Ve € E the set {¢/ | ¢ W* e} is a finite set, and
5. the relation #¢ C E x E defined as

e c#; e iffe#¢ and ®en *e’ # 0, and
o x #c 2 iff Jy, 4 € E such that y #; ¢/, y W* x and ¢ W* 2/,

is an irreflexive relation.

In an occurrence net each condition (place) not in the initial marking is produced by just one event
(transition), whereas the ones in the initial marking are produced by none (Vb € ¢y, *b = (). Being C an
acyclic net, the relation < defined as W* is a partial order on B U F, and it is often called the causality
relation. Furthermore each event has a finite number of predecessors, and the conflict relation induced by
the forward conflicts among events and inherited along the causality relation. The two relations of causality
<c¢ and conflict #¢, are able to characterize the computations of an occurrence net, as each state of the
occurrence net is a subset causally closed (to the left) subset of events X C E which is conflict free, i.e.
Ve,e' € X. —(e#ce’) and if an event e belongs to X then also the events preceding this one in the partial
order are in X as well. Finally we notice that <¢ is a well founded partial order, and Ve € E, the finite set
{e/ € E | ¢ <¢ e} is denoted with |e].

An occurrence net can be seen as a spread net. The piece of information associated to each condition
(place) of the net is basically the set of events (transitions) that have been executed in order to produce
this condition. Indeed in an occurrence net each condition b has a unique history which is easily obtainable
taking all the events {e | e < b}.

Summing up, the occurrence net C' = (B, E, W, ¢y, £) with £ being the identity, can be seen as a spread
net over the regular domain D = (A, Op, 7, E) with A = 2}%1, the operations op? € Op returning just the
union of ¢ places labels, and 7(A4, e¢) just adding the event in e € F to the subset of events A.

Proposition 4.10. Let C = (B, E,W,cy,£) be a labeled occurrence net where € is the identity, let D =
(A,Op, 7, E) be the domain where A = 2}%71; with 0 = 0, each op® € Op is defined as op'(X) = [J{A |

X(A) #0} and 7(A,e) = AU {e}, and let the information mapping h: B — A defined as h(b) = {e € E |
e <c¢ b}. Then Cop p, is a spread net over D.

Proof. First of all we observe that D is an information domain. Each condition b in the initial marking is
annotated with the empty set which is the 0 of 2}?:”7 as *b = (0, being C' an occurrence net. Consider now
a condition b not in the initial marking, then *b = {e} for some e € E. Consider the conditions in the
preset of e. To each condition b’ € ®e is associated a subset of events, on these subsets the union is defined
and h(b) = {e} U (Up e« M) and U, ¢ o, h(V') is precisely op’(X) where X is the multiset obtained by
h(®e). 7(X,t) just add the event e to X. The last condition of Definition [4.1]is trivially satisfied as for each
condition b we have that °b is at most a singleton. Thus C'p , is a spread net over D. d

Observe that C'p p, is properly spread as each place is labeled by its unique history and that D is regular,
furthermore the devised domain is a revealing one.

Example 4.11. Consider the occurrence net in Figure[3 The annotations of conditions are rather obvious,
namely they reflect the set of events that come before (in the partial order) each condition. The 0 of the
information domain is obviously the empty set and annotates the conditions in the initial marking. For what
concerns the operations on the information domain op®(Xi,...X;) is Uycpe; Xk and 7(X,€) = X U {e}.

It is a well known result that to each occurrence net C' it is possible to associate a prime event structure
(M]). A prime event structure is the triple (E, <,#) where F is a set of events, < is a well founded partial
order on E (the causality relation) and # is a symmetric and irreflexive relation on events (the conflict

11

Figure 3: an occurrence net annotated on the information domain formed by subsets of events

relation) such that e # ¢ < €” implies e # €”, i.e. the conflict relation is inherited along the causality
relation. A configuration of a prime event structure is a subset X C FE of events which is conflict free,
i.e. Ve, € X. —(e # ¢'), and such that Ve € X. |e] C X, where |e] is, as before, the subset of events
{¢/ € E | ¢ <e}. |e] is a configuration itself and it is the local configuration. Now, given an occurrence
net C = (B, E,W,c), the triple (E,<¢,#¢) is a prime event structure and the information mapping of
the spread net of Proposition [£.10] associates to each condition the local configuration of the unique event
producing this condition, if such an event exists, otherwise it is the empty set.

The clear relation between prime event structures and occurrence nets is exploited on spread nets as
follows: for each event e in the event structure, |e| and |e] \ {e} are among the elements of the support, and
the operations op® are defined for those (multi)sets of elements such that their union gives an element, namely
either a local configuration or a local configuration |e] without the event e. Observe that this implies that
the operations are not defined for the (multi)sets of elements such that their union would contain conflicting
events. The updating mapping just add an event e to a subset of events provided that this is not contained
in the subset itself.

Unravel nets. Unravel nets [9] are nets in which each computation gives rise to an acyclic subnet where
each place has at most one incoming arc (hence an occurrence net). Given a net N = (P, T, F, mg) be a net
and let 77 C T be a subset of transitions, then Np» = (P, T, F',m{) where P' = PN (*T" UT'®) U my,
F'=Fn((P xT)U(T' x P") and my is mo.

Definition 4.12. A safe Petri net U = (P, T, F,mq) is an unravel net if it is an 1-occurrence net and for
each state X € St(N) the subnet Ux = (*X U X*Umo, X, FN((*XUX*x X)U(X x *XUX?*)),mg) is
a an acyclic net where for each p € *X U X®. |*p| <1 and |p®] < 1.

The requirement that the restriction of the net to the transitions in a state of the net is an acyclic net where
each place has at most one incoming and one outgoing arc implies that the places in the initial marking do
not have any incoming arc (as otherwise there would exists a state such that the associated net is cyclic).
As an unravel net is required to be an 1-occurrence net as well, we have that each transition can be fired at
some marking, and then belong at least to a state.

An unravel net as a whole may be cyclic, hence it is not possible to extract a partial order out of it but,
as seen above, any run (state) gives a partial order. Places may have more than one incoming arc as well as
more than one outgoing arc, thus conflicts among transitions still exist. A syntactic conflict relation is not
definable, but a semantic one is available: two transitions are in conflict whenever there is no state of the
net containing both. Observe that a place can be produced in several alternative ways.

Viewing an unravel net as a spread net is more complex than for occurrence nets or 1-occurrence nets.
‘We can however use the fact that to each unravel net it is possible to associate a suitable event structure, the
so called bundle event structure [25], along the observation we made on the information domain associated
to an occurrence net. A bundle event structure is a triple B = (E,F, #) where # C E X FE is an irreflexive
and symmetric relation and =C CF(E) x E where CF(E) = {X € 28 \{0} | Ve,e’ € X. ~(e # ¢)}. A

12

configuration X C FE is a subset of events such that X is conflict free and there exists a linearization of
epeiey ... of the events in X such that for each ¢ and for each A; b ¢; it holds that {eg,...,e;—1} N A; # 0.
The set of the configurations of the bundle event structure B is denoted with Conf(B). Given an unravel
net U = (P, T, F,myg), the triple By = (T, {*t+t | t €T}, #), where t # t' iff VX € St(U) {¢,t'} € X,
is a bundle event structure. Furthermore the configurations of By are related to the states of U, namely
X € St(U) iff X € Conf(By). Thus, similarly to what we have observed for occurrence nets, we can use the
bundle event structure to define the annotation of the places of an unravel net.

Given a bundle event structure B = (E,F,#), we can still associate a kind of causality relation to it.
We stipulate that ¢’ < e whenever there exists an A F e such that ¢ € X. It is then clear that, given a
configuration X of this bundle event structure, <* N(X x X) is a well founded partial order. Furthermore
if ¢ < ebut e & X then there exists an ¢” € X such that ¢/ # ¢”, ¢” < e and ¢” € X. With the aid
of this observation we can define the set of local histories of an event. ||e]| is the set of subsets of events
{X | eeX, XC{ | ¢ <e} AN X eConf(B)}, and it is the set of local histories of the event e. With
lle]]e we denote {X | X U{e} € ||le]]}, i-e. each subset in ||e]] without e.

Consider the unravel net U = (P, T, F,mg), and the associated By = (T,Fy, #v) then A, the support
of the information domain, is composed by the subsets of finite configurations of the associated bundle
event structure and the 0 is {#)}. The operation op’ € Op takes all multisets X € puA where X(A4) > 0
whenever there exists a place p € P such that for each t € *p we have that A # () and A C ||¢]]+, and it
veturns |y ¢ o, |[¢]]. Thus, given a transition ¢, the operation op’ takes all the possible local histories to
which t can be added, and not only returns the local histories where ¢ is added but also the local histories
of the transitions t' (those local histories not containing ') where ¢ is in direct conflict with ¢ as both
put a token in the same place p. Finally 7(A,t) takes each Y € A and it either add the transition ¢
to Y if YU {t} € Conf(By) or it add a ¢’ such that there exists a place p € P with {¢,t'} C *p and
Y U{t'} € Conf(By). We denote this information domain with D, .

We are now ready to show that also an unravel net can be considered a spread net over this information
domain.

Proposition 4.13. Let U = (P, T, F, mg,£) be a label unravel net where € is the identity. Let By = (T,Fy
,#u) the associated bundle event structure. Let Dy, = (A,Op, T, E) be the information domain illustrated
above, and let the information mapping h: P — A defined as h(p) ={X CT | X € ||t]] for t € *p}. Then
UD’BUah is a spread net over Dz, .

Proof. D is clearly an information domain. Each place in the initial marking is annotated with the set
containing just the empty set which is the 0 of A as, being U an unravel net, the places in the initial
marking have no incoming arcs. Now consider a transition ¢ € *p. op®(h(*t)) is defined and it is equal to the
set containing the subsets of all the local histories concerning the transitions t’ € *(¢*). Now consider a place
p € t*, clearly by definition of 7, we have that for all ¢ € *p, 7(A,t) = 7(A’,t) for some A, A’ € op*(h(°t)).
Thus U@%wh is a spread net over D, . O

Example 4.14. Consider the unravel net U in Figure [JJ The elements of the information domain are
found taking the associated bundle event structure, with events {e1, ez, e3,eq,e5,¢e6}, the conflicting events
are ey fues, eattues and es#yes, which has the following bundles: {e1,ea} F es, {es} Fes5, {es} F e5 and
{es} F es. The operations op' and op? are defined as follows: op'({0}) is equal to {0}, op'({{e1}, {e2}})
is equal to {{e1}, {ea}} and op*({{e1,e3},{ea,e3}}) is equal to {{e1,es},{ea,e3}}, whereas op?({0},{0}) is
equal to {{0},{0}} and finally op*({{es}}, {{e1,e3},{e2,e3}}) is equal to {{e1,e3,e4}}. For all the other
inputs they are undefined. Finally the annotations of each place p is ¢ o, [[t]]-

Remark 4.15. It should be stressed that annotating an unravel net is tricky as the annotation related to a
place should contain all the local histories of the transitions in the preset, and then the operations op’ and T
are abstractly defined on the whole net. On the contrary the annotation and the operations for the occurrence
and the 1-occurrence nets are much less tricky and they have a local nature rather than a global one.

13

bQ b4

0 {ea}} > bs
O {{er,es.ease5})

H

b1 b5 b7
es @ €6 O {{e1.e3,e6},{e2,e3,€6}}
{0} Heid, {e2}} {{eres}, {e2,e3}}

Figure 4: An unravel net

4.2. Spread nets and domains

We discuss briefly how information domains and spread nets are intertwined. Proposition shows that
each labeled safe net can be seen as a spread net over the information domain D , namely the domain where
the same information is conveyed in each place, and also the 1-occurrence net is a spread net over the same
domain (Proposition . This domain is trivially regular but it is not revealing. Thus 1-occurrence nets
are uniformly but not properly spread.

More appealing and challenging is the cases of occurrence nets. The relationship between the structure
of the net and prime event structures can be exploited either to define suitable information domains or to
enforce suitable structures on the net itself. We have seen how to construct an information domain tailored
to an occurrence net, now we show the vice versa, namely how to construct an occurrence net starting from
a suitable domain.

Proposition 4.16. Let (E,<,#) be a prime event structure, let D = (A,Op, T, E) be the domain where
A={XCFE | X=leJ]\{e}JU{XCE | X =le]}, each op® € Op is defined as op*(X) = J{A |
X(A) #0} and 7(A,e) = AU {e}, and let Cpp, be a spread net where C is the tuple (B, E, W, co,) with
B ={(le],e) | ecE}U{(0,e) | ecE} and h((X,e)) = X, W = {(e,b) | h(b) = [e]} U{(be) |
h(b) C |le] N Ve' € le| \ h(b). h(b) L |€']}, co={be B | h(b) =0}, and ¢ is the identity. Then C is an
occurrence net.

Proof. Consider C = (B, E,W, ¢y, {) and the information mapping h : B — A. As) € A and Cp 4, is a
spread net we have that all the conditions b such that h(b) = @) are such that *b =). For each b € B we
have that | *b] < 1. Assume it not the case, this means that there are at least two events e, e’ in *b and
(e,b),(¢/,b) € W, but then |e] = h(b) = |¢/| and as (F, <,#) is a prime event structure it follows that
e = ¢'. The fact that W* is a partial order follows from the fact that C is a partial order, and this implies
also that for each e € FE, the set {¢’ | ¢ W* e} is finite. Finally consider e and e which are in conflict.
As the configurations of a prime event structures are such that their intersection is a configuration, also
le] N €] is a configuration. Take e’ such that (a) [€”] C |e] N |e’] and (b) for all é that are greater than
¢’ we have that [é] € |e] N |€'], then we have that *en ®¢’ #), with €] C |e] and [e”] C |€’]. The fact
that the conflict relation of the net is inherited along the causality relation is straightforward. O

We proceed along the same line also when considering bundle event structure. Given a bundle event
structure B = (E,F,#) and a subset X C E of events, with CF(X) we stipulate that either |X| = 1 or
Ve, e € X. e# €.

Proposition 4.17. Let B = (E, b, #) be a bundle event structure, and let Dy be the domain associated to
B. Let Up, 1 be a spread net where U is the tuple (P, E, F,mg, () with P = {({0},X) | X CE A CF(X)}U
{6, X) | CF(X) A X = Uyexllell} and b((X, X)) = X, F = {(e,p) | IX € h(p). ¢ € X}U{(p,€) | IX €
h(p). Y € Conf(B). X U{e} CY A VZCY\(XU{e}). XU{e}UZ € Conf(B) = XU{e}UZ =Y},
mo={p € P | h(p) ={0}}, and ¢ being the identity. Then U is an unravel net.

14

Proof. To prove that U is an unravel net we have to show that each execution of the net gives an acyclic
net where each place has at most one incoming arc and one outgoing arc. The places in the initial marking
do not have any incoming arc by construction. Consider an event e € E and one of the local histories for it,
namely X € ||e]]. X can be totally ordered, i.e. X = {ey,...,e,} with e, = e, with the order induced by
the F relation. The subnet identified by the places where the information associated to them contains the
proper X; = {e1,...,e;} C X is a clearly acyclic and the preset and postset of each of these places contains
at most one transition. This suffices to ensure that U is an unravel net. O

Proposition and Proposition together with Proposition [£.10] and Proposition show that
each net with certain characteristic can be turned into a spread net on a suitable domain, and also that a
suitable domain induces a spread net with certain characteristic.

5. Multi-clock nets and ticking domains

In the previous section we have discussed the notion of spread net and we have shown that some of the
usual nets that are used to describe a true concurrent semantics of some net IV can be seen as special cases
of a spread net. In this section we recall the notion of multi-clock net (see [I6]) and devise a notion of
information domain tailored for multi-clock nets, that we will call ticking domain.

5.1. Multi-clock nets

The intuition behind the notion of multi-clock net is the following: a net is composed by a number of
sequential components, thus the execution time in each component of a transition of the net can be somehow
inferred. Each component has a local clock and, as a net has various components, the net has a multi-clock.

A safe net N = (P, T, F,mg) is said to be a net automaton whenever each m € My is a singleton, and
each transition ¢ € T is such that |*¢| = |t*| = 1. In a net automaton only the choices between the execution
of two transitions may be represented, as each reachable marking is obviously a singleton.

A multi-clock net is a safe net which can be seen as a product of net automata which synchronize on
common transitions, and the effect of a synchronization are observable in all net automata participating to
it (see transition b in Figure [5)). The synchronization transitions have a preset which is not a singleton (the
components to be syncronized), and we require that the cardinality of the preset of each transition is the
same as the one of the postset (the effect of a synchronization, observable or not, has to take place in each
of the involved components). Formally:

Definition 5.1. A multi-clock net (mcn-net) N is the pair (N,v) where N = (P, T, F,mq) is a safe net and
v: P — myg is a total mapping such that

e for all p,p’ € myg, it holds that p # p' implies v=1(p) Nv=1(p') = 0,
e v is the identity when restricted to mg, and
e forallt € T. v is injective on *t and on t*, and v(*t) = v(t*).

The cardinality of a mcn-net N, denoted with v(N), is the cardinality of mg, and represents the number of
components.

As v(mg) = myg, v is injective on the preset (postset) of each transition and that v(*t) = v(t*), for each
p € mo, the net N, = (P,,T,, F,,my), where P, = v~ (v(p)), T, = T N (*P, U P,*), F, is the restriction
of F' to P, and T}, and mf : p — N is such that m{(p’) = 1 iff p’ = p, is a net automaton. We sometimes
denote with p the subset of places P,.

Example 5.2. We illustrate the notion with a simple multi-clock net with just two components, depicted
in Figure @ On the left there is a multi-clock net N where the two components, depicted on the right, Ny,
and Np, synchronize on transition b. The two components are clearly net automata, and the v mapping s

v(p1) = v(ps) = p1 and v(p2) = v(ps) = p2.
15

:
Yy o

K Oy O

p1 NI)

2
)

2

Figure 5: A multi clock net and its two components

The notion of morphism introduced for safe nets can be tailored to multi-clock nets by requiring that
partitions are preserved. (fp,fr) : (N,v) — (N’,v') is a multi-clock net morphism if (fp, fr) is a net
morphism from N to N’ and for each p € P and for each p’ € P’, if p fp p’ then v(p) fp V' (p).

5.2. Ticking domains

As we have already said, a multi-clock net can be seen as the composition of net-automata synchronizing
on common actions (transitions), and each component of the multi-clock net is identified via an index which
is the unique initially marked place of the component. In other words a multi-clock net can be seen as the
product of its (sequential) components. In this perspective the annotations of a spread net can be seen
as the knowledge that each component has on its behaviour and possibly on the behaviour of the other
components which may synchronize with it.

The behaviour of each single component can be easily represented as a language, as a component is a
net automaton. We define the information domain associated to each component of the multi-clock net as
words over transitions (labeled) of that component.

We first formalize the annotation for a single component (A is related to the (labeled) transitions of that
component).

Definition 5.3. Let A be an alphabet. A ticking language over A is a language L C A*. The set of ticking
languages over A will be denoted LA,

Given a ticking language £ over A, alph(£) denotes its alphabet A. When clear from the context, we will
omit the superscript A in LA. L, denotes the language reduced to the empty word e: L, = {e}. A ticking
language will often be obtained as the equivalence class of an equivalence relation defined on the words in
A*, and often we will use just a word to denote each element of the class.

Example 5.4. Consider the alphabet A = {a, b}, a language can be the set of all words of length 2, hence
L = {aa,ab, ba,bb} or the set of all words of length less than or equal to 3 where all the words are equivalent
to aab via the equivalence relation induced by the equation a = b, hence {aaa, aab, abb, bbb, bab, baa, bba, aba}.

Once we have introduced the notion of ticking language, we have to say when a tuple of ticking languages
can be seen as the annotation of the places of a multi-clock net. We assume the existence of a property P
defined on tuples of languages over an alphabet A, hence P C A* x --- x A*. A property P may be the one
stating that all the words of each language have a common prefix, or that a language has all the words with
the same length and each of the others languages contains just the empty word. The property will be used
to sort out the tuples of languages we are interested in.

We introduce the notion of information domain tailored for multi-clock nets which we call ticking domain.
The notion has to take into account the existence of the several components of a multi-clock net. We assume
the existence of a finite set of indexes I = {1,...,n}.

16

Definition 5.5. Let I = {1,...,n} be a finite set of indices and let, for each i € I, Lf-\i be a set of ticking
languages over the alphabet A;. Let A be | J;c; Ai and let P be a property on the tuples with n components

belonging to (A*)™. Let LA = LZA?‘. A ticking domain D of arity |I| over A is the quadruple (A, Op, T, A),
where

il

e A={v:T LA | vE)eld A P(1),...,v(n))}, the elements of A are called vector-clock and
are ranged over by v, and 0 is the vector-clock v such that v(i) = Ly for each i € 1,

e Op is a set of partial operations op® : A* — 24 such that
— i <|I|, and
— if op*(vy,...,v;) is defined then op®(vy,...,v;) # 0, and

e 7: 1 xAxXA— A is the ticking mapping that takes an index i € I, a vector clock and an element in
A and returns a vector clock.

The notion of ticking domain is an obvious adaptation of Definition to the annotation of multi-clock
nets. The elements of a ticking domain are vectors of languages (or words) where the components of the
vector all together satisfy a property P, we will see its use in the next sections. Each operation op’ € Op
acts on a multiset of vector-clocks containing ¢ elements, that cannot be more than the cardinality of the
ticking domain. The unique relevant difference from Definition [3.2]is the updating mapping, which is called
here ticking mapping. It acts on each component separately, and the effects may differ from a component
to another. We again say that a ticking domain is regular is the operations in Op return a singleton. In this
case we write op’ : A" — A.

As before, given the set of vector-clocks, the set of operations and the ticking mapping (i.e. the updating
mapping) will be defined when constructing the proper domains for the spread net we are interested in. Given
a ticking domain D of arity |I|, with A; ; we denote the alphabet A;NA;, with ¢, j € I (obviously A; ; = A; ;).
We will sometime omit the word ticking when it is clear from the context that we are referring to a ticking
domain.

We already said that the languages of a vector-clock v may be induced by a suitable equivalence relation
~. In the case that the equivalence relation is well understood, rather than writing v(i) = {w’ | W' ~w} =
LY we simply write v(i) = w and also (w1, . .., w,) to denote the vector-clock where v(i) = L% for 1 < i < n.

Example 5.6. We first set a generic domain. Take any finite index set I and consider the set of alphabets
A;, with i € I, then a ticking-domain could be (A, Op,7,U;c; Ai) with A being the set of vectors v where each
component v(j) is the language with just one word and the property P could be that Vi, k € I, Yw € v(j),
Yu € v(k), proj(w,A;r) = proj(u,A; k) (the elements of the vector-clock agree on the common symbols).
The operations can be defined as follows. Take a tuple (vi,...,v;) of vector-clocks. The operations are
defined only if for each pair of vector-clock v, and vy, the elements are such that for each m € I either
the word of the language v, (m) is a prefix of the word of the language vi,(m) or vice versa. The result is
obtained by taking the maximum of all these words. The operation devised in this way is well defined, as
it returns a vector-clock satisfying P. Finally the ticking mapping, for each index, just concatenate the to
each word in each language the element of the alphabet | J,.; A;, provided that it belongs to the alphabet of
the language.

Concretely consider two alphabets Ay = {a,b} and Ay = {b,c}, the elements of the domain are the pairs
of words (w,u) having the same number of b (we identify the language with the unique word it contains),
and the operations either take a wvector-clock and it returns the vector-clock itself or it take two vector-
clocks v = (w,u) and v' = (w',u’). In these two vector-clocks it should be that either w is a prefiz of w'
or vice versa, and that either u is a prefiv of u' or vice versa, and the operation returns a vector-clock
composed by the two longest words. We show that this operation is well defined and the resulting vector-
clock satisfies the property. Assume that w is a prefiv of w' and that u' is a prefiv of u, and assume
that proj(u,{b}) # proj(w’,{b}). Then, as P(v") holds, we have that proj(w’,{b}) = proj(u’,{b}), thus
necessarily w contains fewer b than w', but also proj(w,{b}) = proj(u,{b}) as P(v) holds, hence it cannot

icl

17

be that u' is a prefix of u as proj(u,{b}) > proj(u’,{b}). It holds then that proj(u,{b}) = proj(w’,{b}) and
P((w',u)) holds. Finally T, for each indez, just concatenate the element to the words if the element belongs
to the alphabet.

We stress the fact that, as multi-clock nets can be seen as the composition of more elementary compo-
nents, also a ticking domain can be seen as the composition of simpler components. The main difference is
that we have to establish when the pieces of information coming from other components are coherent and
this is the purpose of the predicate P.

6. Unfoldings of Multi-clock nets as spread nets

When illustrating the notion of spread net (Section [4)) we have shown that various subclasses of nets,
each of them modeling a semantics for (safe) nets, could be viewed as spread nets for suitable information
domains, which we have constructed having in mind how we wanted to annotate these nets. In this section
we explore various notions of unfoldings in the same manner. We focus in particular on unfoldings of multi-
clock nets. For various notions of unfoldings proposed in the literature, we adapt them to multi-clock nets
and show how they can be seen as spread nets over suitable domains that are always revealing ones. The
element of the ticking domain associated to each place (condition) of the unfolding will carry information
about the knowledge that each component has on the executions leading to that place (condition), which is
inferred from the way the net is unfolded.

For each kind of unfolding we characterize the associated ticking domain, and each element of a ticking
domain will be a vector-clock where each entry is a language (possibly induced by an equivalence class) of
words on the alphabet defined by the transitions of the corresponding component of the multi-clock net to
be unfolded.

We recall when we consider a net an unfolding. We say that a net N’ is the unfolding of another net N
if some conditions are fulfilled:

e cach transition of the unfolding is executed at most once in a computation,

e cach computation of the unfolding can be mapped to a computation in the original net via a folding
morphism, and

e to each computation of the original net it is possible to find a corresponding computation in the
unfolding (where corresponding means that the former computation is mapped to the latter one).

Thus an unfolding is a net N’ (possibly enjoying some specific characteristics like, for instance, being an
unravel net or an occurrence net) and a suitable labeling mapping that turns to be a folding morphism.

Let N = (P,T,F,mg) and N’ = (P, T', F', m{)) be two safe nets, a folding morphism f: N — N’ is a
net morphism where the following further conditions hold:

1. f: P— P’ and f: T — T’ are total mappings,
2. Vt € T it holds that f is bijective on ®*¢ and on t* as well, and
3. Vi, t' e Tif *t= *t" and f(t) = f(¢') then t =1¢'.

The first condition ensures that each place (condition) and transition (event) of the unfolding have a coun-
terpart, i.e. they correspond to a place or a transition of the net to be unfolded, the second states bijectivity
on the presets or postsets of transitions and the last requirement is a parsimony requirement: the net rep-
resenting an unfolding does not contain two transitions which are indistinguishable (bearing the same label
and using the same conditions, thus producing the same conditions). In the case of multi-clock nets the
morphisms (and henceforth the folding morphisms as well) preserve the partitions.

In this section with alph(N,) we will denote the set T, C T of the subnet NNV, of the multi-clock net
N = (N,v), with N = (P, T, F,mg), and p € my.

18

6.1. 1-unfolding of a multi-clock net

The notion of 1-unfolding has been formalized by van Glabbek and Plotkin in [26] and [24] and it is
meant to capture the so called collective token philosophy.

We briefly illustrate the idea behind this construction. In the collective-token philosophy it is irrelevant
to keep track of the transitions that have produced the tokens needed to execute a transition, all the different
histories are equated. The only requirement is that each occurrence of a transition in a computation of the
original net is uniquely represented in the l-unfolding. It is then enough to create, for each transition,
an occurrence of it connected to the places as the original transition and enforce that this occurrence is
executed just once. In the construction this is achieved by creating a place in the preset of each transition
and guaranteeing that this place gets marked just once. Occurrences of the same transition are numbered
and we implement their ordered execution. The construction is rather syntactic and, to assure that each
transition of the 1-unfolding can be executed, we assume that each transition of the multi-clock net N to
be unfolded can be executed an arbitrary number of times. Henceforth we assume the multi-clock net
N = (N,v) is live.

The only information that the l-unfolding has to convey regards the ordering in the execution of a
single transition. To achieve this we enrich the multi-clock net by adding some components that have this
numbering purpose. Furthermore this enrichment will allow us to define a proper folding morphism.

Enriching multi-clock nets. The enrichment is done by adding a new component for each transition of
the original net, and the added component has just a numbering purpose: it should guarantee that the
executions of each transition in the net can be numbered just by looking at this added component. We will
call the added components numbering-automata.

Consider a multi-clock net N = (N, v), where N = (P, T, F, my), for each t € T we add a place p; which
is initially marked and connected with ¢ with an incoming and an outgoing arc.

Definition 6.1. Let N = (N, v) be a multi-clock net, where N is (P, T, F,mq). Then the enrichment of N,
denoted with N, is the pair (N,v) where
o N= (ﬁ,T,ﬁ,n%) s a safe net where
—~ P=PU{p | teT},
— F=FU{(pi,t) | te T}U{(t,p;) | t€T}. and
— mo(p) = mo(p) when p € P and mo(p) =1 whenp € {p: | t € T}, and

o U extends v stipulating that U(p:) = p;.

If the original multi-clock net was formed by n synchronizing net automata and it has m transitions,
the enriched multi-clock net is formed by m + n synchronizing net automata and the added automata
Np, = ({pe} {t}, {(pe, 1), (t,pe)}, {p+}) (we confuse the initial marking with the set) simply counts the
occurrence of the transition t.

Proposition 6.2. Let N = (N, v) be a multi-clock net and N = (N, D) its enrichment. Then N is a multi-
clock net.

It is a trivial observation that there is a one to one correspondence between the reachable markings of N
and those of IV, and between the firing sequences as well.

Proposition 6.3. Let N = (N, v) be a multi-clock net and N = (N,) its enrichment. Let i defined as as

m(p) = m(p) if p € P and m(p) =1, and let its extension to firing sequences defined as m/[t>\0 =mlt)o.

—

N N T
Then FS,; = FSi and My = Mg.
Proof. Obvious. O

The enrichment does not influence the behaviour of a multi-clock net.

19

1-unfolding construction. As we have done for occurrence and unravel nets, we call places conditions and
transitions events, thus we use B and E for condition and events, respectively.

Definition 6.4. Let N = (N,v), with N = (P, T, F,mq), be a multi-clock net and let N be its enrichment.
The 1-unfolding O is the (labeled) multi-clock net (O, f), with O = (O,vp), where O = (B, E,W, co, fr), Vo
and f are defined as follows:

e B=(Px{+x}HU{p: | teT} xN),

« E=Tx N\ {0}),

o W = {((p,*),(t,3)) | pePteT,(p,t) e Fandie N} U {(((¢t,i),p,x)) | p € Pt € T,(t,p) €
F and i e N} U {((ps,9),(t,i+1)) | t€T and i € N} U {((t,4), (ps,7)) | t €T and i € N},

* co((p,*)) = mo(p), co((pe,0)) =1 and co((ps, 1)) =0 for i # 0,

* vo((p,*)) = v(p) and vo((pt,i)) = (p+,0), and

o fp((p,%) = p, fp((p1;4)) = pt, and fr(t,i) =t.

The 1-unfolding O is related to the multi-clock net N , and then to N itself. Each condition (p, x) is related
to the place p and the condition (p,7) to the place p; and the event (¢,4) to the transition ¢. It is routine
to check that f is a morphism (which implies that each computation of the 1-unfolding O is mapped to a
computation of the multi-clock net N and of N as well). The requirement that each computation of N has
a correspondence in a computation of O is trivial. We have turned the construction into a labeled net as
the fr can be seen as a labeling of event: to each event (¢;, k) it associates the label t.

The liveness assumption on the multi-clock net N allows us to create as many copies of ¢ as we need
without being forced to count them beforehands, as the net can stutter. Would we avoid the requirement
that each transition of N can be executed an arbitrary number of times we would have to calculate, for each
transition ¢, its maximal number of occurrences resorting to the states of the multi-clock net N. Assume,
for instance, that the transition T is executed at most n times in each state, i.e. n = max({X(¢) |
X € St(N)}) = &(t), then we have to introduce the places {(ps, i) | i < &(t)}, the transitions associated to
t would be {(¢t,4) | 1<i<¢(t)} and so forth. The way places and transitions are connected would not
change, as well as the other ingredients of the construction.

0 = (0,vp) is indeed a multi-clock net and O is as well an occurrence net, i.e. each event (transition)
is executed just once.

Proposition 6.5. Let N = (N,v) be a multi-clock net and N its enrichment. Let O = ((O,v0), f) be its
1-unfolding. Then (O,vo) is a multi-clock net and f is a folding morphism.

Proof. The fact that f is a morphism trivial (it is the identity relation on the places in P and all the
numbering places are related to the proper numbering one), and it is also a folding morphism: f is clearly
total on places and transitions, and the other two conditions are trivial. Clearly each component of the
1-unfolding is a net-automata: the one deriving by the ones non numbering one are net-automata as they
are net automata in N, and the numbering ones are net-automata as well. 0

Given an l-unfolding O = (O, f), we now discuss on how to turn O into a spread net. The ticking
domain tailored for this construction is the one where each vector-clock either consists of just the empty
word for each entry of the vector-clock, or it has just one entry which is not the empty word and this entry
is associated to a numbering component of the enrichment. The operations and the ticking mapping are
defined according to this intuition.

Example 6.6. The multi-clock net N = (N,v) on the left in Figure @ has just one component with two
transitions. Its enrichment N is shown below N and has three components, where two of them are numbering
ones. On the right of these two multi-clock nets we depict the initial part of the 1-unfolding. Observe that
the piece of information associated to the conditions of the unfolding carry, for each numbering component,
the number of timess the associated transition has occurred.

20

Figure 6: A multi-clock net with three components and its 1-unfolding

The following definition details the discussion on how to define the domain.

Definition 6.7. Let N = (N,v) be a multi-clock net, where N = (P, T, F,mo) and n = |T|, and let N its

enrichment. The ticking domain for the 1-unfolding of N, denoted with fD,{,u"f is the quadruple (A, Op,7,T)
where

o A= {(wr,...;wn,up, syt) | I py.up, Fe A ViEpy. wi=efU{(e,...,e)}, with the 0
being the vector-clock (g, ... ¢€),

e Op={op* | 2 <k <n+1} where op*(vy,...,v) is defined when all the k vector-clock are 0 or just
one of them is not, and
0 if Vi<k.v;=0
Vj if 3 ju; #0
i.e. the result is 0 in the case all the vector-clocks are 0 and the only one not being 0 otherwise, and

opk(vl,...,vk) =

o 7 is defined as follows:

T(1, (W1« v oy Wngm)s) = { 0 if i # py,

(&evvswWp,, "ty s€) otherwise

We stress that 3! py,. up, # € A Vi# py,. w; = ¢ is the property the elements of the ticking domain have
to fulfill; and it says what we have stressed before, namely that at most one component of the vector-clock
is different from £, and this component is one of the numbering components.

Proposition 6.8. Let N = (N,v) be a multi-clock net, where N = (P, T, F,mg), and let N its enrichment.
Let O = (O, f) be its 1-unfolding. Then OD,Q“”f ,, Where

e O = (0,vp) is the labeled multi-clock net where O = (B, E, W, co, fr) is obtained by the multi-clock
(0,v0) constructed in Definition [6.4, and

e h: B — A is defined as

0 if beP
h(b):{(57...,ti7...,5) if b= (pe,1)

. 1
is a spread net over DN“"f.

Proof. By construction it is easy to see that the conditions of Definition are fulfilled. O

We observe that the ¢ in the vector-clock corresponding to a non numbering component can be considered
as the representative of the equivalence defined equating all the local computation to the empty one (thus
forgetting everything). The words in the numbering components are those used to guarantee the order in
the execution of the same transition (each word is equivalent to itself).

21

6.2. Branching processes

The 1-unfolding realizes the idea that, in each component which is not a numbering one, the whole
past of each place is forgotten. This is represented by the 0 annotation of each condition beside the ones
belonging to numbering components. On the contrary we can imagine that the whole past is kept. This
gives rise to branching process ([4] and [5]). The notion is based on the one of occurrence net where, as we
have already mentioned, the computations are definable without resorting to the firing sequence. We recall
that in aa occurrence net C' = (B, E, W, ¢g) a subset of conditions X C B is said to be concurrent whenever
Vool e X.b#£b = (m(b<c) A = <gb) A =(b#c b)), and it is denoted with co(X). We define
at the same time the occurrence net and the folding morphism

Definition 6.9. Let N = (N,v), with N = (P, T, F,mq), be a multi-clock net. The unfolding C is the labeled
multi-clock net (C, f), with C = (C,v¢), where C = (B, E, W, co, fr), vo and f are defined as follows:

o B={(mo,p) | pemo}U{({e},p) | ec B A pec fr(e)°},
E={(X.t) | XCB A coX) A *t=fp(X)},
W={(be) | e=(X;t) A beX}U{(e,0) | b= ({e},p)},
co(b) =1 if b= (mg,p) and co(b) = 0 otherwise,

e vc((—,p)) = v(p), and
e fp((=p) =p and fr((—1t) =t.

The morphism f: C — N is clearly a folding morphism, and the resulting net is obviously an occurrence
net which is a multi-clock net as well. The unique difference with respect to the classical notion is that we
add the labeling to the occurrence net itself.

Proposition 6.10. Let N = (N, v) be a multi-clock net. Let C = ((C,ve), f) be its unfolding. Then (C,v¢)
is a multi-clock net and f is a folding morphism.

Proof. See [] and [16]. O

We now discuss on how to turn the multi-clock net (C,v¢) which is the one defined in Definition
into a spread net, using the fact that C' is an occurrence net. Take the labeled occurrence multi-clock net
C = (C,v¢) where C = (B, E, W, ¢, f) and the labels are the set T', and consider the condition b € B.
Assume that *b # (), hence it is caused by a unique event, say e, as *b is a singleton. Consider now the set
of events X, = {¢/ | € <¢ e}, and let z, € E* any linearization of the events in X, compatible with <&
(meaning that if ¢’ < €” then €’ precedes ¢’ in z.) and fr(w.) € T*. We observe that, for each p € mq:

1. wy, = proj(fr(ze),T,) is a word over alph(NV,) and there exis