ChemistrySelect

Supporting Information

Direct Conversion of Agarose into Alkyl Mono- and Disaccharide Surfactants Based on 3,6-Anhydro L- and D-Galactose Units

Yunhui Wang, Louise Renault, Jean-Paul Guégan, and Thierry Benvegnu*

Experimental

General

Agarose was purchased from SIGMA-ALDRICH (A9539-1004, Lot number: SLBD2499V). All commercially available reagents and solvents were used without further purification. TLC analysis was applied on Merck 60 F254 silica gel nonactivated plates; the eluent for TLC plate is CH₂Cl₂ or CH₂Cl₂/MeOH = 9/1; a solution of H₂SO₄ in EtOH (5%, v/v) and a spatula tip of orcinol was used for plates developing. The crude product was chromatographed by automatic puriFlash 430 equipment (Interchim) with pre-packed silica gel column (SILICA HC 12 g, 25 µm). Positive ion electrospray (ESI+) mass spectra were acquired on MS/MS TOF and the Shimadzu ensemble LC-MS 2020 mass spectrometers. NMR spectra were recorded on a Bruker Avance III 400 spectrometer operating at 400.13 MHz for ¹H, equipped with a BBFO probe with a Z-gradient coil and a GREAT 1/10 gradient unit. The standard temperature was adjusted to 298 K. ¹³C NMR spectra were recorded at 100.61 MHz. ¹H chemical shifts (δ) are given in ppm relative to the solvent residual peak and ¹³C chemical shifts are relative to the central peak of the solvent signal. Coupling constants were expressed in Hertz (Hz) and the following abbreviations were used to indicate the multiplicity: s (singlet), d (doublet), t (triplet), q (quadruplet), quint (quintuplet), sex (sextuplet), m (multiplet), dd (doublet of doublets) and dt (doublet of triplets).

Calculation of the molar equivalents of polymeric materials

The molar mass of the disaccharidic repeating unit of agarose is 306.74 g mol⁻¹. Because the aim of the study was to depolymerize agarose and graft alkyl chain on monosaccharide units, the value of 153.37 g mol⁻¹ corresponding to half of the molar mass of the disaccharidic repeating unit, was used to calculate the number of moles of monosaccharide unit. Thus, for 500 mg agarose, 1 eq. is 3.26 mmol.

For Amberlyst-15Dry, the concentration of acid sites is 4,7 eq. (mmol) per gram (data sheet from ROHM&HASS). For 1 eq. (3.26 mmol) Amberlyst-15Dry, the mass added is (3.26/4.7) = 0.694 g.

Synthesis of butyl mono- and disaccharide 3,6-anhydro L- and D-galactose acetals (1)-(4)

To a suspension of agarose (500 mg, 3.26 mmol, 1.0 equiv.) in water (22 mL, 1224.41 mmol, 375 equiv.) and *n*-butanol (36 mL, 396.72 mmol, 121.5 equiv.) was added Amberlyst-15Dry (694 mg, 4.7 mmol g⁻¹, 3.26 mmol, 1.0 equiv.). Then, in the presence of a Dean-Stark apparatus filled with *n*-butanol, the temperature was increased to reach 90°C and the reaction mixture was stirred for 22 h under reduced pressure (500 mbar). The reaction mixture was followed by TLC (CH₂Cl₂/MeOH (90/10, v/v), the plate was developed by 5 % H₂SO₄ in EtOH and a spatula tip of orcinol. The reaction mixture was cooled down to room temperature and filtered through a Büchner funnel precoated with celite and rinsed several times with CH₂Cl₂. The filtrate was neutralized with a 1N aqueous solution of NaOH and concentrated under reduced pressure. The residue was purified by silica gel column chromatography using CH₂Cl₂/MeOH (98/2 to 85/15, v/v) as the eluent to give *n*-butyl monosaccharides and disaccharides (overall yield = 61 %).

n-Butyl α,β -D-galactopyranoside (1 α,β)

After column chromatography, butyl D-galactoside **1** as an anomeric mixture (156 mg, yield 40%) was isolated as a solid. Rf 0.27 (CH₂Cl₂/MeOH: 9/1 v/v). ¹H NMR (400.13 MHz, MeOD): δ 4.82 (d, 1H, J = 3.3 Hz, H1 α), 4.22 (d, 1H, J = 7.3 Hz, H1 β), 3.91-3.90 (m, 1H, H3), 3.82 (δ , 1H, J = 1.4, 6.6 Hz, H4), 3.77–3.42 (m, 6H, H2, H5, H6, OCH₂), 1.63 (quin, 2H, J = 6.7 Hz, CH₂), 1.49-1.40 (m, 2H, CH₂), 0.97 (t, 3H, J = 7.3 Hz, CH₃). ¹³C NMR (100.61 MHz, MeOD): δ 103.63 (C1 β), 98.87 (C1 α), 75.30, 73.65, 71.19, 70.97, 70.10, 69.70, 69.15, 69,10, 67.46, 67.43 ,61, 15, 61.13, 31.49, 19.15, 13.00.

1-(Dibutylacetal)-3,6-anhydro-L-galactopyranoside (2)

After column chromatography, L-galactoside **2** (40 mg, yield 8%) was isolated as an oil R*f* 0.16 (CH₂Cl₂). ¹H NMR (400.13 MHz, MeOD): δ 4.50 (d, 1H, J = 7.6 Hz, H1), 4.15 (t, 1H, J = 2.6 Hz, H4), 4.03 (quin, 1H, J = 2.1 Hz, H5), 3.96-3.93 (m, 2H, H3, H6a), 3.81 (dd, 1H, J = 2.1, 9.4 Hz, H6b), 3.76-3.54 (m, 5H, H2, 2 OCH₂), 1.66-1.56 (m, 4H, 2 CH₂), 1.49-1.39 (m, 4H, 2 CH₂), 0.97 (t, 3H, J = 7.3 Hz, CH₃), 0.96 (t, 3H, J = 7.3 Hz, CH₃).¹³C NMR (100.61 MHz, MeOD): δ 104.40 (C1), 86.22 (C3),

79.98 (C4), 78.36 (C5), 74.85 (C6), 72.50 (C2), 69.14, 68.03 (2 OCH₂), 33.16, 33.05 (2 CH₂), 20.38, 20.36 (2 CH₂), 14.27, 14.20 (2 CH₃).

n-Butyl -3,6-anhydro-L-galactopyranoside (3)

After column chromatography, compound **3** (13 mg, yield 4%) was isolated as an oil. Rf 0.09 (CH₂Cl₂). ¹H NMR (400.13 MHz, MeOD): δ 4.52 (s, 1H, H1), 4.34 (d, 1H, J = 1.7 Hz, H4), 4.19-4.17 (m, 2H, H5, H6a), 4.11 (d, 1H, J = 4.7 Hz, H2), 3.92 (dd, 1H, J = 3.2, 8.9 Hz, H6b), 3.91 (d, 1H, J = 4.6 Hz, H3), 3.78 (dt, 1H, J = 6.5, 9.5 Hz, OCH_aH_b), 3.36 (dt, 1H, J = 6.4, 9.5 Hz, OCH_aH_b), 1.62-1.55 (m, 2H, CH₂), 1.47-1.38 (m, 2H, CH₂), 0.96 (t, 3H, J = 7.4 Hz, CH₃). ¹³C NMR (100.61 MHz, MeOD): δ 103.57 (C1), 82.51 (C2), 79.18 (C5), 74.22 (C3), 71.26 (C4), 71.20 (C6), 69.09 (OCH₂), 32.69 (CH₂), 20.49 (CH₂), 14.22 (CH₃).

D-Galactopyranosyl-(1->4')-1'-(dibutylacetal)-3',6'-anhydro-L-galactoside (4)

After column chromatography, disaccharide **4** (64 mg, yield 9%) was isolated as a solid. Rf 0.11 (CH₂Cl₂/MeOH: 9/1 v/v)). ¹**H NMR (400.13 MHz, D₂O):** δ 4.47 (d, 1H, J = 7.8 Hz, H1'), 4.45 (d, 1H, J = 7.9 Hz, H1), 4.33-4.29 (m, 1H, H5'), 4.27 (dd, 1H, J = 5.0, 3.0 Hz, H4'), 3.96 (m, 1H, H3'), 3.90 (dd, 1H, J = 10.0, 5.0 Hz, H6'a), 3.83 (d, 1H, J = 3.6 Hz, H4), 3.77 (dd, 1H, J = 7.8, 2.2 Hz, H2'), 3.77-3.71 (m, 1H, H6'b), 3.70-3.62 (m, 1H, H6), 3.60 (m, 1H, H5), 3.55 (m, 1H, H3), 3.70-3.49 (m, 4H, 2 OCH₂), 3.43 (dd, 1H, J = 10.0, 7.9 Hz,H2), 1.54-1.42 (m, 4H, 2 CH₂), 1.34-1.20 (m, 4H, 2 CH₂), 0.81 (t, 3H, J = 7.3 Hz, CH₃), 0.80 (t, 3H, J = 7.3 Hz, CH₃).¹³C NMR (100.61 MHz, D₂O): δ 102.62 (C1), 102.53 (C1'), 85.76 (C4'), 82.62 (C3'), 75.22 (C5), 75.10 (C5'), 72.90 (C6'), 72.58 (C3), 70.66 (C2), 69.83 (C2'), 68.92 (OCH₂), 68.47 (C4), 67.65 (OCH₂), 60.99 (C6), 31.00, 30.95 (2 CH₂), 18.65, 18.64 (2 CH₂), 13.05, 13.01 (2 CH₃).

One-pot process to synthesize dodecyl mono- and disaccharide acetal surfactants from agarose (5)-(10)

To a suspension of agarose (500 mg, 3.26 mmol, 1.0 equiv.) in water (22 mL, 1224.41 mmol, 375 equiv.) and *n*-butanol (36 mL, 396.72 mmol, 121.5 equiv.) was added Amberlyst-15Dry (694 mg, 4.7 mmol/g, 3.26 mmol, 1.0 equiv.). Then, in the presence of a Dean-Stark apparatus filled with *n*-butanol, the temperature was increased to reach 90°C and the reaction mixture was stirred for 22 h under reduced pressure (500 mbar). The reaction mixture was followed by TLC (CH₂Cl₂/MeOH (90/10, v/v), the plate was developed by 5 % H₂SO₄ in EtOH and a spatula tip of orcinol. At room temperature, *n*-dodecanol (2.93 mL, 13.06 mmol, 4.0 equiv.) was added. The mixture was then heated to 70°C and the pressure was progressively reduced to 5 mbar to azeotropically remove water and *n*-butanol. Under these conditions, the reaction mixture was stirred for 4 h. The residue was cooled down to room temperature, diluted in CH₂Cl₂/MeOH (90/10, v/v). The filtrate was neutralized with a 1N aqueous solution of NaOH and concentrated under reduced pressure. The residue was purified by silica gel column chromatography using CH₂Cl₂/MeOH (98/2 to 90/10, v/v) as the eluent to give the dodecyl monosaccharides and disaccharides **5-8** (overall yield = 45 %) in addition to a mixture of dodecyl/butyl glycosides based on single-tailed disaccharides **9,10** (yield ~ 6%).

n-Dodecyl α,β -D-galactopyranoside (5 α,β)

After column chromatography, dodecyl D-galactoside **5** as an anomeric mixture (113 mg, yield 20%) was isolated as a solid. Rf 0.32 (CH₂Cl₂/MeOH: 9/1 v/v). ¹H NMR (400.13 MHz, MeOD): δ 4.82 (d, 1H, J = 3.1 Hz, H1 α), 4.23 (d, 1H, J = 7.3 Hz, H1 β), 3.91-3.90 (m, 1H, H3), 3.84–3.79 (m, 1H, H4), 3.77–3.45 (m, 6H, H2, H5, H6, OCH₂), 1.69-1.59 (m, 2H, CH₂), 1.49-1.31 (m, 18H, 9 CH₂), 0.92 (t, 3H, J = 6.5 Hz, CH₃). ¹³C NMR (100.61 MHz, MeOD): δ 103.60 (C1 β), 100.30 (C1 α), 75.40, 73.74, 72.31, 71.55, 71.06, 70.28, 69.21, 69.11, 62.70, 30.65, 33.07, 30.76, 30.61, 30.48, 27.35, 23.73, 14.45. MS (ESI+): *m*/z calcd for C₁₈H₃₆O₆Na [M+Na]⁺: 371.24; found: 370.85; *m*/z calcd for C₃₆H₇₂O₁₂Na [2M+Na]⁺: 719.49; found: 719.45.

1-(Didodecylacetal)-3,6-anhydro-L-galactopyranoside (6)

After column chromatography, L-galactoside **6** (94 mg, yield 11%) was isolated as an oil. Rf 0.26 (CH₂Cl₂). ¹H NMR (400.13 MHz, MeOD): δ 4.49 (d, 1H, J = 7.6 Hz, H1), 4.14 (t, 1H, J = 2.8 Hz, H4), 4.02 (quin, 1H, J = 2.1 Hz, H5), 3.95-3.92 (m, 2H, H3, H6a), 3.80 (dd, 1H, J = 21.9, 9.3 Hz, H6b), 3.74-3.53 (m, 5H, H2, 2 OCH₂), 1.66-1.56 (m, 4H, 2 CH₂), 1.41-1.31 (m, 36H, 18 CH₂), 0.92 (t, 6H, J = 6.7 Hz,2 CH₃).¹³C NMR (100.61 MHz, MeOD): δ 102.96 (C1), 84.84 (C3), 78.58 (C4), 76.96 (C5), 73.46 (C6), 71.06 (C2), 67.94, 66.74 (2 OCH₂), 31.69, 29.43, 29.38, 29.10, 25.87, 22.35 (20 CH₂), 13.05 (2 CH₃). HRMS (ESI+): *m/z* calcd for C₃₀H₆₀O₆Na [M+Na]⁺: 539.4282; found: 539.4286.

n-Dodecyl -3,6-anhydro-L-galactopyranoside (7)

After column chromatography, compound **7** (34 mg, yield 6%) was isolated as an oil. Rf 0.14 (CH₂Cl₂). ¹H NMR (400.13 MHz, MeOD): δ 4.51 (s, 1H, H1), 4.34 (d, 1H, J = 1.7 Hz, H4), 4.19-4.17 (m, 2H, H5, H6a), 4.11 (d, 1H, J = 4.6 Hz, H2), 3.93-3.90 (m, 2H, H5, H6b), 3.76 (dt, 1H, J = 6.7, 9.6 Hz, OCH_aH_b), 3.34 (dt, 1H, J = 6.5, 9.7 Hz, OCH_aH_b), 1.65-1.54 (m, 2H, CH₂), 1.41-1.31 (m, 18H, 9 CH₂), 0.92 (t, 3H, J = 6.7 Hz, CH₃). ¹³C NMR (100.61 MHz, MeOD): δ 103.58 (C1), 82.52 (C2), 79.19 (C5), 74.22 (C3), 71.27 (C4), 71.21 (C6), 69.41 (OCH₂), 33.08, 30.79, 30.75, 30.74, 30.57, 30.48, 27.41, 23.74 (10 CH₂), 14.45 (CH₃). MS (ESI+): *m/z* calcd for C₁₈H₃₄O₅Na [M+Na]⁺: 353.23; found: 352.90; *m/z* calcd for C₃₆H₆₈O₁₀Na [2M+Na]⁺: 683.47; found: 683.60.

D-Galactopyranosyl-(1->4')-1'-(didodecylacetal)-3',6'-anhydro-L-galactoside (8)

After column chromatography, disaccharide **8** (85 mg, yield 8%) was isolated as a solid. Rf 0.16 $(CH_2Cl_2/MeOH: 9/1 v/v)$). ¹H NMR (400.13 MHz, MeOD): δ 4.50 (d, 1H, J = 7.8 Hz, H1'), 4.40 (d, 1H, J = 7.8 Hz, H1), 4.31-4.28 (m, 1H, H4'), 4.28-4.24 (m, 1H, H5'), 4.11-4.05 (m, 1H, H3'), 3.95-3.89 (m, 1H, H6'a), 3.84-3.75 (m, 3H, H6a, H2', H6'b), 3.73-3.68 (m, 1H, H6b), 3.66-3.56 (m, 2H, OCH₂), 3.56-3.50 (m, 4H, OCH₂, H2, H5), 3.48 (dt, 1H, J = 9.7, 3.2 Hz, H3), 1.43-1.36 (m, 4H, 2 CH₂), 1.43-1.36 (m, 36H, 18 CH₂), 0.90 (t, 6H, J = 6.0 Hz, 2 CH₃). ¹³C NMR (100.61 MHz, MeOD): δ 104.8 (C1), 104.1 (C1'), 87.3 (C4'), 84.5 (C3'), 77.0 (C5), 76.6 (C5'), 74.9 (C3), 74.6 (C6'), 72.4 (C2), 71.6 (C2'), 70.3 (C4), 69.4, 67.6 (2 OCH₂), 62.7(C6), 33.1, 30.9, 30.8, 30.6, 30.54, 30.5, 27.2, 23.85 (20 CH₂), 14.5 (2 CH₃). HRMS (ESI+): *m/z* calcd for C₃₆H₇₀O₁₁Na [M+Na]⁺: 701.4810; found: 701.4811.

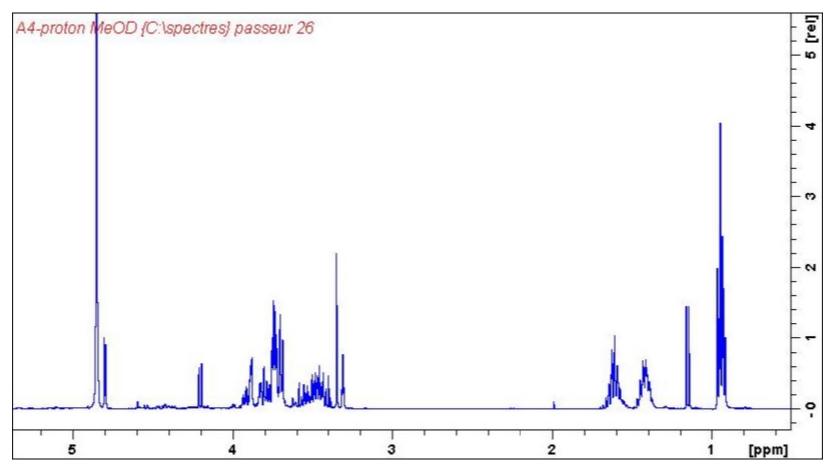
Interfacial tension and surface tension characterization

General

The solutions of products were prepared either in sunflower seed oil (brand "Carrefour", density at 25 °C: 0.92 g/L) or in Milli-Q water according to their solubility. Oil solutions were submitted to interfacial tension measurements and water solutions were prepared for surface tension measurements. Krüss apparatus (K100C) was used for interfacial tension and surface tension measurements, by Du Noüy ring method. The ring was cleaned by propane flame before each measurement.

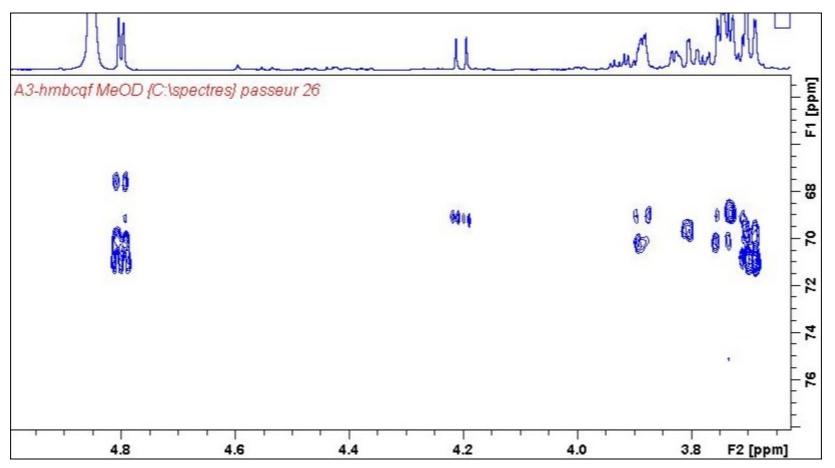
Oil solution preparation: The calculated amount of products was dissolved in 38 mL sunflower seed oil, in order to achieve the desired concentration. The solution was homogenized by ultrasonication at 30 °C for 15 min, then cooled down to room temperature (25°C) and stabilized at this temperature for at least 4 h before the measurement.

Interfacial tension (water/oil) measurement


The oil solution was firstly placed in a calibrated, clean and dry glass vessel, and the surface tension was measured; secondly, the oil solution was put aside, and the glass vessel was cleaned and dried. Then the platinum ring was cleaned by propane flame, and Milli-Q water was placed in the cleaned vessel to measure the surface tension of water. These two surface tension values of oil solution and pure water were used for the calibration of interfacial tension measurements.

At last, the oil solution was carefully added on the water already in the glass vessel, by a polystyrene pipette without forming any individual droplets, and the two-phase system was stabilized for at least 5 minutes before the measurement of interfacial tension. Once the test was launched, the propane flame cleaned ring was slowly emerged into the solution and the interface would be detected automatically. The interfacial tension was measured successively until standard deviation is within \pm 0.1 mN m⁻¹, the maximum measurement number is 10. The temperature was maintained at 25 °C \pm 0.1 °C by circulating water.

Water solution preparation: The calculated amount of sample was dissolved in 5.5 mL Milli-Q water to achieve the desired concentration. The solution was homogenized by ultrasonic at 30 °C for 15 min, then cooled down to room temperature (25 °C) and stabilized at this temperature for at least 4 h before the measurement.


Surface tension mesurement

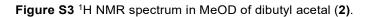

5 mL water solution was carefully introduced (without bubbles or foam) into a PTFE coated conic vessel and the measurement would be conducted automatically with pre-defined number of dilutions (30). After every surface tension measurement at one concentration, the solution was diluted with Milli-Q water by 765 Dosimat (Metrohm) to the next concentration and then homogenized by magnetic stirring for 60 s, followed by stabilization for another 60 s before the surface tension measurement began. Surface tension value at each concentration was determined by 5 successive measurements and the standard deviation was limited within \pm 0.1 mN m⁻¹. The temperature was maintained at 25 °C \pm 0.1 °C by circulating water.

Figure S1 ¹H NMR spectrum in MeOD of *n*-Butyl α , β -D-galactopyranoside (1 α , β).

Figure S2 2D-HMBC spectrum (4.85-3.65 ppm / 76-66 ppm) in MeOD of *n*-Butyl α,β -D-galactopyranoside (1 α,β). Correlations between OCH₂ of the butyl chain ant the anomeric protons.

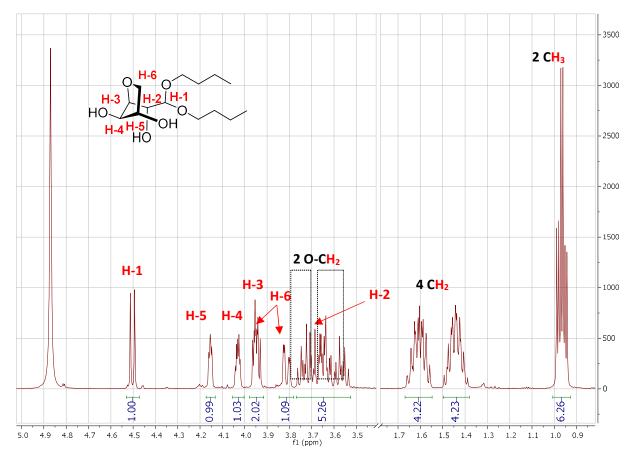
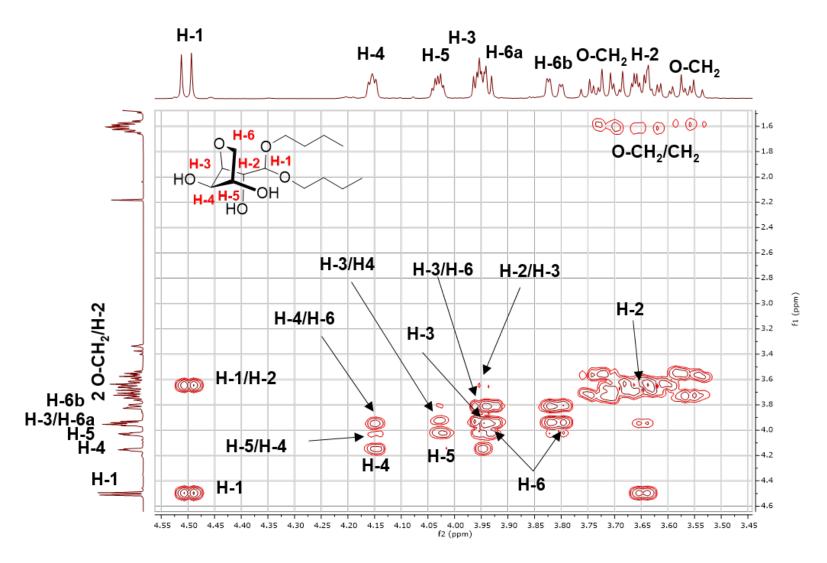
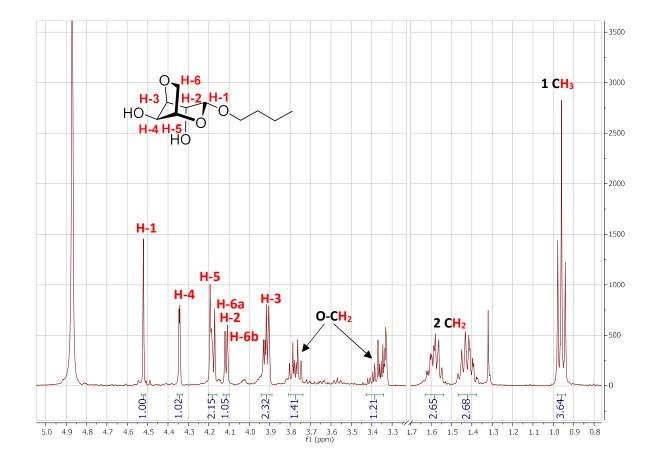
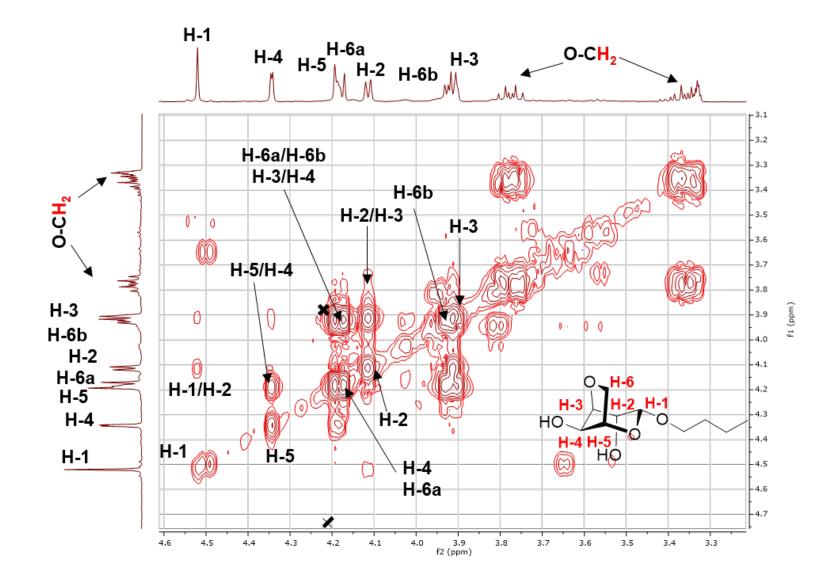





Figure S4 2D-COSY spectrum (3.45-4.55 ppm) in MeOD of dibutyl acetal (2).

Figure S5 ¹H NMR spectrum in MeOD of *n*-butyl-3,6-anhydro-L-galactopyranoside (**3**).

Figure S6 2D-COSY spectrum(4.6-3.1 ppm) in MeOD of *n*-butyl-3,6-anhydro-L-galactopyranoside (**3**).

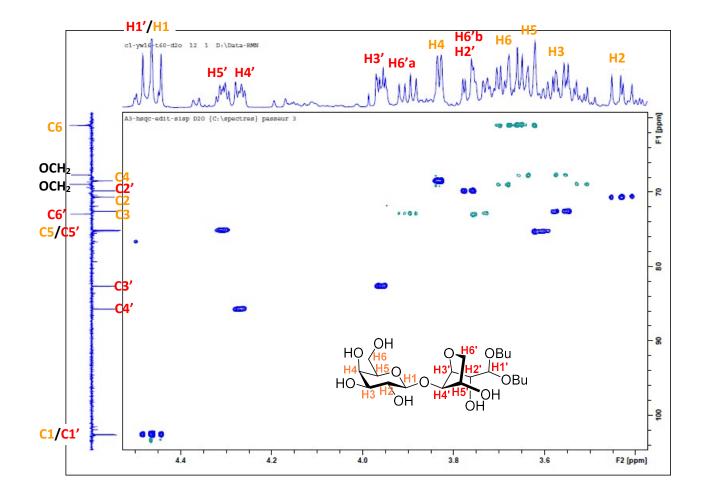


Figure S7 2D-HSQC spectrum (4.55-4.30 ppm / 60-105 ppm) in D₂O of dimeric acetal (4).

Figure S8 2D-HMBC spectrum (4.55-4.30 ppm / 60-105 ppm) in D₂O of dimeric acetal (4).

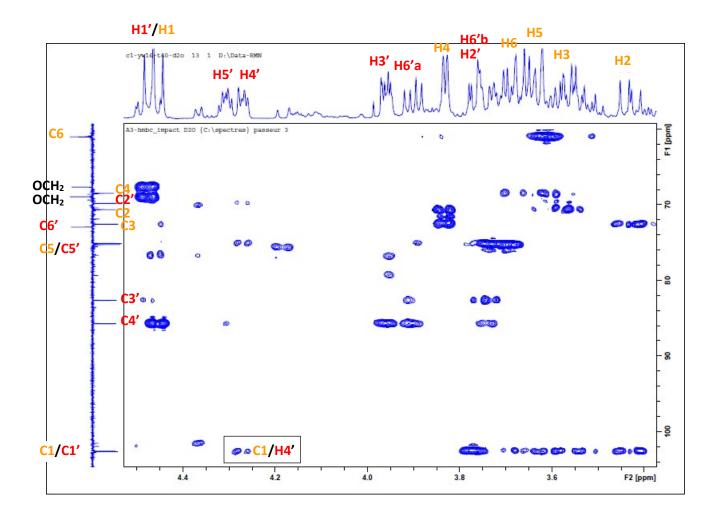


Figure S9 ¹H NMR spectrum in MeOD of L-galactoside (6).

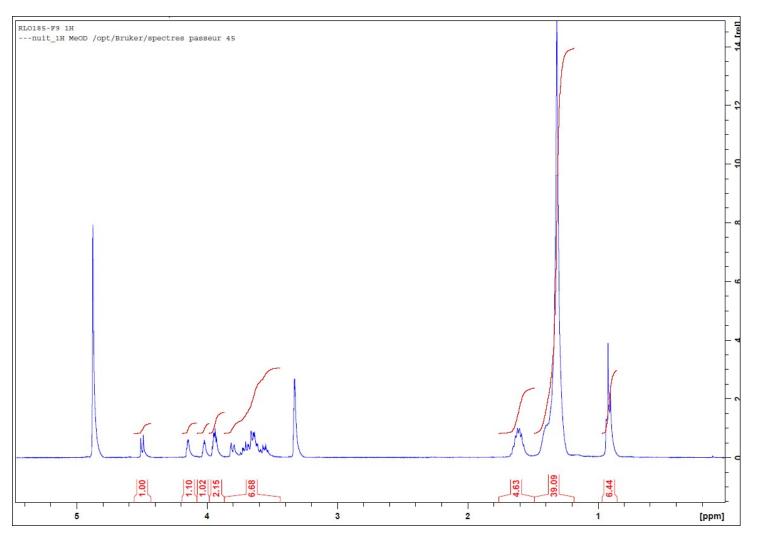
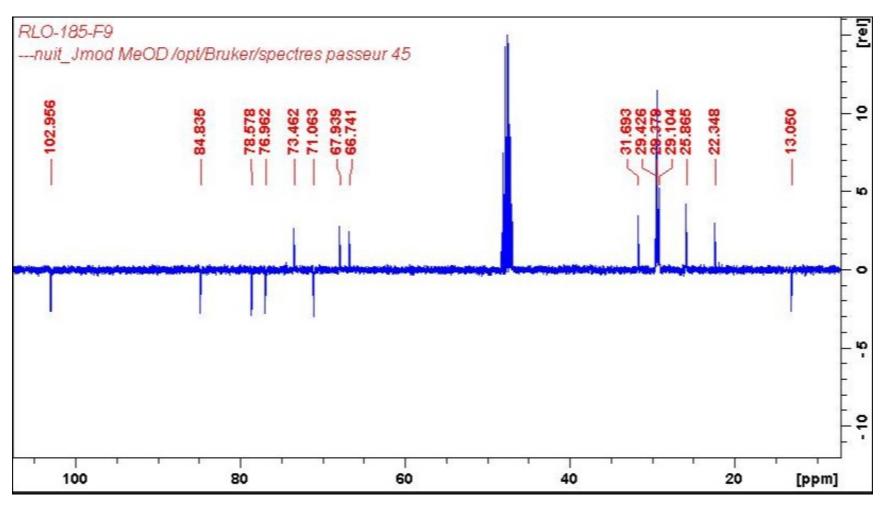



Figure S10¹³C (JMod) NMR spectrum in MeOD of L-galactoside (6).

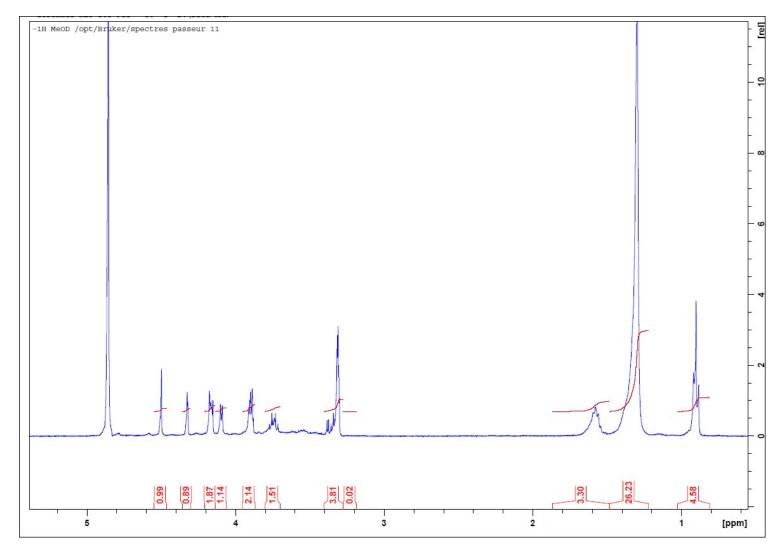
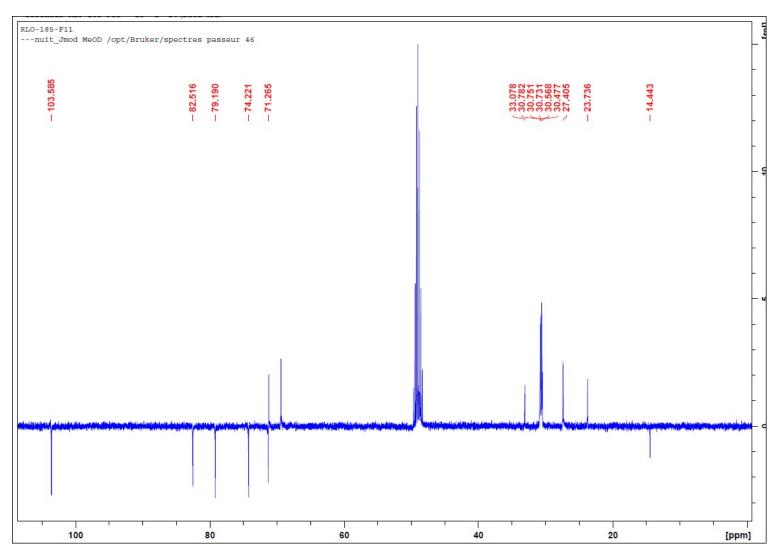
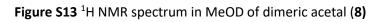
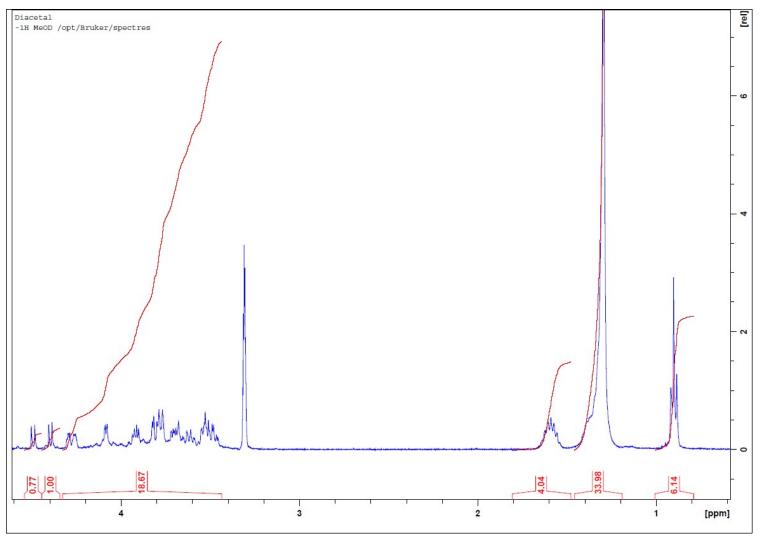
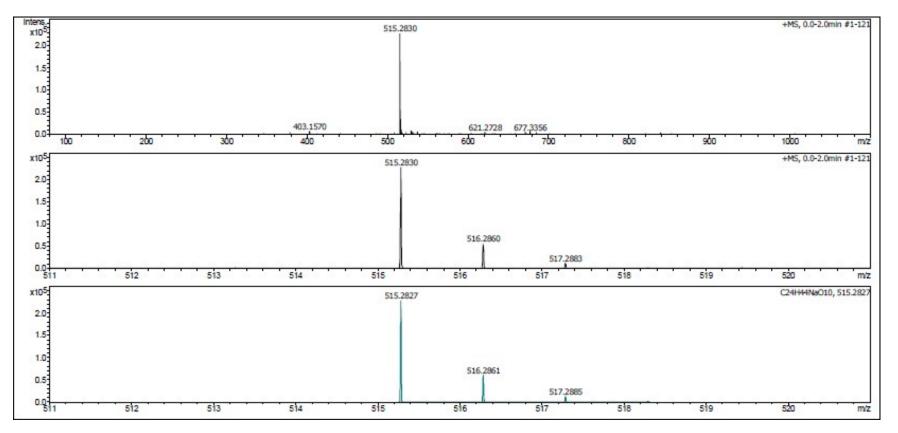
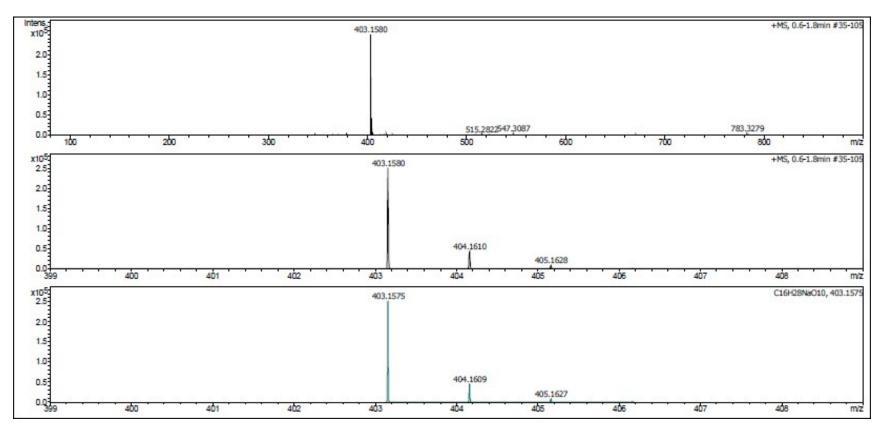




Figure S11 ¹H NMR spectrum in MeOD of L-galactoside (7).

Figure S12 ¹³C (JMod) NMR spectrum in MeOD of L-galactoside (7).


Figure S14 ¹³C (JMod) NMR spectrum in MeOD of dimeric acetal (8)

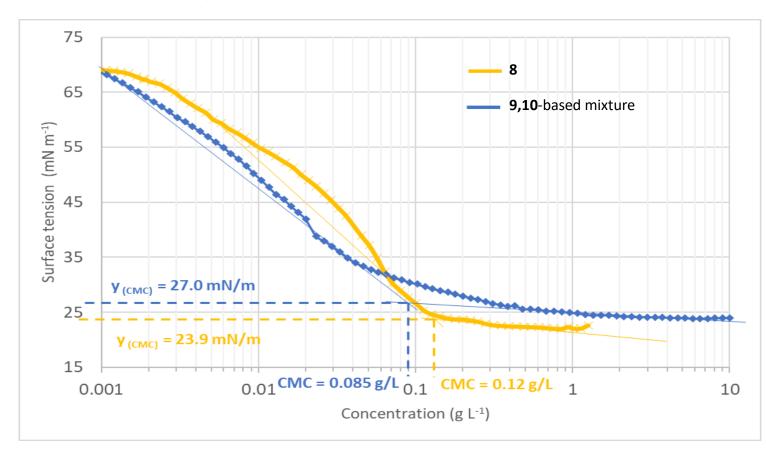


Figure S15 Electrospray (ESI+) mass spectra of dodecyl 4-*O*-(β -D-galactopyranosyl)-3,6-anhydro- α -L-galactopyranosides **9** affording the peak at m/z 515.2830 corresponding to the sodium adduct ions [M+Na]⁺.

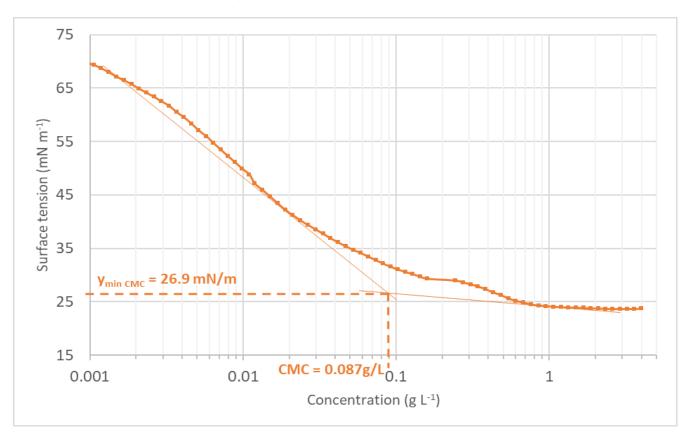


Figure S16 Electrospray (ESI+) mass spectra of dodecyl butyl 4-*O*-(β -D-galactopyranosyl)-3,6-anhydro- α -L-galactopyranosides **10** affording the peak m/z 403.1580 corresponding to the sodium adduct ions [M+Na]⁺.

Figure S17 Curves of surface tension (γ) versus log concentration (C) for disaccharide **8** and **9,10**-based mixture.

Figure S18 Curve of surface tension (γ) versus log concentration (C) for **5-10**-based surfactant composition.