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Abstract 

 

The present study aims to synthesis and full characterization of two new 

pentacoordinated isothiocyanate iron(III) mixed ligand complexes featuring dianionic (N2O2)
2-

 

tetradentate Schiff-base ligands unsymmetrically substituted by either a pair of acceptor (4-

fluorophenyl and nitro) or donor (ferrocenyl and methoxy) substituents. The two neutral 

complexes 3 and 4 were prepared in very good yields (~90 %) upon reaction of their respective 

chloro-iron(III) precursors 1 and 2 with sodium thiocyanate in refluxing ethanol. The two 

paramagnetic compounds 3 and 4 were characterized by elemental analysis, FT-IR and UV-vis 

spectroscopy, and mass spectrometry. The stretching frequencies of the thiocyanate group 

observed at 2014 and 2062 cm
-1

, respectively, indicate a N-bonded NCS
-
 moiety, in agreement 

with the HSAB principle. The crystal structure of 3 revealed that in the five-coordinate 

monomer, the iron atom adopts a slightly distorted square-pyramidal geometry, with the N and 

O atoms of the Schiff-base ligand occupying the basal sites and the nitrogen atom of the 

isothiocyanate co-ligand located at the apex of the pyramid. Intermolecular interactions in 

complex 3 have been addressed with the aid of Hirshfeld surface analysis as well as fingerprint 

plots. Magnetic susceptibility measurements (2-300 K) showed a high-spin configuration (S = 

5/2) for the d
5
 Fe(III) ion in 3.  

 

Keywords: iron; isothiocyanate; Schiff base complexes; X-ray crystal structure; ambidentate 

ligand 
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1. Introduction 

Transition metal complexes of Schiff base ligands have been widely investigated because 

they can be formed as stable complexes under various coordination geometries and oxidation 

states [1-5]. They have found a plethora of applications in various branches of science [6], such 

as, for instance, in catalysis [7,8], molecular magnetism [9,10], as nonlinear optics (NLO) 

molecular materials [11-13], and for their remarkable bioactivity [14-16]. Schiff base complexes 

have also been used as molecular building blocks in the development of multimetalic and new 

materials [17,18]. In particular, the design and synthesis of iron complexes with Schiff base 

ligands play a major role in the coordination chemistry of this earth abundant and biocompatible 

element. Indeed, inherent potentials of these complexes are their importance as biomimetic 

functional models for iron-containing enzymes [19,20], in medicinal chemistry [21-23], as 

catalysts [24-26], and as molecular materials based on spin crossover behavior [27-30]. On the 

other hand, both divalent and trivalent iron complexes of tetradentate Schiff base ligands have 

been taken under consideration since they exhibit unique coordination chemistry. Complexation 

of Fe(III) ions to diprotic Schiff base proligands having [N2O2] core generates a platform from 

which mixed-ligand species can be built up in presence of various co-ligands (halides, pseudo-

halides, solvent molecules or N-containing heterocycles) [31-34]. Depending on the lability of 

the co-ligands, such mixed-ligand complexes could serve as potential precursors for the 

construction of more sophisticated structures. Among the pseudo-halides, the NCS
-
 thiocyanate 

anion is an incredibly versatile ambidentate ligand with two donor atoms [35], known to 

coordinate to metal ions in both terminal and bridging modes. The sulfur and nitrogen ends are 

soft and hard type bases, respectively [36]. The NCS
-
 anion can be bonded to a metal ion either 

through the N atom (M-N=C=S, isothiocyanate) or the S atom (M-S-C≡N, thiocyanate), 

depending on the nature of the metal and/or of the ancillary ligands, giving rise to linkage 

isomers [37,38]. It can also readily bridge different metal ions through its terminal donor atoms, 

forming double µ
1,3

-thiocyanato bridged dimers [39-41], or one-dimensional polynuclear 

complexes [M-NCS-M]n [42,43]. An uncommon dinuclear Fe(II) complex featuring both end-to-

end bridging and terminal thiocyanato ligand has also recently been described [44]. Hard acids 

Fe(II) and Fe(III) ions, like other first-row transition metals, form the isothiocyanate isomer by 

way of M-NCS coordination [45,46], generating a stable «hard-hard» Fe-N interaction [35,36]. 

Thus, insertion of N-bound NCS
-
 co-ligand in the coordination sphere of the iron(III) center of 
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the Schiff base complexes leads to the formation of mostly mononuclear six-coordinate iron(III) 

[Fe(N2O2)(L)(NCS)]-type compounds [33,47-51], while reported corresponding five-coordinate 

Fe(III) derivatives [Fe(N2O2)(NCS)] are scarce [47,52]. Beneficially, the free sulfur atom allows 

the anchoring of the metal complex on gold nanoparticles [53].  

Herein we report on the synthesis and full characterization of two new neutral 

pentacoordinate iron(III) complexes featuring unsymmetric tetradentate Schiff base ligands 

substituted by either a pair of acceptor (L
A
: 4-fluorophenyl/nitro) or donor (L

D
: ferrocenyl 

[54]/methoxy) groups, with terminal N-coordinated isothiocyanato co-ligand. Both mixed-ligand 

complexes of the type [Fe(L
A
/L

D
)(NCS)] 3 and 4, respectively, were prepared starting from their 

previously reported corresponding pentacoordinated chloro iron(III) precursors 1 and 2 [55], 

upon reaction with sodium thiocyanate (see formulas in Scheme 1). Complex 3 was structurally 

characterized. The existence of intermolecular interactions is supported by Hirshfeld surface 

analysis and quantified by 2D fingerprint plots [56,57]. Magnetic investigations revealed that 3 

stays in the high-spin (HS) state over the whole temperature range.  

 

 

Scheme 1 Synthesis of the isothiocyanate-iron(III) Schiff base complexes 3 and 4. 

 

2. Experimental Section 

2.1. Materials and physical measurements 

All manipulations were performed under dry nitrogen atmosphere using standard Schlenk 

techniques. Solvents were dried and distilled according to standard procedures [58]. Reagents 

were purchased from commercial suppliers and used without further purification. The chloro-

iron(III) precursors 1 and 2 were synthesized according to the published procedure [55]. Solid-

state FT-IR spectra were recorded on a Perkin-Elmer Model 1600 FT-IR spectrophotometer with 

KBr disks in the 4000 to 450 cm
-1

 range. Electronic spectra were obtained with a Thermo 

Scientific Model Helios Omega 76006 v8.0 spectrophotometer. High resolution electrospray 

ionization mass spectra (HRMS-ESI
+
) were conducted on a Bruker MAXI 4G or Thermo Fisher 
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Scientific Q-Exactive mass spectrometer in positive mode, at the Centre Régional de Mesures 

Physiques de l’Ouest (CRMPO, Université de Rennes 1, France). Elemental analyses were 

carried out on a Thermo-Finnigan Flash EA 1112 CHNS/O analyzer by the Microanalytical 

Service of the CRMPO. The temperature dependences of the magnetizations for powdered 

samples have been measured with a SQUID magnetometer (Quantum design MPMS-XL5) 

operating between 2 and 300 K at a constant field of 2 kØe below 20 K and 10 kØe above. The 

experimental data have been corrected from the sample holder diamagnetism and the intrinsic 

diamagnetism estimated from the Pascal’s tables [59]. Melting points were determined in 

evacuated capillaries on a Kofler Bristoline melting point apparatus and were not corrected. 

2.2. Synthesis of the isothiocyanate complex 3 

A Schlenk tube containing a magnetic stirring bar was charged with 300 mg (0.590 mmol; 1 

equiv) of precursor 1 and 292 mg (3.60 mmol; 3 equiv) of sodium thiocyanate. Ethanol (10 mL) 

was then added and the reaction mixture refluxed for 8 h. Upon cooling to room temperature, the 

solvent was evaporated under reduced pressure, and the residue extracted with dichloromethane. 

The extracts were combined and evaporated to dryness under vacuum. Yield: 287 mg (93 %) of a 

microcrystalline dark brown solid. Recrystallization by slow diffusion of diethyl ether into a 

saturated dichloromethane solution of the complex afforded black single crystals suitable for X-

ray structure determination. M.p. 166-168 °C. Anal. calcd for 

C24H16FFeN4O4S·C2H5OH·0.8CH2Cl2 (645.31 g mol
-1

): C, 49.88; H, 3.69; N, 8.68; S, 4.97. 

Found: C, 49.93; H, 3.62; N, 8.69; S, 5.17. ESI MS (m/z) calcd for C23H16N3O4F
56

Fe [M - 

SCN]
+
: 473.04687, found: 473.0475; calcd for C47H32N7O8F2S

56
Fe2 [2M-.SCN]

+
: 1004.06944, 

found: 1004.0711. FT-IR (KBr pellet, cm
-1

): 2014 (vs) ν(NCS), 1606 (s) ν(C
···

N), 1560 (w), 1546 

(s), 1492 (s) νasym(N
···

O), 1320 (s) νsym(N
···

O), 1100 m ν(C-F). 

2.3. Synthesis of the isothiocyanate complex 4 

The synthesis of the dark brown microcrystalline solid 4 is similar to that described above for 3, 

using in this case 300 mg (0.514 mmol) of the precursor 2 and 250 mg (3.08 mmol) of sodium 

thiocyanate. Yield: 278.6 mg (89.4%). Repeated attempts to grow suitable X-ray single crystal of 

complex 4 only resulted in powders. M.p. 143-145 °C. Anal. Calcd for 

C29H24Fe2N3O3S·0.8(C2H5)2O (665.2 g mol
-1

): C, 58.09; H, 4.81; N, 6.31; S, 4.81. Found: C, 

58.46; H, 4.51; N, 6.92; S, 4.03. ESI MS (m/z) calcd for C29H24N3O3S
56

Fe2 [M]
+
: 606.02317, 

found: 606.0235; calcd for C28H24N2O3
56

Fe2 [M - SCN]
+
: 548.04802, found: 548.0483. FT-IR 
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(KBr pellet, cm
-1

): 3100 (w), 3062 (w), 2960 ν(C-H arom), 2924 (w), 2850 (vw), 2834 (m) ν(C-H 

aliph), 2062 (vs) ν(NCS), 1616 (m) ν(C
···

N), 1560 (s), 1534 (s) 1324 (m) ν(C-O). 

2.4. X-Ray crystal structure determination 

A clear dark red block -shaped crystal of 3 was mounted on top of glass fibers in a random 

orientation. Intensity diffraction data were collected at 296(2) K on a Bruker D8 QUEST 

diffractometer equipped with a bidimensional CMOS Photon100 detector, using graphite 

monochromated Mo-K radiation (λ = 0.71073 Å). The diffraction frames were integrated using 

the APEX3 package [60], and were corrected for absorptions with SADABS. The structure of 3 

was solved with the SHELXS [61] structure solution program by Direct Methods and refined 

with the SHELXL [ES5] refinement package by Least Squares minimization using the OLEX2 

program [62]. Non-hydrogen atoms were refined with anisotropic displacement parameters. All 

hydrogen atoms were included in their calculated positions, assigned fixed isotropic thermal 

parameters and constrained to ride on their parent atoms. Disordered dichloromethane solvate 

molecule was modelled using solvent mask [63] and BYPASS routine [64]. A summary of the 

details about crystal data, collection parameters and refinement are documented in Table 1, and 

additional crystallographic details are in the CIF file. ORTEP views were drawn using OLEX2 

software [62]. 
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Table 1 Crystal data, details of data collection and structure refinement parameters for complex 

3. 

Parameters 3 

Empirical Formula  C24H16FFeN4O4S 

Formula mass, g mol
-1

 531.32 

Collection T, K 296(2) 

crystal system Triclinic 

space group P ̅ 

a (Å) 9.1888(10) 

b (Å) 11.6471(11) 

c (Å) 12.6569(13) 

α(°) 81.139(5) 

 (°) 88.273(5) 

γ (°) 84.456(5) 

V (Å
3
) 1332.0(2) 

Z 2 

Dcalcd (g cm
-3

) 1.325 

Crystal size (mm) 0.300 × 0.228 × 0.222 

F(000) 542.0 

abs coeff (mm
-1

) 0.686 

 range (°) 2.221 to 26.460  

range h,k,l -11/11, -14/14, -15/15 

No. total refl. 69823 

No. unique refl. 5496 

Comp. max (%) 99.9 

Max/min transmission 0.9153/0.8563 

Data/Restraints/Parameters 5496/0/317 

Final R [I>2(I)] R1 = 0.0448, wR2 = 0.1168 

R indices (all data) R1 = 0.0583, wR2 = 0.1287 

Goodness of fit / F
2
 1.038 

Largest diff. Peak/hole (eÅ
-3

) 0.722/-0.811 

 

2.5. Hirshfeld surface analysis 

CrystalExplorer 17.5 software [65] was used to calculate Hirshfeld surface [66,67] and 

associated 2D-fingerprint plots [68,69] of complex 3, using the crystallographic information file 

(CIF) as input for the analysis. The normalized contact distance dnorm, defined in terms of de, di 

and vdW raddi of the atoms, was calculated using Eq. 1, where de and di are the distance from the 

Hirshfeld isosurface to the nearest external and internal nucleus, respectively, and vdW is the van 

der Waals raddi of atoms taken from the literature [70]. 
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The electrostatic potentials were mapped on the Hirshfeld surfaces [71], using the 6-

31G(d, p) basis set [72] at B3LYP level of theory [73] over a range of ± 0.002 au. For the 

generation of fingerprint plots the bond lengths of hydrogen atoms involved in interactions were 

normalized to standard neutron values (C-H = 1.083 Å, N-H = 1.009 Å, O-H = 0.983 Å) [74]. 

The intermolecular energies of the molecular pairs in the crystal packing were calculated, at 

B3LYP/6-31G(d,p) level of theory, in cluster of radius 3.8 Å around the molecule [69]. 

 

3. Results and discussion 

3.1. Synthesis and characterization 

The neutral iron(III) complexes 3 and 4 were readily prepared by reacting their known 

corresponding chloro-Fe(III) precursors 1 and 2 [55] with sodium thiocyanate in refluxing 

ethanol for 8 h. A simple scheme showing the synthesis of the two complexes is depicted in 

Scheme 1. Both complexes were isolated in excellent yields (> 80 %) as dark brown 

microcrystalline solids. They are stable under air and moisture, exhibit good solubility in polar 

organic solvents such as ethanol, dichloromethane, acetonitrile and dimethylsulfoxide (DMSO), 

but are insoluble in diethyl ether and hydrocarbons.  

 

The isolated complexes were characterized by satisfactory elemental analysis, FT-IR and 

UV-vis spectroscopy, magnetic measurements, and by single-crystal X-ray crystallography and 

Hirshfeld Surface analysis in the case of 3. In addition, both MS-ESI
+
 spectra of 3 and 4 are 

dominated by the ion peak [M - SCN]
+
 at m/z = 473 and 548, respectively. However, the 

molecular ion peak at m/z = 606 [M]
+
 (10 %) is also observed in the spectrum of 4, while for 3 

the presence of the NCS fragment is confirmed by the peak at m/z = 1004, corresponding to the 

[2M-(SCN)]
+
 ion (see sections 2.2 and 2.3 for details).  
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3.2. Infrared spectroscopy 

The solid-state FT-IR spectra of complexes 3 and 4 show a quite similar absorption band 

pattern to that of their chloro-iron(III) precursors 1 and 2, respectively (see Figs S1 and S2), 

suggesting the analogy of their molecular structures [55]. Both spectra present the characteristic 

strong ν(C=N) stretching vibration of the azomethine group at 1606 and 1616 cm
-1

, respectively. 

The lowering of the positions of these bands indicates the coordination of the imine nitrogen to 

the metal centers [55]. Two strong bands at 1492 and 1320 cm
-1

, due to the asymmetric and 

symmetric vibrational modes of the nitro substituent, are additionally seen in the spectrum of 3 

(Fig. 1) [75]. Besides, the strong sharp absorption bands at 2014 and 2062 cm
-1

 observed in the 

spectra of 3 and 4, respectively (Figs. 1 and S2), correspond to the thiocyanate group stretching 

frequencies [76]. In the case of 3, the band at 2014 cm
-1

 is confidently attributed to the 

asymmetric stretching vibration of the N-bonded terminal SCN
-
 moiety as ascertained from the 

X-ray diffraction study (see section 3.3 below). The situation is less straightforward for complex 

4 for which no crystal structure is available. However, based on previous observations [33,46-51] 

and despite the increase of electron density brought about by the two donor substituents that 

could increase the polarisability of the iron(III) center [36], the strong stretching vibration 

observed at 2062 cm
-1

 in the spectrum of 4 (Fig. S2) could also be confidently assigned to the 

SCN
-
 co-ligand bound via its nitrogen atom to the iron(III) ion. Moreover, the steric hindrance of 

the ferrocenyl substituent might disfavor the formation of a bent Fe-SCN coordination mode. The 

Fe-NCS way of coordination in both 3 and 4 can be explained using the hard-soft acid-base 

(HSAB) Principle [36]. Indeed, during the ligand exchange reaction, the axial chlorido ligand of 

1 and 2 is substituted with the thiocyanate anion to form the pentacoordinated isothiocyanate-

iron(III) counterparts 3 and 4, respectively, in which the SCN
-
 group is coordinated to the 

iron(III) metal center (a hard acid) through the nitrogen atom (a hard base).  
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Fig. 1 FT-IR spectrum of the isothiocyanate-iron(III) complex 3 in the 2150-1000 cm

-1
 range. 

 

3.3. Description of the X-ray crystal structure of 3 

The molecular structure along with numbering scheme for selected atoms of complex 3 is 

shown in Fig. 2. Bond lengths and angles for the first iron(III) coordination sphere are provided 

in Table 2, whereas the other relevant bond distances and angles are gathered in Table S1 

(Supplementary Material). Complex 3 crystallizes in the triclinic centrosymmetric space group 

P ̅ with one molecule per asymmetric unit. It is a mononuclear Fe(III) compound in which the 

iron center has a distorted five-coordinate geometry. The ferric ion is coordinated to a 

tetradentate unsymmetrically-substituted electron-withdrawing N2O2 Schiff base framework that 

constitues the basal plane. The axial site is filled with one thiocyanate ion as terminal ligand, 

finishing its coordination polyhedron (Fig. 2). The structure of compound 3 is reminiscent of that 

of its pentacoordinated chlorido precursor 1 [55], and to the best of our knowledge, 3 is the first 

pentacoordinated isothiocyanate iron(III) complex featuring a salen/salphen-type core to be 

structurally characterized.  
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Fig. 2 Molecular structure of complex 3 with numbering scheme for selected atoms. Hydrogen 

atom are omitted for clarity. Thermal ellipsoids are drawn at 30 % probability level. 

 

The iron(III) ion adopts a square pyramidal geometry (trigonality index ґ = 0.11; ґ = 0 for 

square pyramid and 1 for trigonal bipyramid) [77] with a FeN3O2 chromophore. The iron atom is 

displaced by 0.523 Å from the least-squares plane (LSP) defined by the Schiff-base donor atoms. 

Thus, complex 3 appears to be less distorted than its chloro-iron(III) precursor 1 (ґ = 0.32, dFe-LSP 

= 0.529 Å) [55]. Out of its five coordination sites, four positions are occupied by the dianionic 

tetradentate Schiff base ligand through two nitrogen (amino and imino) atoms and two oxygen 

(carbonyl and phenolato) atoms. The remaining fifth coordination position is satisfied by a 

thiocyanate moiety which is linked to the Fe(III) ion through a terminal nitrogen atom with a 

Fe(1)-N(4) bond length of 1.964(3) Å and a Fe(1)-N(4)-C(24) angle close to linearity [172.3(3)°]. 

The isothiocyanate group, which acts as a monodentate ligand, is linear within the experimental 

error [N(4)-C(24)-S1) = 178.2(3)°]. The iron-isothiocyanate Fe-N bond distance is slightly 

shorter than those measured in both neutral six-coordinate Fe(III) derivatives 

[Fe(N2O2)(L)(NCS)] (dFe-N = 2.02-2.05 Å) [33,49,51], and anionic five-coordinate Fe(II) 

complexes [Fe(N2O2)(NCS)]
-
 (dFe-N = 2.05 Å) [45]. The Fe-N-C and NCS angles found in 3 

(Table 2) are similar to those measured for both Fe(II) and Fe(III) compounds. Moreover, the 

Fe(1)-O(1), Fe(1)-O(2), Fe(1)-N(1) and Fe(1)-N(2) bond lengths of 3 (Table 2) are almost 

identical to their respective ones in the chloro-iron(III) precursor 1 [55]. However, the Fe-N bond 

distances of 2.0622(19) and 2.090(2) Å, similar to those observed in the pentacoordinated 

isothiocyanate-iron(II) species [45] but shorter than those found in the pseudo-octahedral 
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counterparts [33,49,51], clearly suggest that the iron(III) ion is in the high-spin state, and this 

matches the magnetic data (see section 3.6 below). 

Coordination of the tetradentate Schiff base ligand forms one five-membered and a pair of 

six-membered chelate rings with the central Fe(III) metal ion. The respective chelate bite angles 

are 77.86(7)°, 86.49(7)° and 89.09(8)° (Table 2). The two O-Fe-N angles are about 150° (Table 

2), and the planes of the [O-C-C-C-N] chelate rings make a dihedral angle of 33.39(11)°. This 

reflects the strain exerted by the ligand structure and results in a significantly bent arrangement of 

the ligand. Lastly, the [O(1)-C(7)-C(8)-C(9)-N(1)] plane makes a dihedral angle of 22.78(11)° 

with that of its 4-fluorophenyl substituent. The NO2 group is almost coplanar (9.45(13)°) with the 

salicylidene ring. Those values are respectively smaller by 22° and larger by 5° with respect to 

the corresponding ones found in the chloro-iron(III) precursor 1 [55].  

 

Table 2 Selected bond distances (Å) and angles (°) for the first Fe(III) coordination sphere of 

compound 3. 

Bond lengths 

Fe(1)-O(1) 1.8988(17) Fe(1)-O(2) 1.9069(17) 

Fe(1)-N(1) 2.0622(19) Fe(1)-N(2) 2.090(2) 

Fe(1)-N(4) 1.964(3) N(4)-C(24) 1.118(4) 

S(1)-C(24) 1.615(4)   

Bond angles 

O(1)-Fe(1)-N(2) 151.81(9) O(2)-Fe(1)-N(1) 145.43(9) 

O(1)-Fe(1)-N(1) 89.09(8) O(2)-Fe(1)-O(1) 90.65(8) 

N(1)-Fe(1)-N(2) 77.86(7) O(2)-Fe(1)-N(2) 86.49(7) 

N(4)-Fe(1)-O(1) 105.34(10) N(4)-Fe(1)-O(2) 107.30(10) 

N(4)-Fe(1)-N(1) 106.07(9) N(4)-Fe(1)-N(2) 102.27(9) 

Fe(1)-N(4)-C(24) 172.3(3) N(4)-C(24)-S(1) 178.2(3) 

 

3.4. Hirshfeld surface analysis 

Hirshfeld surface analysis [56,57,67] was carried out to verify the contributions of the 

different intermolecular interactions of compound 3 in the crystal structure (Fig. 3), where these 
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interactions are mainly constituted by C–H···C, C–H···N and C–H···O, in a centrosymmetric 

setting in the crystal structure. Other weak interactions were confirmed with complementary 

analyses with shape index and curvedness surface. 

 

 

Fig. 3 dnorm Hirshfeld surface over molecular structure of compound 3 (top) and its full 

fingerprint plot (bottom). 

 

The reciprocal contacts for C–H ···C and C–H···N, appear as a broad symmetrical wing with de + 

di ~ 2.8 Å, corresponding to C–H···π weak interactions. In the latter, the distance is slightly 

greater than the VdW radii for N and H atoms (de + di < 2.75 Å). For C–H···O symmetrical 

closed clamps with de + di ~ 2.4Å (see Fig. S3 for more details). The interatomic contacts of C–
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H···H interactions show a di + de ~ 2.3 Å < 2.4 Å, denoting H···H short contacts with another 

significant effect on the molecular packing with a contribution around 18%.

Another type of weak interactions is also observed in the Hirshfeld Surface analysis. For 

example, the contribution of C···C (π···π type interaction) are around 5.9%, when de + di of ~3.8 

Å, with a lesser contribution of 6.4%, respectively. This last weak interaction is observed 

between two o-phenylene ring of neighboring molecules and two 4-fluorophenyl moieties 

between neighboring molecules being part of centrosymmetric setting in the crystal structure 

(Fig. 4). 
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Fig. 4 Shape index (top), interatomic interactions (center) and fingerprint plot (bottom) of 

compound 3, showing the C···C contacts. 

 

Finally, energy framework was analysed for a better understanding of the packing and topology 

of the crystal structure and the supramolecular rearrangement (Fig. S4). According to the total 

intermolecular contacts contribution, the supramolecular structure of this compound generate an 

antiparalell one dimensional chain along the a – axis. The tube direction of the energy framework 

allows to conclude that the formation of crystal structure is directed just by centrosymmetry 

elements, specifically an inversion center. This rearrangement allows the formation of another 

weak interactions in the crystal structure. The results of the calculations revealed that dispersion 

interactions exhibit approximately ladder shape energy topologies. The small value of 

electrostatic energy versus dispersion energy in compound 3 is attributed to the absence or few 

classical hydrogen bonds interactions, despite of several number of interactions in the crystal 

packing (see Table S2 for more details).  

 

3.5. Electronic absorption spectroscopy 

UV-vis absorption spectra of complexes 3 and 4 were recorded in CH2Cl2 medium at 

room temperature in the range 200-800 nm. Both experimental and deconvoluted spectra are 

displayed in Fig. 5. The deconvoluted spectral data are collected in Table 3. The high-energy 

bands in the range 248-342 nm were attributed to intra-ligand π-π*/n-π* charge transfer (ILCT) 

transitions of the aromatic rings and imine and thiocyanate groups. The band at 384 and 351 nm 

for 3 and 4, respectively, could be asssigned to the n-π* transition of the non-bonding electrons of 

the sulfur of the isothiocyanate moiety [78]. The absorption bands observed in the visible region 

(472 and 446 nm, Table 3) were typical of the ligand-to-metal charge transfer (LMCT) transitions 

of phenolato and pseudohalido ligands to the iron(III) metal center [79,80]. Moreover, the band at 

514 nm for 3 and at 538 nm for 4 could be indicative of high-spin species [55,81].  
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Fig. 5 Experimental UV-vis spectra of complexes 3 (top, full line) and 4 (bottom, full line) 

recorded in CH2Cl2 at 20 °C, along with their respective deconvoluted spectra (red dotted lines). 

 

Table 3 Deconvoluted UV-vis. absorption data for complexes 3 and 4. 

 

Compd. λ/nm Logɛ 

 

 

3 

248 4.07 

295 4.26 

342 4.07 

384 4.02 

472 3.62 

514 3.08 

 

 

4 

296 3.87 

351 3.81 

446 3.53 

538 3.17 
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3.6. Magnetic properties 

The thermal variation of the molar magnetic susceptibility, M, has been measured for a 

powdered sample of compound 3 (Fig. 6) At room temperature (300 K), MT is equal to 4.13 cm
3
 

K mol
-1

 that is very close to the expected value (4.375 cm
3
 K mol

-1
) for high spin iron(III) 

(S=5/2) with g = 2.00. MT remains quasi constant on cooling down to 50 K then drops more and 

more rapidly to reach 0.97 cm
3
 K mol

-1
 at 2 K. Clearly, such a decrease cannot only be due to 

local magnetic anisotropy (zero-field splitting) of high spin iron(III) center for which low 

temperature limit of MT should not be lower than 2.5 cm
3
 K mol

-1
 [82]. One should in fact 

consider the combined effect of local anisotropy and intermolecular antiferromagnetic 

interactions to explain the low temperature decrease. In the absence of crystallographic structure 

for 4 we have not envisaged to measure magnetic properties to not over interpret the results.  

 

Fig. 6 Thermal variation of MT for compound 3 measured at 2 kØe below 20 K and 10 kOe 

above. 

 

4. Conclusions 

In summary, we have successfully synthesized and characterized two novel neutral 

pentacoordinated isothiocyanate iron(III) mixed ligand complexes, [Fe(L
A
)(NCS)] and 

[Fe(L
D
)(NCS)], where L

A
 and L

D
 are dianionic N2O2-tetradentate Schiff-base ligands 
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unsymmetrically substituted by either a pair of acceptor or donor groups, respectively. In the two 

A--π-A’ and D-π-D’ compounds, the two acceptor or donor units are connected through the 

conjugated iron(III)-centered macroacyclic Schiff-base core. The stretching frequencies of the 

thiocyanate group observed at respectively 2014 and 2062 cm
-1

, in their infrared spectrum, 

clearly testify a N-bonded coordination mode of the NCS
-
 moiety isothiocyanate isomer in both 

compounds. This trend agrees with previous results showing that first-row transition metals bond 

to the thiocyanate ligand through the M-NCS fashion and can be explained using the hard-soft 

acid-base concepts. The crystal structure of the [Fe(L
A
)(NCS)] derivative was elucidated by X-

ray diffraction using single cristal, confirming both the N-coordinated isothiocyanato co-ligand 

and that the iron(III) ion achieves a square pyramidal geometry. The N and O atoms of the Schiff 

base ligand occupy the basal sites and the nitrogen atom of the isothiocyanate co-ligand is located 

at the apex of the pyramid. Solid-phase magnetic measurements established the high-spin state (S 

= 5/2) of this d
5
 Fe(III) complex. Intermolecular interactions were studied by Hirshfeld surface 

analysis that shows significant C – H···C, C – H···N and C – H···O, hydrogen bonds and also 

weaker C···C (of π···π type) interactions. Further, the reported complexes and related ones that 

offer great flexibility could be envisioned to build up fascinating supramolecular networks or to 

functionalize metal nanoparticles or surfaces. 
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