
HAL Id: hal-03130280
https://hal.science/hal-03130280

Submitted on 10 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Kinect-driven Patient-specific Head, Skull, and Muscle
Network Modelling for Facial Palsy Patients

Tan-Nhu Nguyen, Stéphanie Dakpé, Marie-Christine Ho ba tho, Tien-Tuan
Dao

To cite this version:
Tan-Nhu Nguyen, Stéphanie Dakpé, Marie-Christine Ho ba tho, Tien-Tuan Dao. Kinect-driven
Patient-specific Head, Skull, and Muscle Network Modelling for Facial Palsy Patients. Computer
Methods and Programs in Biomedicine, 2020, pp.105846. �10.1016/j.cmpb.2020.105846�. �hal-
03130280�

https://hal.science/hal-03130280
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Kinect-driven Patient-specific Head, Skull, and Muscle Network Modelling 1 

for Facial Palsy Patients 2 

Tan-Nhu NGUYEN1, Stéphanie DAKPE2,3, Marie-Christine HO BA THO1, Tien-Tuan DAO1,4 3 

1Sorbonne Université, Université de technologie de Compiègne, CNRS, UMR 7338 Biomécaniques and 4 
Bio engineering, Centre de recherche Royallieu, CS 60 319 Compiègne, France 5 

2Department of maxillo-facial surgery, CHU AMIENS-PICARDIE, Amiens, France 6 
3CHIMERE Team, University of Picardie Jules Verne, 80000 Amiens France 7 

4Univ. Lille, CNRS, Centrale Lille, UMR 9013 - LaMcube - Laboratoire de Mécanique, Multiphysique, 8 
Multiéchelle, F-59000 Lille, France 9 

tan-nhu.nguyen@utc.fr, dakpe.stephanie@chu-amiens.fr, hobatho@utc.fr, tien-tuan.dao@centralelille.fr     10 

Manuscript submitted as a Research Paper to the 11 

Computer Methods and Programs in Biomedicine  12 

November 2020 13 

(2nd Revision) 14 

Corresponding author: Tien Tuan Dao, Ph.D. 15 

Centrale Lille Institut, CNRS UMR 9013 - LaMcube 16 

Laboratoire de Mécanique, Multiphysique, Multiéchelle  17 

59655 Villeneuve d'Ascq Cedex, France  18 

Tel: 33 3 20 43 43 04 19 

E-mail: tien-tuan.dao@centralelille.fr   20 

© 2020 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0169260720316795
Manuscript_39f0779a3ce60221d885feb8840ae299

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0169260720316795
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0169260720316795


Abstract 21 

Background and Objective: Facial palsy negatively affects both professional and personal life 22 
qualities of involved patients. Classical facial rehabilitation strategies can recover facial mimics into 23 
their normal and symmetrical movements and appearances. However, there is a lack of objective, 24 
quantitative, and in-vivo facial texture and muscle activation bio-feedbacks for personalizing 25 
rehabilitation programs and diagnosing recovering progresses. Consequently, this study proposed a 26 
novel patient-specific modelling method for generating a full patient specific head model from a visual 27 
sensor and then computing the facial texture and muscle activation in real-time for further clinical 28 
decision making. 29 

Methods: The modeling workflow includes (1) Kinect-to-head, (2) head-to-skull, and (3) muscle 30 
network definition & generation processes. In the Kinect-to-head process, subject-specific data acquired 31 
from a new user in neutral mimic were used for generating his/her geometrical head model with facial 32 
texture. In particular, a template head model was deformed to optimally fit with high-definition facial 33 
points acquired by the Kinect sensor. Moreover, the facial texture was also merged from his/her facial 34 
images in left, right, and center points of view. In the head-to-skull process, a generic skull model was 35 
deformed so that its shape was statistically fitted with his/her geometrical head model. In the muscle 36 
network definition & generation process, a muscle network was defined from the head and skull models 37 
for computing muscle strains during facial movements. Muscle insertion points and muscle attachment 38 
points were defined as vertex positions on the head model and the skull model respectively based on the 39 
standard facial anatomy. Three healthy subjects and two facial palsy patients were selected for 40 
validating the proposed method. In neutral positions, magnetic resonance imaging (MRI)-based head 41 
and skull models were compared with Kinect-based head and skull models. In mimic positions, infrared 42 
depth-based head models in smiling and [u]-pronouncing mimics were compared with appropriate 43 
animated Kinect-driven head models. The Hausdorff distance metric was used for these comparisons. 44 
Moreover, computed muscle lengths and strains in the tested facial mimics were validated with reported 45 
values in literature. 46 

Results: With the current hardware configuration, the patient-specific head model with skull and 47 
muscle network could be fast generated after 17.16±0.37s and animated in real-time with the framerate 48 
of 40 fps. In neutral positions, the best mean error was 1.91 mm for the head models and 3.21 mm for 49 
the skull models. On facial regions, the best errors were 1.53 mm and 2.82 mm for head and skull 50 
models respectively. On muscle insertion/attachment point regions, the best errors were 1.09 mm and 51 
2.16 mm for head and skull models respectively. In mimic positions, these errors were 2.02 mm in 52 
smiling mimics and 2.00 mm in [u]-pronouncing mimics for the head models on facial regions. All 53 
above error values were computed on a one-time validation procedure. Facial muscles exhibited muscle 54 
shortening and muscle elongating for smiling and pronunciation of sound [u] respectively. Extracted 55 
muscle features (i.e. muscle length and strain) are in agreement with experimental and literature data. 56 

Conclusions: This study proposed a novel modeling method for fast generating and animating patient-57 
specific biomechanical head model with facial texture and muscle activation bio-feedbacks. The Kinect-58 
driven muscle strains could be applied for further real-time muscle-oriented facial paralysis grading and 59 
other facial analysis applications. 60 

Keywords: real-time facial bio-feedbacks, patient-specific biomechanical head modeling, muscle-61 
oriented facial paralysis grading, muscle-oriented facial analysis.  62 



1. Introduction 63 

Facial expressions are important to personal identity, race, emotion, and health [1]. Facial paralysis due 64 
to strokes, accidental injuries, or post-facial transplants negatively affects both personal and 65 
professional life qualities of involved patients [2]. Facial paralysis is commonly caused by dysfunctions 66 
of facial muscle contractions due to damages of controlling facial nerves [2]. Classical facial 67 
rehabilitation strategies were classified into evaluation and treatment strategies. In evaluation strategies, 68 
degrees of facial palsy need to be first measured to personalize rehabilitation treatment programs for 69 
patients [3]. Moreover, quantitative and objective indicators are also required for evaluating 70 
development progresses of the current rehabilitation program [4]. Clinical and non-clinical facial 71 
paralysis grading systems have been developed for this purpose. Although the clinical grading systems 72 
are only based on evaluations of clinicians and physicians, they were subjective and inaccurate. As 73 
mostly based on computer-aided methods, the non-clinical grading systems are objective and accurate, 74 
but they have not been popularly applied in clinical environments [2,5]. In fact, objective measures 75 
should be used for supplementing subjective evaluations [6]. Moreover, real-time facial biofeedback is 76 
one of required functions of these non-clinical grading systems [2] for capturing not only static 77 
appearances but also dynamic motions of facial paralysis [3]. In fact, biofeedback is defined as the 78 
technique of providing biological information to patients in real-time. This information could be 79 
referred to as augmented or extrinsic feedback for improving physical rehabilitation [7]. Additionally, 80 
real-time framerate is commonly defined as a rate compatible with the graphic rendering rate of 30 81 
frame per seconds (FPS) [8]. Developing such real-time simulation systems for providing real-time 82 
biofeedback is also a technological and scientific challenge [9]. 83 

Numerous computer-aided non-clinical facial grading systems using visual sensors have been 84 
developed, but they did not directly analyze facial muscle actions and contraction behaviors due to lacks 85 
of patient-specific internal head anatomic structures. In these grading systems, facial paralysis degrees 86 
were mostly measured through evaluating geometrical asymmetries between left and right facial 87 
appearances and/or movements computed from two-dimension (2-D) images and/or three-dimension (3-88 
D) point clouds or facial landmarks. For instance, pixel intensity between left and right regions of facial 89 
images could be used for grading facial expressions [10]. However, using pixel intensities, this method 90 
was highly affected by light conditions and lacked of geometrical information of facial mimics. 91 
Consequently, geometrical information of facial features/landmarks were mostly employed for 92 
evaluating degrees of facial palsy. In particular, these geometrical information could be included 93 
symmetries of locations and displacement of facial features [11,12]. Moreover, landmark 94 
displacements, inter-landmark distances, landmark bounding areas, landmark motion velocities could 95 
also be employed for evaluating degrees of facial palsy [6,13–18]. However, the number of landmarks 96 
were limited (only from 5 to 64 [6,11–16,18]), so small geometrical information could not be captured. 97 
3-D facial models were subsequently directly used for grading. In particular, surface differences 98 
between a facial model and its horizontally mirrored model [19] or between a facial model in neutral 99 
position and one in mimic position could also be used for computing facial asymmetries [20,21]. 100 
However, automatic face segmentations and landmark detections on 3-D structures were often very 101 
challenging and had low accuracy (>2.5 mm) [22–24], so facial markers were also combined with 3-D 102 
models for facial mimic evaluations [25–27]. Moreover, generic facial models with available facial 103 
features could be deformed to 3-D scanned facial models to increase the density of facial features 104 
[15,21]. Other than that, internal blood flows measured by laser contrast imaging technique in different 105 
facial regions could be used for quantifying the severity of facial palsy patients [28]. 106 

Input interaction devices also significantly affected to accuracy, mobility, framerates of the computer-107 
aided facial paralysis grading systems. Single cameras were mostly used in 2-D image-based grading 108 
systems. However, their measurement results might be varied in light conditions [10], and they could 109 
not measure 3-D geometrical information [11]. Multiple cameras could be used in optical motion 110 
capture system for detecting 3-D motions of facial markers [6,12–15,18].  Although high accuracies 111 
(from 0.13 mm to 1.0 mm) and real-time framerates (up to 60 fps) could be reached, these grading 112 
systems needed long installation time for putting landmarks and calibrating optical cameras. Moreover, 113 
in 3-D surface-based facial analysis grading systems [16,17,19–21,26,27], although using 3-D surface 114 
scanners could have very high accuracy (from 0.01 mm to 1 mm), their capturing and processing time 115 
were relatively long (from 8 seconds to 5 min) [29]. One of the best types of sensors for compromising 116 



between accuracy and capturing & processing times and is Red Green Blue – Depth (RGB-D) sensors 117 
(e.g. the Microsoft Kinect V2.0 sensor).  The Kinect V2.0 sensor can capture 3-D point clouds with the 118 
accuracy up to ~1 mm [29], 2-D RGB images with the resolution of 1920×1080 pixels,  1,347 high 119 
definition facial points, head orientations, and head positions with the framerate up to 30 fps. However, 120 
although the Kinect sensors are suitable for facial analysis applications [30] and gait analysis 121 
applications [31], they have not been popularly used for real-time facial analysis applications [32]. 122 

Other than that, motions and rotations of the head also significantly affected to results of facial paralysis 123 
grading. Previous studies tried to omit these effects by only estimate relative geometrical differences 124 
between the current mimic position and the neutral position. In particular, in the landmark-based facial 125 
mimic grading systems, all landmark positions of current mimics were registered to the first mimics 126 
(neutral mimics) [10,14] or static facial landmarks (tragus points of both sides and the central nose 127 
point) [11]. Moreover, only inter-landmark distances could be analyzed for reducing effects of head 128 
positions and orientations [6]. Additionally, by analyzing only on areas covered by landmark positions, 129 
effects of head positions and orientations could also be discarded [17,26]. In the 3-D surface-based 130 
facial mimic grading systems, head orientations and positions were omitted by transforming all captured 131 
models to the first captured model to reach the best match between the corresponding landmarks [20], 132 
the forehead regions [21], or the whole models [19]. However, if head orientations and positions can be 133 
acquired by visual sensors (e.g. Microsoft Kinect V2.0), these geometrical data could be directly 134 
subtracted from facial movements [32]. 135 

Actually, facial mimics are deformation results of facial muscle activations on facial skins [33–35], so 136 
facial muscle actions should be directly analyzed in muscle-oriented facial paralysis grading methods. 137 
The concept of muscle-oriented facial analysis was initially defined in Facial Action Coding System 138 
(FACS) [36]. In this facial analysis system, facial movements were taxonomized into different types of 139 
action units (AUs) such as Inner Brow Raiser, Outer Brow Raiser, Lip Corner Puller, etc. These AUs 140 
were defined based on effects of muscle contractions on facial skins, so we can understand muscle 141 
behaviors through the values of AUs [36]. In literature, facial feature movements could be combined 142 
with facial textures in appropriate region of interests for estimating the AUs. Facial palsy levels could 143 
be evaluated through analyzing the computed AUs in time serial data [37]. However, most AUs are 144 
caused by a group of facial muscles responsible for specific facial movements, so these facial muscles 145 
cannot be analyzed individually. Moreover, FACS still only analyzed facial movements based on the 146 
effects of facial muscles on the skin. Consequently, the muscle-oriented facial analysis, in which facial 147 
muscle behaviors should be directly analyzed quantitively in real-time to understand facial movements, 148 
has not been thoroughly investigated. 149 

Internal structures of facial anatomy cannot be fast acquired using biomedical sensors/devices. Most 150 
visual sensors such as cameras, laser scanners, and infrared sensors can only capture exterior 151 
shapes/textures of subjects. Although some interior scanning devices such as sonar scanners and 152 
computed tomography (CT)/ (magnetic resonance imaging) MRI scanners can accurately acquire 2-D 153 
slices of internal structures, 3-D reconstruction procedures are slow and need numerous manual 154 
processing [38]. In fact, facial mimic muscles are often hard to be identified and classified using 155 
imaging techniques (e.g. CT and MRI) [39]. Consequently, a modeling method that can take advantages 156 
of real-time exterior facial mimics for predicting in-vivo internal facial muscle actions is essential for 157 
real-time facial paralysis grading applications. The prediction process should be based on the external-158 
internal relationship trained by accurate CT/MRI-based 3-D data.  159 

Physics-based head/face modeling methods have been widely developed in literature for modeling 160 
internal structures of heads/faces. However, they mostly estimated facial animations from muscle 161 
activations and have not yet estimated muscle patterns of contraction from deformation of the skin. 162 
Moreover, due to large computation costs on soft-tissue deformation, most of physics-based head/face 163 
models could not achieve real-time framerates [9]. For instances, a muscle-based parameterized face 164 
model was introduced by King et al., 2005 [40]. The face model including movable lips and a tongue 165 
was modeled as B-spline surfaces. Facial mimics were generated by moving control points of the B-166 
spline models in lip regions. Considering the processing time, it took 15-30 minutes for crafting a high-167 
resolution head model with full internal structures: lips, tongue, and skull. After crafting the target 168 
framerate of the system was 10 fps with a head polygonal mesh having less than 5,000 polygons [40]. 169 
Moreover, a constrained 3-D active appearance modeling methods was applied for modelling 3-D 170 



anthropometric-muscle-based face model. This model could be deformed to fit with different face-types 171 
and facial expressions by adjusting muscle actuators and statistics-based anthropometric controls. In 172 
particular, the muscle actuators were physics-based models of facial muscles whose activation could be 173 
controlled by changing their predefined parameters [41]. These modeled muscles were used for 174 
modeling facial expressions by activating the neighboring nodes in a facial mesh according to their 175 
patterns of contraction. The statistically based anthropometrical controls were used to model overall 176 
shapes of facial-types, such as facial width, mandible width, chin height, etc. With the hardware 177 
configuration of 2.3-GHz Pentium-4 CPU and ATI Mobility Radeon 9700 graphic card, the system 178 
framerate could be reached at 10 fps for tracking head pose and four AUs of FACS [42,43]. The finite 179 
element (FE) modeling method was also employed for modeling different types of facial muscles. From 180 
muscle activation, a FE-based face model including multiple layers could be deformed to generate 181 
realistic facial expressions on skin layers [33]. However, due to large computation cost for computing 182 
FE models of facial muscles and skin layers with 560 hexahedral elements (1,180 nodes) and 28,320 183 
geometric degree of freedom, the whole system could not achieve real-time framerates [9]. Moreover, 184 
although skull structures had major contributions to facial mimics [44–48], they were not included in 185 
the simulated models [33,42,43] or just approximated using affine transforms [40]. Subject-specific 186 
biomechanical head models with heads, skulls, and muscle networks were reconstructed from MRI 187 
images and simulated using the FE method in the studies of Fan et al., 2017 [34] and Dao et al., 2018 188 
[35]. Note that computational cost is very expensive for such complex models. In particular, MRI data 189 
acquisition, 3-D model reconstruction, and FE model generation procedures were time consuming and 190 
needed much clinical and biomechanical expertise, so the whole subject-specific model generation 191 
could not be fast applied to new subjects. Other than that, most computation costs were in computation 192 
of soft-tissue deformations on FEM models of facial muscles, soft-tissues, and skin layers. Particularly, 193 
with 110,578 elements in [34] and 481,648 in [35], these deformation could usually not be computed in 194 
real-time using FEM [9]. 195 

Recently, few studies have also tried to estimate muscle feedbacks from exterior facial movements. 196 
Particularly, using the mass-spring-damper (MSD) method for modeling a 3-D face model, external 197 
muscle forces affected on facial skins could be estimated from 3-D facial vertex displacements in the 198 
study of Erkoç et al., 2018 [49]. However, the face model in this study did not include skull layers, and 199 
internal facial muscle actions, were not directly computed. Moreover, modeling subject-specific face 200 
models from 2-D images were not accurate, and facial features were not automatically extracted from 2-201 
D images. In fact, extracting and tracking facial muscle actions need full subject-specific biomechanical 202 
head model including head, skull, and muscle network cooperating with real-time tracking facial 203 
features in 3-D spaces. 204 

In addition, real-time computer vision system based on visual sensors could be developed and used for 205 
facial palsy diagnosis and rehabilitation. Recently, we developed such complex system using the Kinect 206 
camera and a system of systems approach [32]. Moreover, we also developed a statistical shape 207 
modeling approach to generate the skull directly from the head surface [50]. The present study aimed to 208 
combine these achievements into a full system workflow for facial palsy patients. Precisely, we aimed 209 
to combine the developed Kinect-to-head [32] and head-to-skull [50] procedures to develop a patient 210 
specific head model including texture, skull and muscle network from the Kinect-driven head data. 211 
Then, objective and quantitative indicators were estimated for further clinical decision support for facial 212 
palsy diagnosis and rehabilitation. 213 

In the following sections, we will describe in details the procedures of modelling head, skull, and 214 
muscle network. Then, validation results and facial muscle analyses will be described. Comparisons 215 
with other studies will be presented. Finally, conclusions and future developments will be stated. 216 

2. Materials and methods 217 

2.1. General modeling workflow 218 

The general modeling workflow of different model generations is shown in Figure 1. The workflow 219 
includes (1) Kinect-to-head, (2) head-to-skull, and (3) muscle network definition & generation 220 
processes. The Kinect-to-head process used Kinect-driven data to generate a subject-specific 221 



geometrical head model with texture of a new subject. The head-to-skull process predicts a subject-222 
specific skull model that statistically fits with the geometrical head model of the subject. Finally, based 223 
on the subject-specific head and skull models, the muscle network definition & generation process 224 
allows important facial muscles to be generated, and then associated information such as muscle lengths 225 
and strains were computed in real-time. 226 

2.2. Kinect-to-head process 227 

In this process, the subject-specific head model was generated and animated with texture using subject-228 
specific data acquired from the Kinect V2 sensor. We describe briefly this process here, please refer to 229 
our previous work for more detailed information [32]. This process comprises of data acquisition, 230 
subject-specific head generation, texture generation, and head animation sub-processes. In the data 231 
acquisition sub-process, the Kinect sensor was controlled by data acquisition interface to acquire 232 
multiple types of subject-specific data including current 3-D head orientations, current 3-D head 233 
positions, 3-D high-definition (HD) facial points (1,347 points), and color images in real-time. 234 
Moreover, 2-D HD facial points and facial pixel regions could also be extracted in color image spaces. 235 
Note that to reduce noises in the acquired head orientations, head positions, and HD facial points, we 236 
had also applied low-pass filters, whose cutoff frequency could be selected through the system’s 237 
graphical user interface (GUI), to the raw data. The user was first asked to keep the neutral facial mimic 238 
position before generating his/her head surface model and facial texture image. In the subject-specific 239 
head generation sub-process, a template head model (2,582 vertices (V) × 5,160 facets (F)) supported 240 
from Kinect SDK 2.0 was deformed so that the facial vertices were relative fitted with the HD facial 241 
points of the user in neutral facial mimic, and then the facial vertices were replaced by the HD facial 242 
points to form the generated head model. In the texture generation sub-process, a capturing scenario 243 
was automatically conducted by the graphical user interface of the system. In particular, current head 244 
orientations acquired by the Kinect sensor were used to instruct the user to rotate to his/her yaw angle to 245 
-20o, 0o, and 20o while keeping his/her head in vertical direction for capturing the left, center, and right 246 
head images. These images were then deformed and merged into a single flatten space with the control 247 
points as the 2-D HD facial points to form his/her texture image. The texture coordinates were the 248 
projected points of 3-D HD facial points onto a projection plane. In the head animation sub-process, the 249 
generated head model was transformed to the current head orientation and the current head position 250 
acquired from the Kinect sensor to provide rigid animations. The facial vertices were then replaced by 251 
the HD facial points to provide non-rigid animations. As a result, we animated the textured head model 252 
according to current facial mimics with the system framerate of 60 fps and the acceptable accuracy 253 
(error deviation of ~1 mm in neutral position and an error range of [2–3 mm] for different facial 254 
mimic positions). It is also important to note that the animated head mesh was sub-divided using 255 
butterfly subdivision algorithm [51] before being rendered on PC screens. Consequently, the system 256 
framerate was affected by the subdivision factor and the employed hardware configuration [32]. 257 



 258 

Figure 1. The general workflow of model generations: (1) Kinect-to-head generation process, (2) head-to-skull 259 
generation process, and (3) muscle network definition and generation process. 260 

2.3. Head-to-skull process 261 

In this process, the subject-specific skull model was predicted from the Kinect-based head model. In our 262 
previous study [50], relationship between head shapes and skull shapes was trained using the partial 263 
least squares regression (PLSR) method with the improved kernel algorithm [52]. In particular, 209 264 
head-skull datasets were reconstructed from 209 head-neck CT image datasets. The reconstructed head-265 
skull models were then pre-processed to obtain only head regions. The head-skull models were 266 
registered to a reference coordinate system before sampled to get head-skull feature points. Then, the 267 
PLRS-based shape model was trained using the head & skull feature points to achieve a PLSR model 268 
coefficient matrix. This coefficient matrix could be used to predict a new skull shape given a new CT-269 
based head surface model. Finally, a generic skull model was deformed so that its shape was fitted with 270 
the regressed skull shape to form the generated skull model.  271 

Outputs from our previous head-to-skull training procedure [50], shown in Figure 2, include the 272 
reference head model with pre-defined landmarks (left & right tragions, nasion, pronasale, and stomion 273 
(Figure 2a), the sampling surface (Figure 2b), and the head-to-skull PLSR-model coefficient matrix 274 
(Figure 2c). The Kinect-based head model in the neutral facial mimic was first registered to the same 275 
coordinate system of the reference head model before used for predicting the skull model. The 276 
registration procedure was illustrated in Figure 3. First, the neck region in the Kinect-based head was 277 
removed to keep only the head region. The head model without neck was then transformed to the 278 
reference head model based on pre-defined landmarks in the two models using the singular value 279 
decomposition (SVD) rigid registration method [53]. For optimizing registration errors due to the 280 
landmark selections, the iterative-closest-point (ICP) algorithm [54] was applied on all vertices of both 281 
the SVD-registered head model and the reference head model. As a result, the SVD-ICP-registered head 282 
model was optimally on the same coordinate system of the reference head model. After registration, the 283 
SVD-ICP Kinect-based head model was used to predict the skull model. The prediction procedure was 284 
shown in Figure 4. The registered head model was sampled to get head feature points by a surface 285 
sampler. The sampling rays have starting points as the centroid of the sampling surface and directions 286 
as from the starting points to the vertices of the sampling surface. The number of sampling rays was 287 
chosen as the optimal value after the hyperparameter turning process in the head-to-skull training 288 
procedure [50]. The head features were intersections between the sampling rays and their nearest facets 289 
on the head model. The head feature points were then inputted to the head-to-skull regressor to predict 290 
the skull feature points using the PLSR coefficient matrix [50]. The regressed skull shape has vertices 291 



(2,305 vertices) as the predicted skull feature points and facets (4,606 facets) as the facets of the 292 
sampling surface. The generated skull model was formed by deforming the generic skull model (6,112 293 
vertices; 9,537 facets) so that its shape was optimally fitted with the regressed skull shape using the 294 
cage-based deformation method [50]. After generated, the generated skull model was registered back to 295 
the original position of the Kinect-based head model after the Kinect-to-head process in Figure 1. 296 
During real-time head animations, the skull model was moved according to the rigid movements of the 297 
animated head model. 298 

 299 

Figure 2. Outputs from the head-to-skull training procedure [50]: (a) the reference head model (14,5420 300 
vertices; 290,633 facets) with landmarks (left tragion, right tragion, nasion, pronasale, and stomion), (b) the 301 

sampling surfaces (2,305 vertices, 4,606 facets) with sampling rays (2,305 rays), and (c) the head-to-skull model 302 
coefficient matrix (2,305 rows; 2,305 columns) 303 

 304 

Figure 3. Kinect-based head pre-processing and registration procedure. The Kinect-based head neck was pre-305 
processed to keep only the head region and registered to the coordinate system of the reference head model. 306 



 307 

Figure 4. Kinect-based head-to-skull procedure. The Kinect-based head model was sampled to get head feature 308 
points, which was used to predict the skull shape using head-to-skull regressor. The generic skull was deformed to 309 

fit with the predicted skull shape. 310 

2.4. Muscle network definition and generation process 311 

Based on the generated head and skull models, facial muscles were generated. A network of the 312 
following muscles based on facial anatomy [34,35,55,56] was defined in both sides (left(L) and 313 
right(R)): orbicularis oculi (OO), orbicularis oris muscles (O)), Procerus (P), Frontal Belly (FB), 314 
Temporoparietalis (T), corrugator supercilliary (CS), nasalis (Na), Depressor Septi Nasi (DSN), 315 
zygomaticus minor (Zm), zygomaticus major (ZM), risorius (R), depressor anguli oris (DAO), mentalis 316 
(M), levator labii superioris (LLS), levator labii superioris alaeque nasi (LLSAN), levator anguli oris 317 
(LAO), depressor labii inferioris (DLI), and buccinator (B)) (Figure 5a). It is important to note that 318 
although the masseter (Ma) is a masticatory proper muscle, it also has important roles for speech, which 319 
requires accurate mandibular positioning [57]. Moreover, although the masseter muscles do not directly 320 
move the skin, they mainly provides elevation and protrusion of the mandible whose movement opens 321 
and closes the mouth [58]. Consequently, the masseter muscles could also indirectly contribute to facial 322 
expressions. In this study, we also defined left and right masseter muscles and computed their strains 323 
during facial movements for further applications. 324 

The insertion points were defined using the vertexes in Kinect-based head model, MPEG-4 facial 325 
feature points (FPs) [59] and face anatomy on healthy subjects [60]. The attachment points were defined 326 
by vertexes on the generated skull model (Figure 5b, 5c). The positions of the attachment points were 327 
first manually defined in the generic skull model based on facial anatomy of healthy subjects [60] and 328 
then deformed to patient specific skull model (Figure 5c). 329 

In addition to the muscle line geometrical representation, associated muscle features such as muscle 330 
length and strain were computed. Regarding the muscle length, Euclidean distance metric between 331 
insertion and attachment points was computed. In particular, horizontal/vertical lengths of orbicularis 332 
muscles were also computed. Moreover, muscle strain of each muscle was computed as the relative 333 
difference change during a dynamic movement (e.g. smiling). Especially, because the facet structures of 334 
the Kinect-based head model and the generic skull model were not changed during the model 335 
generation/animation processes, positions of muscle insertion/attachment points were automatically 336 
updated according to the current positions of appropriate pre-defined vertices on the Kinect-based 337 
head/skull models. Consequently, the generated facial muscles were also scaled to relatively fit with the 338 
current user. Moreover, the head and skull models were transformed to current user head orientations 339 



and positions acquired from the Kinect sensor, so computed muscle lengths were certainly compensated 340 
from motion and rotation of the user head. 341 

 342 

Figure 5. Muscle network definition: (a) selected muscles, (b) muscle insertion points on the head model, and (c) 343 
muscle attachment points on the skull model. 344 

2.5. Model validation on healthy and facial palsy patients 345 

The proposed modeling workflow was validated on three healthy subjects (H1, H2, and H3) (2 males 346 
and 1 female) and two facial palsy patients (P1 and P2) (2 females) at the University Hospital Center of 347 
Amiens (CHU Amiens, France). Among the subjects, H1 was Asian, and the remaining were 348 
Caucasian. Their ages from were between 29 and 49 years (mean age 36.20±8.9 years). The height, 349 
weight, BMI of the subjects were from 165 to 177 cm (mean 170±4.65 cm), from 52 to 71 kg (mean 350 
60.80±7.25 kg), and from 18 kg/m2 to 26 kg/m2 (mean 21.08±2.75 kg/m2) respectively. Their face 351 
dimensions (width; height) (mean ± SD) were (13.48±0.70 cm; 18.79±1.05 cm). All patients had a 352 
unilateral (right) facial palsy. The cause of facial paralysis of P1 is acoustic neuroma in 2007, and the 353 
one of P2 is postpartum depression in 1997. Each subject had signed an informed consent agreement 354 
before participating into the data acquisition procedures. The protocol was approved by the local ethics 355 
committee (no2011-A00532-39). 356 

The validation processes were conducted on two groups of facial mimic positions: (1) neutral mimic 357 
positions and (2) smiling & [u]-pronouncing mimic positions. In the first facial mimic group, both 358 
healthy subjects and facial palsy patients were asked to keep all facial muscles as relaxed as possible. 359 
Moreover, their heads should be perpendicular to the ground plane and faced directly to the Kinect 360 
sensor. Their Kinect-based head and skull models in these facial mimic positions were compared with 361 
their MRI-based head and skull models. Note that their MRI data were also captured in neutral facial 362 
positions when the subject bodies were in the supine position. In the second facial mimic group, all 363 
subjects were asked for performing smiling and [u]-pronouncing facial mimics, which were relatively 364 
corresponded to AU12 and AU18 (with slight AU22 and AU25) respectively in FACS [36]. These 365 
facial mimics were selected based on their effects of the targeted facial muscles, which were available 366 
in literature for validating. In fact, while trying to mimic the selected AUs, the L/RZMs were mostly 367 
activated [36]. Moreover, in literature only studies of Fan et al., 2017 [34] and Dao et al., 2018 [35]  368 
could estimate muscle strains of ZMs.  369 

Note that because of the availability of the ground truth data (MRI images and point clouds) for 370 
geometrical validations of the Kinect-based models in neutral and mimic positions, occasionally we just 371 
validated on 4 among 5 subjects. In particular, in neutral positions, only H1, H2, P1, and P2 were 372 
validated because we only had MRI images of H1, H2, P1, and P2 respectively. In mimic positions, 373 
only H1, H3, P1, and P2 were validated because only their point clouds in mimic positions were 374 
available for validations. 375 



Regarding the head and skull models, MRI-based geometries were compared to the related generated 376 
geometries for each heathy subject and facial palsy patient. To reconstruct models from MRI images, 377 
different slice and mesh processing tools in 3-D Slicer [61] and MeshLab [62] were used. The 378 
reconstruction procedure is shown in Figure 6. The head and skull image slices (Figure 6a, 6e) were 379 
first segmented to head and skull regions. The head segments were selected based on the pixel values of 380 
soft-tissue in MRI images so that all soft-tissue regions were selected in the head label (Figure 6b) using 381 
the threshold tool in 3-D Slicer. In MRI images bone structures are challenging to be segmented 382 
because pixel values in bone structures are relative similar to ones in empty regions. For each MRI 383 
slice, we first select both soft-tissue and bone regions using the level tracing tool in 3-D Slicer. The 384 
bone structures (Figure 6f) were formed by subtracting the selected regions from the head segment 385 
using the logic operator tool. After labelled, the head and skull models were reconstructed using the 386 
marching cube algorithm [63]. The reconstructed models were then smooth using Laplacian smoothing 387 
technique [64] (Figure 6c, 6g). The head and skull models were finally post-processed to get only the 388 
external head and skull regions (Figure 6d, 6h) using the ambient occlusion and vertex quality selection 389 
tools in MeshLab. 390 

 391 

Figure 6. Head and skull reconstruction procedures from MRI images 392 

The MRI-based head and skull models were registered to the coordinate system of the Kinect-based 393 
head and skull models based on their facial regions before compared in Hausdorff distance metrics [65]. 394 
The registration procedure was presented in our Kinect-to-head study [32]. In particular, the MRI-based 395 
face model were first registered to the Kinect-based face model based on manually selected landmarks 396 
on left & right exocanthion, nasion, pronasale, left & right cheilion, and gnathion using the singular 397 
value decomposition (SVD) rigid registration method [53] (Figure 7a). Registration errors due to 398 
manual landmark selections were optimally reduced using the iterative-closest-point (ICP) algorithm 399 
[54] based on all vertices of the face models. The details of these SVD and ICP registration processes 400 
were explained in our previous study [50]. The estimated SVD-ICP transform matrix was used to 401 
transform the MRI-based head and skull models to the coordinate system of the Kinect-based head/skull 402 
models (Figure 7b). Note that because internal structures of MRI-based skulls were hard to be fully 403 
reconstructed, their skull shapes were used for validations with the Kinect-based skull shapes. The skull 404 
shape generation procedure from skull models was presented in our head-to-skull study [50]. Because 405 
our MRI data of normal and facial palsy subjects were not all fully captured the head regions, only 406 
regions of interest were kept for validations using the Hausdorff distance metrics (Figure 7b). 407 



 408 

Figure 7.  Validation procedure for Kinect-based head and skull models: (a) Manually selected facial features for 409 
the SVD registration; (b) the MRI-based head and skull models were transformed to the coordinate system of the 410 

Kinect-based head and skull models before drawing Hausdorff distance maps. 411 

The Kinect-based head models were also validated with the animated head models reconstructed from 412 
the point cloud data acquired from the Kinect infrared sensor. Note that the Red Green Blue-Depth 413 
(RGB-D) data acquired from Kinect sensors could be used to reconstruct facial models with acceptable 414 
accuracy for facial analysis applications [30]. The reconstruction procedure was presented in details in 415 
our previous Kinect-to-head study [32]. Because 3-D RGB-D point clouds and HD facial points were 416 
captured by the same Kinect sensor, the reconstructed head models from point clouds were in the same 417 
coordinate system with the Kinect-based head models. Consequently, Hausdorff distances could be 418 
directly computed without registrations. 419 

Finally, the uncertainty of the definition of facial muscle insertion and attachment points due to manual 420 
manipulation was computed using 6-mm-radius spheres (Figure 8a) in a 10-fold validation. The choice 421 
of 6-mm diameter is performed by using the modeling experience from the rigid musculoskeletal model 422 
of the human body systems. The uncertainty of the manual selection of muscle attachment and insertion 423 
points is estimated within this range of values [66]. In particular, the uncertainty spheres were centered 424 
at insertion/attachment points. For each time of validation, the actual positions of muscle points were 425 
randomly selected on their appropriate sphere surfaces and muscle lengths were also computed based on 426 
the selected positions (Figure 8b). The average muscle length of each muscle and its standard deviation 427 
were calculated after a 10-fold computation. 428 

 429 

Figure 8.  Perturbation positions of insertion and attachment points of the right risorius muscle on 6-mm-430 
radius sphere: (a) 6-mm-radius radius sphere on the attachment point �, (b) the right risorius muscle based on 431 

randomly selected insertion and attachment points. 432 

All modelling and validating procedures were executed on a mobile workstation system with the 433 
hardware configuration of Intel® Xeon® E-2176M CPU @ 2.7GHz 64 bits, 12 cores, 32GB DDRAM 434 
and developed in Microsoft Visual Studio C++ 2015. 435 



3. Results 436 
3.1. MRI-based model validation in the neutral position 437 

Reconstruction and generation outcomes of the proposed modeling workflow are shown in Figure 9. 438 
Hausdorff distances of Kinect-based heads Vs. MRI-based heads and Kinect-based skulls Vs. MRI-439 
based skulls were computed and illustrated in Figure 10. Additionally, the distance distributions are 440 
presented in Figure 11. For head comparison (Figure 11), the best mean errors are 1.91 mm and 1.98 441 
mm for P2 and H2 respectively. Mean error of H1 (2.12 mm) is larger than ones of the H2 (1.98 mm) 442 
and P2 (1.91 mm). For skull comparison (Figure 11), the smallest mean error (3.12 mm) is in H1, and 443 
most errors are in the upper skull region. Only compared on the frontal skull regions, mean errors of H2 444 
(4.97 mm) and P2 (4.32 mm) are larger than one of H1. The mean error of P2 is the largest (13.9 mm) 445 
in 4 subjects. Overall, the accuracy of Kinect-based skull models depends on the accuracy of the 446 
Kinect-based head models. 447 

Additionally, accuracies in facial head and frontal skull regions are better than one in back head and 448 
skull regions, especially in the muscle insertion and attachment regions (Figure 10). Figure 12 shows 449 
error distributions between the Kinect-based and MRI-based head and skull models when only facial 450 
regions were tested. Overall, for all subjects the errors are smaller than ones when full head and skull 451 
regions were tested. In particular, in facial regions the mean and standard deviation errors of the Kinect-452 
based head models in H1, H2, P1, and P2 are 1.53 mm, 1.98 mm, 2.81 mm, and 1.71 mm respectively. 453 
The mean errors of the Kinect-based skull models are 2.82 mm, 3.84 mm, 3.09 mm, and 3.67 mm for 454 
H1, H2, P1, and P2 respectively. The mean errors in facial regions of Kinect-based head and skull 455 
models in P1 are also larger than ones of other three subjects (H1, H2, and P2). Especially, the 456 
Hausdorff distance errors computed on muscle attachment & insertion point regions are even smaller 457 
than ones computed on facial regions. The muscle attachment & insertion point regions were 3-D 458 
regions covered by the 6-mm-radius perturbation spheres of the muscle attachment & insertion points 459 
respectively (Figure 12). In particular, mean errors on the insertion point regions of the Kinect-based 460 
head models are 1.09 mm, 1.46 mm, 2.80 mm, and 1.93 mm for H1, H2, P1, and P2 respectively. Mean 461 
errors on the attachment point regions of the Kinect-based skull models are 2.16 mm, 3.18 mm, 2.56 462 
mm, and 3.23 mm for H1, H2, P1, and P2 respectively. 463 

Regarding the muscle features estimated in neutral position, muscle lengths were depicted in Table 1. 464 
Values were reported in average and standard deviation due to the uncertainty of the manual 465 
manipulation for muscle definition. The overall length ranges from 21.53±2.93 mm to 63.28±2.99 mm. 466 
The minimal length is 21.53±2.93 mm for the muscle LU. The maximal length is 63.28±2.99 mm for 467 
the muscle RZM. 468 

 469 



Figure 9.  Kinect- and MRI-based reconstruction results for head, skull, skull shape, and muscle network of two 470 
healthy subjects and two facial palsy patients. 471 

 472 

Figure 10. Hausdorff distance color maps between Kinect- and MRI-based head/skull models of healthy subjects 473 
and facial palsy patients. 474 

 475 

Figure 11.  Hausdorff distance distributions between Kinect- and MRI-based head/skull models of healthy 476 
subjects and facial palsy patients. 477 



 478 

Figure 12.  Hausdorff distance distributions between Kinect- and MRI-based head/skull models in facial regions 479 
and muscle attachment/insertion point regions of healthy subjects and facial palsy patients. 480 



Table 1. Muscle lengths of three healthy subjects and two facial palsy patients in neutral position. 481 

Left/Right Muscle Types 
Muscle 

IDs 

Action Line Lengths of Facial Muscles in Neutral Position (��) (Mean ± SD mm) 

Healthy 

Subject 1 (H1) 

Healthy 

Subject 2 (H2) 

Healthy 

Subject 3 (H3) 

Patient 1 

(P1) 

Patient 2 

(P2) 

Left 
Procerus 

LP 31.22 ±1.89 42.97±1.87 28.48 ±2.06 31.77 ±1.94 32.96 ±1.77 

Right RP 33.1 ±3.28 43.59±3.28 32.14 ±3.33 33.4 ±3.23 35.76 ±3.22 

Left 
Frontal Belly 

LFB 28.54 ±2.16 41.56±1.92 28.21 ±2.13 29.5 ±1.94 29.58 ±1.89 

Right RFB 28.54 ±1.47 37.16±1.48 31.48 ±1.47 28.62 ±1.68 31.54 ±1.41 

Left 
Temporoparietalis 

LT 27.81 ±1.97 41.05±1.73 25.06 ±1.81 29.42 ±1.88 30.71 ±1.76 

Right RT 30.87 ±1.74 37.12±1.67 34.34 ±1.73 31.6 ±1.67 34.73 ±1.97 

Left Corrugator 
Supperciliary 

LCS 26.99 ±1.91 26.29±2.17 27.25 ±1.84 24.49 ±2.32 25.1 ±2.05 

Right RCS 27.05 ±2.1 30.44 ±1.9 27.23 ±2.11 26.61 ±1.73 24.71 ±1.88 

Left 
Nasalis 

LNa 30.81 ±2.22 34.88 ±2.23 23.54 ±2.29 26.03 ±2.62 28.78 ±2.33 

Right RNa 31.38 ±1.8 33.76 ±1.92 23.17 ±1.8 26.33 ±1.98 28.78 ±1.89 

Left Depressor Septi 
Nasi 

LDSN 25.36 ±3.18 25.96 ±2.51 22.25 ±3.44 21.53 ±2.93 23.81 ±2.83 

Right RDSN 25.2 ±2.87 26.51 ±2.38 24.92 ±3.13 22.33 ±2.9 24.74 ±2.67 

Left Zygomaticus 
Minor 

LZm 52.2 ±3.06 54.37 ±3.22 47.36 ±3.06 46.23 ±3.26 51.24 ±3.17 

Right RZm 54.42 ±1.91 53.18 ±2 54.7 ±1.89 48.91 ±2.21 53.98 ±2.09 

Left Left Zygomaticus 
Major 

LZM 59.12 ±2.66 62.35 ±2.48 53.3 ±2.76 53.59 ±2.54 60.24 ±2.5 

Right RZM 60.93 ±2.96 59.31 ±2.98 61.36 ±2.94 56.78 ±2.97 63.28 ±2.99 

Left 
Risorius 

LR 34.7 ±3.09 29.88 ±3.18 35.34 ±2.94 32.91 ±3.17 31.4 ±3.11 

Right RR 37.75 ±3.18 34.83 ±3.19 41.89 ±3.27 36.48 ±3.31 35.25 ±3.28 

Left Depressor Anguli 
Oris 

LDAO 36.2 ±1.5 32.12 ±1.62 41.07 ±1.8 33.85 ±1.35 30.65 ±1.28 

Right RDAO 33.56 ±2.54 28.35 ±2.51 34.69 ±2.7 28.69 ±2.72 25.58 ±2.67 

Left 
Mentalis 

LMe 28.41 ±1.59 23.86 ±1.44 36.91 ±1.53 29.45 ±1.54 26.58 ±1.57 

Right RMe 29.93 ±3.22 25.05 ±3.33 35.13 ±2.81 29.96 ±3.28 26.71 ±3.25 

Left Levator Labii 
Superioris 

LLLS 47.43 ±1.41 50.67 ±1.39 42.67 ±1.4 41.33 ±1.32 47.12 ±1.4 

Right RLLS 49.76 ±2.07 49.31 ±1.94 47.98 ±2.17 43.76 ±2.09 49.5 ±2.01 

Left Levator Labii 
Superioris 

Alaeque Nasi 

LLLSAN 59.96 ±2.61 62.54 ±2.12 54.18 ±2.6 51.84 ±2.01 57.49 ±2.22 

Right RLLSAN 61.62 ±1.94 62.28 ±1.97 56.71 ±1.87 53.24 ±1.83 59.1 ±1.89 

Left Levator Anguli 
Oris 

LLAO 35.05 ±1.7 36.97 ±1.88 31.45 ±1.82 31.11 ±1.93 36.7 ±1.73 

Right RLAO 35.66 ±2.41 34.61 ±2.19 35.16 ±2.6 32.97 ±2.2 38.73 ±2.15 

Left Depressor Labii 
Inferioris 

LDLI 36.64 ±2.92 30.62 ±3.23 39.55 ±2.64 35.1 ±3.34 33.21 ±3.12 

Right RDLI 35.86 ±2.48 31.24 ±2.58 41.27 ±2.4 35.04 ±2.55 33.87 ±2.63 

Left 
Buccinator 

LB 59.05 ±3.23 55.38 ±3.16 56.23 ±3.23 50.68 ±3.12 56.03 ±3.18 

Right RB 57.18 ±1.09 52.77 ±1.17 56.7 ±1.13 49.84 ±1.42 55.35 ±1.32 

Left 
Masseter 

LMa 45.16 ±2.42 45.5 ±2.39 44.08 ±2.43 41.06 ±2.39 43.82 ±2.4 

Right RMa 46.27 ±2.41 43.58 ±2.5 44.17 ±2.4 41.61 ±2.53 42.69 ±2.51 

Vertical Left 
Orbicularis Oculi 

VLOO 42.47 ±2.85 41.3 ±2.84 40.99 ±2.79 35.98 ±2.91 40.37 ±2.91 

Vertical Right VROO 43.16 ±2.01 41.47 ±2.09 41.39 ±2.2 37.49 ±2.01 41.14 ±2.02 

Vertical Orbicularis Oris VOO 38.09 ±2.64 30.82 ±2.63 33.47 ±2.66 32.56 ±2.63 34.85 ±2.68 

Horizontal Left 
Orbicularis Oculi 

HLOO 59.38 ±1.66 54.35 ±1.84 60.21 ±1.73 49.59 ±1.96 53.02 ±1.77 

Horizontal Right HROO 59.73 ±1.19 54.9 ±1.2 60.4 ±1.13 49.98 ±1.25 53.75 ±1.16 

Horizontal Orbicularis Oris HOO 59.17 ±2.02 57.93 ±2.1 55.18 ±2.06 49.25 ±2.45 48.36 ±2.2 



3.2. Point cloud-based validation for different facial mimic positions 482 

The comparison outcomes are presented in Figure 13. In this figure, 2-D color images (Figure 13a, 13f) 483 
of two healthy subjects and two facial palsy patients are shown. Related Kinect-driven biomechanical 484 
models were generated according to appropriate facial mimics based on the HD facial points (Figure 485 
13e, 13j). Moreover, the animated head models were also reconstructed from the captured 3-D RGB-D 486 
point clouds (Figure 13b, 13g). The Kinect-driven head models were also rendered in the same 487 
coordinate system with point cloud-based head models (Figure 13b, 13g). Hausdorff distance 488 
distributions between the Kinect-driven head models and point cloud-based head models were 489 
illustrated (Figure 13c, 13h, Figure 13d, 13i). It is interesting to note that the facial palsy patients do not 490 
have geometrical symmetries while smiling and [u]-pronouncing compared with the healthy subjects. In 491 
particular, while smiling, the patient 1 (Figure 13.3a) cannot open her mouth as normally as H1 and H3 492 
(Figure 13.1a, 13.2a). Although P2 (Figure 13.4a) can open her mouth more widely than the patient 1 493 
(Figure 13.3a), her right-hand mouth cannot smile as widely as the left-hand mouth due to malfunctions 494 
of her right zygomaticus minor and major muscles [36]. While [u]-pronouncing, P1 can only control her 495 
left zygomaticus minor and major muscles, so her right-hand mouth is not symmetrical with her left-496 
hand mouth (Figure 13.3f). The patient 2 (Figure 13.4f) can do better than P1 (Figure 13.3f), but less 497 
symmetrical than H1 and H3 (Figure 13.1f, 13.2f). 498 

Based on error distributions between the Kinect-driven head models and point cloud-based head models 499 
(Figure 13c, 13d, 13h, 13i), mean errors in smiling mimics are smaller than those in [u]-pronouncing 500 
mimics for each subject. For instances, the smiling mean errors of P1 and P2 (2.35 mm and 2.67 mm 501 
respectively) are smaller than the [u]-pronouncing mean errors of P1 and P2 (2.77 mm and 3.26 mm 502 
respectively). Moreover, the smiling mean errors of H1 and H3 (2.08 mm and 2.02 mm) are also 503 
smaller than the [u]-pronouncing mean errors of H1 and H3 (2.0 mm and 2.64 mm). In each facial 504 
mimic, mean errors of healthy subjects are usually smaller than ones of the facial palsy patients. For 505 
examples, the smiling mean errors of H1 and H3 (2.08 mm and 2.02 mm respectively) are smaller than 506 
ones of P1 and P2 (2.35 mm and 2.67 mm respectively). Moreover, the [u]-pronouncing mean errors of 507 
H1 and H3 (2.0 mm and 2.64 mm) are also smaller than ones of P1 and P2 (2.77 mm and 3.26 mm). For 508 
healthy subjects, the minimum mean error is 2.00 mm, and the maximum error is 2.64 mm. For facial 509 
palsy patients, the minimum error is 2.35 mm, and the maximum error is 3.26 mm. 510 

The muscle strains estimated during facial mimic positions are reported in Table 2 and Table 3. When 511 
performing the smiling mimics, all subjects have horizontal elongations in their OOs (16.57%, 20.56%, 512 
9.44%, and 19.93% for H1, H3, P1, and P2 respectively). Especially, P1 has the smallest elongations of 513 
9.44%. Moreover, the strain values of L/RZms and L/RZMs are all negative, but the shortened ranges 514 
between the left and right muscles are different. For instances, in P1 the shortened ranges of LZm and 515 
LZM (0.40% and 6.76%) are smaller than ones of RZm and RZM (3.12% and 9.53%). When 516 
performing the [u]-pronouncing mimics, all subjects have horizontal shortenings in their OOs (-15.72%, 517 
-14.48%, -3.65%, and -19.70% for H1, H3, P1, and P2 respectively). Especially, P1 also has the 518 
smallest shortened range of 3.65%. Moreover, the strain values of L/RZms and L/RZMs are all positive, 519 
but their elongated ranges are not symmetrical between left and right muscles. For examples, in P2 the 520 
elongated ranges of LZm and LZM (4.59% and 10.02%) are not the same as ones of RZm and RZM 521 
(6.11% and 9.21%). In fact, these values can also illustrate asymmetries between left and right muscle 522 
actions. 523 



 524 

Figure 13.  Validations results with point cloud-based models (color images, Kinect- Vs. point cloud-based head 525 
models, Hausdorff distance distributions, and Kinect-driven biomechanical models) in different facial mimics for 526 
two healthy subjects and two facial palsy patients: (a) 2-D color images, (b) Kinect- Vs. point cloud-based head 527 
models, (c) Hausdorff distance distributions in color maps, (d) Hausdorff distance distributions in boxplots, and 528 
(e) Kinect-driven biomechanical models. 529 

Table 2. Muscle strain values in smiling and [u]-pronouncing mimics of the two healthy subjects and two facial 530 
palsy patients (I). 531 

Muscle 

IDs 

Muscle Strains in Positions (
����

��

) (%) 

Smile [u] 

H1 H3 P1 P2 H1 H3 P1 P2 

LFI 20.62 1.78 2.67 -0.04 14.66 -9.26 1.36 -2.18 

RFI 18.28 0.83 0.22 -1.83 12.20 -8.21 0.58 -7.90 

LFM 12.78 -3.02 0.51 0.45 6.17 -12.33 -2.60 0.80 

RFM 20.77 -0.45 1.51 1.03 14.19 -10.32 0.63 -0.91 

LFO 10.38 2.19 2.96 1.58 1.63 -12.65 -0.93 -2.46 

RFO 14.50 -1.38 -1.29 -2.24 7.60 -11.23 -3.37 -6.79 

LCS 0.88 -5.03 -2.93 -2.48 -0.80 -3.04 -3.47 -2.89 

RCS 9.50 3.15 3.12 4.98 7.73 2.78 3.05 1.68 

LNa 2.28 -9.38 1.07 -5.60 15.68 14.33 2.51 8.75 

RNa -0.19 -9.32 -1.45 -9.23 11.37 10.46 1.77 4.39 

LU -12.02 -13.30 -7.52 -14.65 16.14 20.18 3.52 10.99 

RU -8.28 -13.14 -9.60 -17.35 21.66 19.42 3.12 10.49 

LZm -5.97 -9.93 -0.40 -7.23 8.94 8.59 2.84 4.59 

RZm -2.24 -9.93 -3.12 -9.81 13.46 7.68 3.54 6.11 

LZM -13.59 -21.32 -6.76 -11.82 10.76 17.70 -1.28 10.02 

RZM -9.13 -19.72 -9.53 -16.70 16.02 14.88 0.46 9.21 

LR 7.30 3.55 0.98 -7.35 8.36 -12.23 4.87 -4.69 

RR 6.96 -3.09 -0.90 -4.59 15.59 -3.57 5.51 9.70 



Table 3. Muscle strain values in smiling and [u]-pronouncing mimics of the two healthy subjects and two facial 532 
palsy patients (II). 533 

Muscle 

IDs 

Muscle Strains in Positions (
����

��

) (%) 

Smile [u] 

H1 H3 P1 P2 H1 H3 P1 P2 

LDAO 31.30 23.72 9.35 17.17 1.02 -22.67 4.19 -20.19 

RDAO 31.20 29.20 18.59 37.20 -1.45 -22.55 6.88 -9.66 

LMe 11.97 -7.79 2.92 -7.76 4.59 -32.65 0.64 -18.04 

RMe 1.70 -12.00 1.34 -8.00 0.20 -30.92 -2.33 -10.23 

LLLS -7.56 -12.76 -2.33 -8.86 6.05 5.44 -0.31 2.02 

RLLS -7.31 -13.85 -5.89 -12.73 7.19 4.22 -0.58 1.88 

LLLSAN -0.69 -6.13 0.55 -4.08 5.51 2.62 0.21 1.24 

RLLSAN -1.99 -8.12 -1.88 -7.58 4.92 1.44 -0.66 -0.78 

LLAO -21.19 -28.03 -10.11 -16.02 12.05 25.79 -2.35 14.92 

RLAO -18.66 -29.46 -14.44 -24.61 18.80 23.93 0.67 12.93 

LDLI -5.57 -16.37 -0.67 -15.92 9.92 -17.24 4.44 -2.06 

RDLI 0.30 -14.96 -2.31 -14.38 19.10 -7.43 3.55 10.18 

LB -12.58 -13.36 -5.51 -10.30 1.89 6.77 -1.71 4.33 

RB -9.22 -12.04 -5.05 -11.99 7.59 10.28 2.83 7.85 

LMa 1.83 -0.99 -1.22 -1.08 1.83 -0.99 -1.22 -1.08 

RMa 1.22 -1.39 -1.77 -1.73 1.22 -1.39 -1.77 -1.73 

VLOO -8.66 -8.66 -1.20 -7.04 2.09 11.66 -0.83 -3.19 

VROO -10.01 -11.99 -4.76 -11.95 0.84 9.04 -2.57 -2.61 

VOO 18.62 21.71 -1.78 18.12 18.08 37.51 4.67 16.88 

HLOO -1.79 -2.34 -1.85 -2.22 -0.97 -0.83 -1.70 -1.63 

HROO -2.23 -2.45 -1.69 -2.99 -1.47 -0.90 -1.21 -2.25 

HOO 16.57 20.56 9.44 19.93 -15.72 -14.48 -3.65 -19.70 

4. Discussion 534 

This study, for the first time, presents a biomechanical head modelling method for generating patient 535 
specific head, skull and muscle network from only HD facial points acquired by the visual Kinect V2.0 536 
sensor. Computer-aided facial paralysis grading systems are important and necessary for quantitative 537 
and objective facial paralysis measurements before and during facial mimic rehabilitation [2]. Most 538 
developed computer-aided grading systems just analyzed external 2-D/3-D motions from facial 539 
appearances/movements extracted from visual 2-D imaging and/or 3-D point cloud data [10–540 
12,14,19,37,67–72]. These exterior data could also be face image intensities [10], facial feature 541 
displacements [11,12], inter-feature distances, bounding areas, feature velocities, and feature 542 
symmetries from center lines [12–14], and 3-D surface differences [15,20,21,25–27]. These raw face 543 
appearances/movements needed large computation cost to be converted to meaningful information such 544 
as AUs from FACS [36] using 2-D/3-D computer vision-based methods [37]. In fact, AUs from FACS 545 
were mainly defined based on facial muscle actions [36]. Moreover, these external motions were just 546 
the effects caused by muscle actions on skin layers [33]. Thus, a directly analysis of facial muscle 547 
features is of great clinical interest. This present study proposed a complete workflow to reconstruct 548 
patient specific head and skulls model. Then, muscle features (e.g. muscle length and strain) could be 549 
estimated and tracked in a straightforward manner for facial paralysis applications. 550 

Most previous studies extracted facial features directly from data acquired from visual sensors using 2-551 
D/3-D computer vision-based methods. For instances, active shape model (ASM) was deformed to fit 552 



with counters of face, eyes, and nose for estimating facial features in video sequences [37,70], and the 553 
supervised descent method (SDM) could also be used to track facial features in 2-D images [12]. 3-D 554 
facial features could also be computed by deforming a 3-D generic facial model to fit with facial 555 
markers on 2-D images [71]. Computational complexity was decreased by using facial markers for 556 
tracking facial features. Less computation time allowed us to detect facial features simultaneously on 557 
multiple images captured at different views for reconstructing their 3-D motions in motion capture 558 
systems  [12,14,67]. 3-D motions of facial features detected on 2-D images could be estimated by 559 
combining infrared sensors with single cameras  [13,73]. However, although facial features could be 560 
accurately detected and tracked in 2-D and 3-D spaces in above studies, large computation time was 561 
costed on processing raw data acquired from visual sensors. Our approach is based on high-level 562 
subject-specific data supported by the Kinect SDK 2.0 controlling the visual Kinect 2.0 sensor, so much 563 
less computational time was used for extracting facial features. 564 

In addition, numerous physics-based head/face models have been developed, but they have not 565 
estimated muscle patterns of contraction based on skin deformations. Instead, they only tried to model 566 
facial expressions by deforming skin vertices in a facial mesh according to contractions of modeled 567 
facial muscles [33–35,40,42,43]. Moreover, most of them were not subject-specific or lacked of subject-568 
specific skull layers [33,40,42,43]. FE facial models also costed much computation time for computing 569 
muscle displacements from forces [34,35]. In this presented study, we could fast generate subject-570 
specific head models based only on external HD facial points acquired from the Kinect V2 sensor. After 571 
generated, the patient specific head model could be animated in real-time in rigid manner using current 572 
head orientations & positions and in non-rigid manner using current HD facial points. Therefore, we 573 
could achieve real-time head animations without computational complexities [32]. Last but not least, 574 
most physics-based face models from previous studies were developed based on semiautomatic 575 
procedures from other 3-D processing tools, such as 3DSlicer, ScanIP, Abacus, etc., or other studies. 576 
This could be inconvenient for the case of fast generating subject-specific models of new users. 577 
However, as shown in Figure 9, our proposed modelling method could fast generate subject-specific 578 
biomechanical head model according with texture. The most computation cost was in subject-specific 579 
model generations: deforming a template head model (2,582 Vertices (V) × 5160 Facets (F)) to a new 580 
user, predicting a subject-specific skull shape, deforming a template skull model (129,230 V × 258,846 581 
F) to the skull shape, and defining muscle network. With the current hardware configuration, the fully 582 
automatic head, skull, and muscle network generations costed 17.16±0.37s without counting time of 583 
reading and saving data from and to hard disk drives (HDDs). This duration was much less than manual 584 
model reconstruction processes from MRI/CT images [34,35] or semi-automatic model fitting process 585 
(15-30 minutes in [40]). After the model generation processes, the computation cost was mostly for data 586 
acquisition, head animations, skull rigid transformations, muscle network computations, and graphical 587 
rendering. Especially, in our previous system of real-time subject-specific head animations [32], facial 588 
animations were accomplished by replacing the facial vertices by the high-definition facial points 589 
acquired from the Kinect sensor, so most computation cost was for rigid transformation. Consequently, 590 
the system framerate could be optimized up to 60 fps. Moreover, for improving the graphical rendering 591 
quality, a sub-division process was applied, so the system framerate could also be affected by sub-592 
division factors and hardware configurations. Details were presented in [32]. In this study, when 593 
coupled with skull rigid transformation and muscle train computation, the system framerate could be 594 
reached 40 fps with the current hardware configuration. This framerate was higher than other physics-595 
based facial animation simulation studies [33–35,40,42,43]. 596 

From clinical point of view, the knowledge of muscle features is of great important for optimizing the 597 
treatment planning. The proposed method allowed muscle length and strain to be estimated and tracked 598 
in real time and in a patient-specific manner. The computed muscle lengths in neutral facial mimics 599 
were comparable with reported values in related studies [34,35,56,74,75], as listed in Table 4. 600 
Moreover, in comparisons with other accurate FE-based facial models [34,35], the ZMs in smiling were 601 
shortened with the negative strain values of -6.82% in [34]. In our study, as shown in Table 2, the 602 
muscle strains of L/RZMs are also negative for all subjects. In [pµ] and [o] pronouncing mimics, the 603 
strain values of ZMs were all positive (10.4% and 24% for [pµ] and [o] sounds in [34]; 22% for [o] 604 
sound in [35]). In Table 2, the strain values of L/RZMs are also positive in [u]-pronouncing mimics for 605 
H1, H3, and P2. However, in previous studies, the left and right facial muscle actions were considered 606 
to be perfectly symmetrical, so they just reported values on one side [34,35,56,74,75]. In our study, 607 



strain values of all major types of facial muscles were computed independently on left and right sides, 608 
so asymmetries of muscle actions could be evaluated during facial mimics. 609 

Table 4. Muscle length comparisons with reported values in related studies 610 

Muscle 

IDs 

Action Line Lengths of Facial Muscles in Neutral Position (mm) 

This Study* 
Freilinger et al., 

1987 [74] 
Happak et al., 

1997 [56] 
Bernington et al.,  

1999 [75] 
Fan et al.,  

2017 [34] 
Dao et al.,  

2018 [35] 

 

Subjects: 2 M, 3 F 
Ages: 29 – 49 years 

Status: 3 H, 2 P 
Weight: 52 – 71 Kg 

Height: 1.65 m – 1.77 m 
BMI: 18 kg/m2- 26 kg/m2 

Subjects: 20 
Ages: 62 – 94 years 

Status: Cadavers 

Subject: 11 
Ages: 53 – 73 years 

Status: Cadavers 

Subject: 4 M, 6 F 
Ages: 15 – 31 years 

Status: Patients 

Subject: 1 F; Ages: 24 years 
Status: Healthy; Height: 1.5 m 

Weight: 57 kg 

 Mean SD Mean SD Mean SD Mean SD Value Value 

LZm 51.05 3.82 -  51.8 7.4 - - - - 
RZm 53.90 2.05 -  51.8 7.4 - - - - 

LZM 58.45 3.85 M: 70.67 
F: 69.50 

6.32 
6.58 

65.6 
3.8 

- - 43.65 52 

RZM 61.23 3.05 M: 70.67 
F: 69.50 

6.32 
6.58 

65.6 
3.8 

- - 43.65 52 

LDAO 36.69 3.23 M: 37.83 
F: 38.33 

4.38 
8.02 

48 
5.1 

- - - - 

RDAO 31.86 3.35 M: 37.83 
F: 38.33 

4.38 
8.02 

48 
5.1 

- - - - 

LLLS 46.26 3.00 M: 33.67 
F: 35.50 

4.13 
6.69 

47 
7.5 

- - 29.3 - 

RLLS 48.59 2.14 M: 33.67 
F: 35.50 

4.13 
6.69 

47 
7.5 

- - 29.3 - 

LLLSAN 58.06 3.65 - - 61.6 7.6 - - - - 
RLLSAN 59.46 2.81 - - 61.6 7.6 - - - - 

LLAO 34.30 2.53 - - 42 2.5 - - 27.4 - 
RLAO 35.51 2.30 - - 42 2.5 - - 27.4 - 

LDLI 36.73 4.39 - - 29 4.9 - - - - 
RDLI 37.01 4.16 - - 29 4.9 - - - - 

LB 56.35 3.35 - - 56 7.4 - - - - 
RB 55.18 2.01 - - 56 7.4 - - - - 

LMa 44.93 2.35 - - - - 
M: 45.9 
F: 39.1 

5.8 
8.2 

- - 

RMa 45.03 2.57 - - - - 
M: 45.9 
F: 39.1 

5.8 
8.2 

- - 

VLOO 40.70 2.99 - - 60 9.6 -  - - 
VROO 41.62 2.13 - - 60 9.6 -  - - 
HLOO 56.53 3.23 - - 65 5.6 -  - - 
HROO 56.92 2.85 - - 65 5.6 -  - - 
*M: Male; F: Female; H: Healthy Subject; P: Patient Subject; Ages: Min - Max (Years Old); 

 611 
Despite potential capacity for clinical applications, our proposed modeling method has some 612 
limitations. In the Kinect-to-head process, back-head regions, which are often covered by hair, were 613 
approximated with face regions using affine transforms, so the back-head regions were less patient-614 
specific than the face regions. This affected to the accuracy of the generated skulls. Relationship 615 
between face regions and back-head regions will be studied to improve accuracy of the Kinect-based 616 
head and skull models. In the head-to-skull process, the PLSR-based head-to-skull coefficient matrix 617 
was trained with a head-skull dataset of 209 healthy subjects. A larger number of datasets, especially 618 
including facial palsy patients, needs to be developed to enhance the training process of the PLSR 619 
model to improve the prediction accuracy. In the muscle network definition and generation processes, 620 
only muscle lengths and strains could be computed during facial mimics. Based on muscle strains, 621 
muscle forces and stresses will be computed using rigid multi-bodies dynamics [76] and fast soft-tissue 622 
deformation methods (e.g. Mass-Spring System with corrective springs (MSS-CS) [77]). Moreover, jaw 623 
movements have not been included in the Kinect-driven head models, so muscle strains were limited at 624 
AUs that do not include jaw movements. These movements will be considered when more facial 625 
mimics are analyzed. In validation process, facial muscle actions were only analyzed in smiling and [u]-626 
pronouncing mimics on three healthy subjects and two facial palsy patients. More muscle action units in 627 
FACS [36] will be analyzed on a larger number of validation datasets. Moreover, accurate facial 628 
muscles should be reconstructed from MRI/CT images in different facial mimics to validate the 629 
extracted muscle features. A limitation was also related to the differences between scanning positions of 630 
MRI images and capturing positions of Kinect data. The MRI images of the subjects were scanned in 631 
the supine position leading to shape artifacts due to gravity effect [66]. Consequently, a postural 632 
transformation should be investigated in the future for correcting the shape of MRI-based models before 633 



validated with Kinect-based models. Currently, we only validated the method on 3 health subjects and 2 634 
facial palsy patients. More subjects will be validated on clinical environments. Additionally, our method 635 
was mainly based on 3-D motions of HD facial points for estimating and animating biomechanical head 636 
models. Consequently, although the Kinect V2.0 is not produced anymore, we will be able to immigrate 637 
the method to other RGB-D sensors (e.g. Asus XTion PRO [78], Intel RealSense Camera R200 [79], 638 
and Primesense Carmine 1.09[80]) for detecting facial features, generating and animating subject-639 
specific models. This will be one of our future researches. 640 

5. Conclusion 641 

This study, for the first time, presented a novel method for modelling patient-specific head, skull, and 642 
muscle network using only external data acquired from a visual Kinect V2 sensor. The proposed 643 
method was evaluated with MRI data and the obtained results showed a high level of accuracy. In 644 
particular, with the current hardware configuration the models could be fast generated after 17.16±0.37s 645 
and animated in real-time with 40 fps. In neutral positions, the best errors were 1.09 mm and 2.16 mm 646 
for head and skull models in muscle insertion/attachment point regions. In mimic positions, mean errors 647 
of the head models on facial regions were 2.02 in smiling mimics and 2.00 in [u]-pronouncing mimics. 648 
Moreover, estimated muscle features were also in agreement with experimental and literature data. In 649 
perspective, we will improve the method to overcome above drawbacks. This novel modeling approach 650 
will be implemented in a real-time head animation system for estimating and tracking real-time muscle 651 
features (e.g. strains and forces) for facial paralysis grading and rehabilitation applications. 652 
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