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Experimental flows through 
an array of emerged or slightly 
submerged square cylinders over  
a rough bed
Marina Oukacine  1 ✉, Sébastien Proust  2, Frédérique Larrarte  1,3 & Nicole Goutal1,4

The experimental dataset presented was collected in an 18 m long and 1 m wide laboratory flume. 
Low to high flood flows through an urbanized floodplain were modelled. The floodplain bed is rough, 
modelled with dense artificial grass. A square cylinder array, representing house models, was set on 
the rough bed. The cylinder immersion rate was varied: cylinders are emerged for three flow cases and 
slightly submerged for one case. The experimental dataset comprises water levels, measured using 
an ultrasonic transit time probe, velocities across the channel measured using an Acoustic Doppler 
Velocimetry with a side looking probe, and velocities in longitudinal-vertical planes measured using 
Particle Image Velocimetry. These data could help understanding the physical processes associated 
with high flood flows through urbanized floodplains, with a focus on the transition from emerged to 
submerged obstacles. They could also be used as benchmark data to assess the ability of numerical 
models from one to three-dimensions to estimate the flood hazard (water depth, velocity) over a wide 
range of flood event magnitudes.

Background & Summary
As a result of climate change, extreme floods will become more frequent and more intense. People and properties, 
such as housing and industrial facilities, must therefore be protected against these floods for which data are very 
scarce or even non-existent1. When moving from low to extreme flooding, the flood extent over the floodplain 
greatly varies. This study aimed at investigating if there is a change in the physical processes when the houses ini-
tially emerged become weakly submerged and at providing well documented data for validation of simulations. 
To our knowledge, very few experimental studies have focused on this issue by considering a dense urban area, 
as depicted in Fig. 1a 2. Experimental study exists3–10 and used blocks up to 25. Most of them provide only water 
level measurements and are not interested in the study of the vertical confinement. Another complementary area 
of research concerns the development of simulation tools for extreme flows in a congested area. The field data are 
very scarce so the experimental data are essential to validate the different ways of modellisation. One-dimensional 
models are reasonably convenient to simulate flood propagation in straight streets, except near-street intersec-
tions where the flow is typically highly perturbed, and strongly 2-D or even 3-D11. 2-D modelling was improved 
by verifying the accuracy of the roughness approach against full buildings incorporation in flood simulation12 
or by representing the urban area topography13 or by introducing porosity in the model14–17 in order to take 
into account the building blockage effect7,18. Recently, more information can be found in a review of the data 
available19.

As extreme flood data are very scarce or even non-existent in the field, the present dataset could help 
understanding the physical processes associated with extreme flood flows in a large simplified urban district 
area. Moreover, these data could be used as benchmark data to assess the ability of numerical models from 
one-dimension (1D) to three-dimensions (3D) to estimate the flood hazard over a wide range of flood event 
magnitudes2,20.

1Saint-Venant Laboratory for Hydraulics (LHSV), Chatou, France. 2Riverly Research Unit, INRAE, Villeurbanne, 
France. 3Univ. Gustave Eiffel, Marne la Vallée, France. 4EDF R&D, National Laboratory for Hydraulics and 
Environment (LNHE), Chatou, France. ✉e-mail: marina.oukacine@yahoo.fr

DATA DEScrIPTor

OPEN

https://doi.org/10.1038/s41597-020-00791-w
http://orcid.org/0000-0002-7187-4587
http://orcid.org/0000-0003-2703-4633
http://orcid.org/0000-0001-5536-2170
mailto:marina.oukacine@yahoo.fr
http://crossmark.crossref.org/dialog/?doi=10.1038/s41597-020-00791-w&domain=pdf


2Scientific Data |             (2021) 8:6  | https://doi.org/10.1038/s41597-020-00791-w

www.nature.com/scientificdatawww.nature.com/scientificdata/

The experiments were carried out in an 18 m long and 1 m wide open-channel flume (Fig. 1a), which is located 
in the Hydraulic and Hydro-morphology Laboratory (HHLab) at INRAE Lyon-Villeurbanne, France. The chan-
nel bed slope in the longitudinal direction, S0, is equal to 1.05 mm/m, and the working length is 17.25 m (Fig. 1c). 
The cross-section is rectangular (Fig. 1b) with the right-hand sidewall made of glass, and the left-hand sidewall 
(removable) made of plexiglass. The channel bed is covered with dense artificial grass (5 mm high rigid blades 
with a density of 256 blades per square centimeter), see Fig. 1a,b. Over the artificial grass, 833 cylinders were 
placed with an in-line distribution (Fig. 1a). Each cylinder has a square section (side length = .� 6 4 cm) and has 
a height k = 5.92 cm when measured from the average top of the grass blades. The distance between two adjacent 
square cylinders is constant, the same in the transverse and longitudinal directions, and equals to 7.9 cm (Fig. 1a). 
The distance between the sidewall and the closest square cylinder is equal to 3.9 cm. The most upstream trans-
verse square cylinder row is located at longitudinal position x = 0.17 m (see the origin of x in Fig. 1a). The array 
comprises 119 transverse rows of square cylinders, with 7 square cylinders in each row. At the downstream end of 
the flume (x = 17.25 m), an adjustable vertical weir enables the water surface to be controlled.

This physical model is at scale 1/100. At real scale, the spacing between two adjacent houses, − �L , (where L 
is the distance between two square cylinder centres) corresponds to a two-way motorway including sidewalks, 
and the height of the house, k, corresponds to that of a single-storey house (approximately 6 m high). The aligned 
configuration was chosen to simplified a suburban area. Note that, because of the presence of the square cylinders, 
the classical bed friction laws are not applicable to these highly confined flows with small immersion rates.

Four streamwise uniform flows on average were investigated, varying the immersion rate H/k, where H is 
water depth and k is square cylinder height, with H/k = 0.42; 0.93; 0.98; 1.48. The hydraulic parameters are 
reported in Table 1, in which =Fr H U gH( ) /U QQ

 is the Froude number, ν=Re H U H( ) /U QQ
 is the Reynolds num-

ber, =U Q A/Q  is bulk velocity, A = BH being the wet area and B the channel width. Note that, the data with 
immersion rate H/k = 0.93 and 1.48 are more exhaustive than the other two flow cases because the velocity meas-
urement is more detailed (see section Methods subsection ADV and PIV velocity measurements positions).

Inlet tank

17.25 m0.75 m

z
x

Linear ramp Downstream tail wear

⃗
⃗

⃗
B = 1 m 

z

y
H

0

5 mm 
artificial grass 

Zoom
artificial grass 

0.75 m

1 m

17.25 m1.70 m

1 2 3 4

0

y
x

a) b)

c)

d)

Fig. 1 (a) Open-channel flume at INRAE Lyon-Villeurbanne (view looking upstream); (b) sketch of a cross-
section (view looking upstream) with a zoom of the artificial grass; (c) sketched top view of the flume without 
the square cylinders: 1. Inlet tank, 2. Vertical linear ramp with a 15% slope rising the water until the synthetic 
grass bed level, the water level is nearly flat in the upstream part of the flume, 3. Working channel length, 4. 
Downstream tail weir; (d) sketch of the lateral view of the entire flume.

N° 
[—]

H/k 
[—]

H  
[m]

Q  
[m3.s−1]

UQ  
[m.s−1]

Hweir 
[m]

λf 
[—]

Fr H( )UQ
 

[—]
Re H( )UQ

 
[—]

1 0.42 0.025 0.0016 0.064 0.013 0.08 0.130 1590

2 0.93 0.055 0.0033 0.060 0.037 0.17 0.082 3280

3 0.98 0.058 0.0038 0.065 0.038 0.18 0.086 3770

4 1.48 0.088 0.0103 0.117 0.059 0.185 0.120 101000

Table 1. Flow parameters of the test cases: H is water depth, k is square cylinder height, Q is flow rate, UQ is 
bulk velocity, Hweir is the height of the downstream weir, λf is frontal density per unit horizontal surface, Fr H( )UQ

 
is the Froude number and Re H( )UQ

 is the Reynolds number.
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Methods
A right-handed Cartesian coordinate system was used (Fig. 1), in which the x-axis is aligned with the longitudinal 
direction, parallel to the flume bottom, the y-axis is aligned with the spanwise direction, and the vertical z-axis is 
aligned with the vertical direction (normal to channel bed). The origin x = 0 is located at the beginning of work-
ing length (Fig. 1c), y = 0 at the right-hand sidewall, and z = 0 at the top of the grass blades (Fig. 1b).

Determining the flow rate. The values of immersion rate H/k and water depth H were chosen in collab-
oration with the other partners of the FlowRes project21 (https://flowres.inrae.fr/en/), with experiments in four 
laboratories. H/k-values are thus input data while flow rate (Q) values are data to be determined.

The inlet flow rate is controlled by a control valve Samson 3310 with servomotor PSQ, and is monitored with 
an electromagnetic flow meter (Krohne Waterux 3000 IFC 100). The discharge measurement uncertainty is 0.3% 
of the maximum range set either here ± 0.16 L.s −1, calculated with manufacturer data for a maximum flow rate 
of 50 L.s−1. For the four flows, the flow rate was found after successive iterations of the couple ‘discharge/height’ of 
the downstream weir. More details can be found in estimating the flow rate with presence of obstacle in22.

Determining the square cylinder height. At the flume bottom, the artificial grass was glued to 1 cm thick 
PVC sheets, which in turn were glued to the glass bottom of the flume. The square cylinders were then screwed to 
the PVC sheets. Each cylinder partly crushed the grass at its location. Considering that the flow within the dense 
artificial grass is negligible (256 blades per square centimetre with 1 mm wide blades), the vertical distance from 
the cylinder top to the top of blades was to be determined. Measurements of this distance were made at 6 posi-
tions along the y axis for 230 positions along the x axis, i.e. a total of 1380 positions. 115 positions along the x axis 
correspond to the centres of cylinder rows (except for 4 rows that are not reachable by the measuring devices set 
on the traversing system). 115 other positions along the x axis correspond to the centres of rows without cylin-
ders. The difference between the air depth measurement at the cylinder top and that taken at the bed level (dense 
meadow) is the cylinder height. We obtained a spatially averaged height < > = .k x y( , ) 0 0592x y,  m as shown in 
Fig. 2, with i the index along the streamwise direction and j along the spanwise direction. This value is obtained 
using the following equation:

∑ ∑< > =
= =

k x y k x y( , ) 1
115

1
6

( , )
(1)

i j
i j

,
1

115

1

6

where k(x, y) is the average height at position (x, y)

Determining the water depth. The average water depth is defined as the difference of air depths with and 
without water (both measured using the ultrasonic probe). The average water depth H(x, y) was measured at 24 
positions along the x axis and at 3 lateral positions y/(L/2) = 4,8 and 12 as shown in Fig. 3.

The spatial average of the water depth < >H x y( , ) x y,  will be merely noted as H, with i the index along the 
streamwise direction and j along the spanwise direction, calculated as follows:

∑ ∑=
= =

H j H x y1
24 3

( , )
(2)i y1

24

1

3

The convergence time of the time-averaged water depth was estimated at two different locations, in a central 
vein, and behind an obstacle model, where the vertical boundary layer was assumed to be established at 12 m. 
The convergence time is the time needed for the value to be stationary and was determined when the relative 
deviation tends toward zero. For each flow case, water depth is measured independently for a duration of t = 10, 
20, 30, 40, 60, 90 and 100 s. The convergence time found for each flow case is equal to 40 s. Once the convergence 
time has been established, the measurement is then carried out. It is ensured that all measurements are within the 
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Fig. 2 Average height of the square cylinders in each transverse row measured from the top of the grass blades 
at various longitudinal positions. The solid line indicates the spatial average in the horizontal plane 
< > = .k x y( , ) 0 0592i j,  m and the dotted lines represent ±2 σ(x, y), where σ(x, y) is the standard deviation of the 
local average height k(x, y).
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interval defined as 2σ with σ the standard deviation of the mean value H(x, y). Obtaining a constant water level 
flow flushing the obstacle tops is difficult because of the variation in the local cylinder height k(x, y) (Fig. 2). The 
average water depth at x = 12 m (study area) for case n°3 is H = 58.3 mm.

Determining the velocity. Velocity measurements were performed in the central vein at y/(L/2) = 6 and 
at positions x = 4, 8, 12 and 15 m to investigate the longitudinal flow development. The emerged obstacles flows 
H/k = 0.42, 0.93, 0.98 are developped from 12 m and the submerged obstacle flow H/k = 1.48 is developped from 
8 m. This is determined when the vertical profiles of average velocity overlap.

PIV measurements were performed in the vertical-longitudinal plane while ADV measurements were per-
formed across the channel (vertical-lateral plane). They thus complement each other to explore the physical 
processes involved and can be compared. The convergence time of the time-averaged velocities and turbulence 
statistics was estimated for the ADV data at positions y/(L/2) = 6; 6.55; 7 (Table 2), and at 3 elevations z: near the 
channel bed, at z/H = 0.40 and near the free surface (Table 3). For the emerged obstacles flows H/k = 0.42, 0.93, 
0.98, the convergence time is t = 400 s in the central vein and near the obstacle edge and t = 300 s behind the 
obstacle. For the submerged obstacle flow H/k = 1.48, the convergence time t = 300 s everywhere. In these exper-
iments an elementary pattern extends from the middle of the prism P3 to the middle of the prism P4 (Fig. 4) and 
is located between 5 ≤ y/(L/2) ≤ 7. This elementary pattern will be termed central pattern.

In the same open-channel flume, with only artificial grass over the bed (no house models) and higher flow 
rates, the experimental work of 23 showed duration t for the convergence of time-averaged velocity and turbulence 
statistics around 120 s.
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Fig. 3 Positions (red markers) of the flow depth measurements using the ultrasonic probe. Top: global top view. 
Bottom: zoomed section indicating the positions along the y axis of the three longitudinal transects.
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Fig. 4 Positions of the PIV measurement y1, y2 and y3, and ADV measurements across the channel and central 
pattern; with L = 14.3 cm, � = 6.4 cm and − �L  = 7.9 cm for the 4 flows.

H/k [%]

Convergence time t [s]

Pattern: central vein

y/(L/2) = 6 y/(L/2) = 6.55 y/(L/2) = 7

93 400 400 300

148 300 300 300

Table 2. Summary of the duration t for the convergence of time-averaged velocity and turbulence statistics for 
flow cases with H/k = 93% and 148% Measurements for elementary pattern located in the central vein at y/(L/2) 
= 6, at the edge of the square cylinder at y/(L/2) = 6.55 and behind the middle of the obstacle y/(L/2) = 7 .
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Measurement of the water level fluctuations. Free surface oscillations measurements were carried 
out along and across the flume with the ultrasonic transit time probe. Two types of measurements were carried 
out, the first one is a measure across the flume of t = 200 s for each position with a total of 35 positions and the 
same measure was made 5 hours after the first measured position, the second one is a measure of 12 hours at the 
position x = 12 m and y/(L/2) = 13. These oscillations are mainly in the transverse direction and are caused by the 
vortex shedding behind the obstacles, and are termed seiching phenomenon. Seiching is the most important for 
the flow with H/k = 0.42 with a maximum standard deviation of the level fluctuations equal to 1.5% in the centre 
of the channel for measurements taken at a time t = 0 h and after 5 hours. All flows have the same oscillation 
mode but the higher the water height, the lower the oscillation. The water level fluctuations stabilize after various 
durations depending on the flow cases: after 4 hours for H/k = 0.42, 1 hour for H/k = 0.93 and 0.98 and after 3 
hours for H/k = 1.48. For more details about seiching phenomenon due to vortex shedding in the flow through 
cylinder arrays see24–27 in this open-channel flume in particular, see the experiments of 28.

ADV and PIV velocity measurements positions. The positions of the velocity measurements using PIV 
and ADV are summarized in Fig. 4. The PIV measuring planes for all flow cases are located at lateral positions y1/
(L/2) = 6, y2/(L/2) = 6.55 and y3/(L/2) = 7 and at x = 12.143 m.

ADV measurements were carried out at x = 12 m, with 1 cm spacing the spanwise direction between two 
measurements across almost the entire width of the channel (Table 3), and at various elevations.

The central pattern, from y/(L/2) = 5 to 7, is indeed a large pattern (Fig. 4), as it corresponds to two patterns 
in the literature. Usually, in the literature a pattern ranges from y/(L/2) = 5 to 6 or 6 to 7 corresponding to half a 
vein and half an obstacle. An elementary pattern in the literature includes half a prism and half a central vein. Our 
elementary pattern is twice wider to verify the symmetry usually assumed in a central vein. In addition, the fact 
that a longitudinal row of square cylinders is present in the middle of the channel, i.e. in its privileged central vein 
(for a channel without obstacles), prevents certainty on the symmetry hypothesis.

At the position, x = 12 m, an ADV punctual velocity profiles are measured with a spanwise spacing of 1 cm 
between two profiles at the positions 5 ≤ y/(L/2) ≤ 7, 15 positions along the y axis between the centre of the prism 
P3 and the centre of the prism P4 with 8 positions along the z axis for H/k = 93% and 15 positions along the z axis 
for H/k = 148% (Fig. 5). The measuring volume of the ADV has a cylindrical shape of 6 mm diameter and 7 mm 
length.

Data records
The experimental data have been uploaded on the Zenodo website29, under the DOI number https://doi.
org/10.5281/zenodo.3871773. Four Excel files termed according to the value of immersion rate H/k can be found. 
In each files, several sheets present the water depth, the ADV time-averaged velocities and turbulence statis-
tics across the channel at x = 12 m (described in Table 3), the ADV velocities at y = 6 for 4 different positions 
x = 4,8,12,16 m. The last sheet describes the central pattern ADV velocities and turbulence statistics for the two 
flows with H/k = 93% and 148% flows.

ADV Vertical measurement elevations in the transverse plan (Oy, Oz) at x = 12 m

42% immersion

z [mm] z/H [−] z/k [−]

11 0.44 0.186

93% immersion

z [mm] z/H [−] z/k [−]

11 0.20 0.186

24.2 0.44 0.41

35.2 0.64 0.60

98% immersion

z [mm] z/H [−] z/k [−]

11 0.19 0.186

25.6 0.44 0.43

148% immersion

z [mm] z/H [−] z/k [−]

11 0.125 0.186

36.96 0.42 0.62

58.96 0.67 1.00

79.33 0.90 1.34

Table 3. Elevations of the ADV velocity measurements across the channel for the four flows studied with 
H/k = 42%, 93%, 98% and 148%.
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Technical Validation
Flow sensor and displacement system. The inlet flow rate is controlled by a control valve Samson 3310 
with servomotor PSQ, and is monitored with an electromagnetic flow meter (Krohne Waterux 3000 IFC 100). 
The discharge measurement uncertainty is 0.3% of the maximum range set either here ± 0.16 L.s−1, calculated 
with manufacturer data for a maximum flow rate of 50 L.s−1.The flow sensor was used throughout the measure-
ment campaign showing that the flow rate used for a given water level was replicated and reproducible within the 
device’s margin of error.

The channel is equipped with a motorized displacement system (Siemens S7-1200), carrying the measuring 
devices. The accuracy along the three space directions is of 0.1 mm. These measuring devices are an ultrasonic 
probe with transit time and an Acoustic Doppler Velocimetry (ADV) with a 3D side looking probe.

Note that the laboratory ambient air temperature is maintained by a thermostat between 19 °C and 23 °C.

Water level. The ultrasonic probe with transit time measures the distance between the probe and the first 
reflecting surface. It is used between the transmitter and the free surface and also between the transmitter and 
the bottom of the channel without water. This difference gives the water depth. This apparatus is manufactured 
by Baumer (UNDK 20I6903/S35A). Accuracy is better than 0.3 mm and the reproducibility is better than 0.5 
mm according to the manufacturer. The chosen acquisition rate is 50 Hz (maximum value permitted). The height 
of water determined for a flow was tested during the entire measurement campaign. Replicability was therefore 
verified.

Velocity measurements. The ADV velocity probe chosen acquisition rate is 100 Hz for a given acquisition 
duration. The measurement uncertainty on velocity is ±0.5% of the measured value ±1% mm.s−1 (manufacturer 
data). The centre of the measuring volume is located at 5 cm away from the probe transmitter.

For all the flows studied, the ADV measurement volumes are independent, with vertical intervals of 6 mm. It 
is essential to ensure that the ADV probe is orthogonal to the planes of space. The probe verticality is obtained by 
using a plumb line. The axis Oz perpendicular to the bottom of the channel is therefore confused with the vertical. 
Since the exact alignment of the ADV probe with the transverse axis is difficult to obtain30, a first test consists in 
placing the measurement volume near the wall and rotating the probe along the vertical axis in order to cancel 
the transverse mean velocity component. The second step consists of post-processing the velocity measurements 
assuming that the vertical average of the transverse component of the time-averaged velocity is nil at the wall. 
Hence, a rotation angle is deduced to ensure that the depth-averaged transverse velocity over the water level is 
zero. This rotation angle should be lower than 1 degree according to30.

This rotation angle θz is applied to all lateral and longitudinal time-averaged velocity values as a function of 
the longitudinal position x, because this angle also depends on the verticality of the wall. The Table 4 summarizes 
the variation of the angle θz according to the position x. The longitudinal position x = 12 m has 3 different angles 
because the probe has been taken off twice.

Position x [m] Angle θz [°C]

4 0.073

8 −0.078

12 −0.0627

12 0.230

12 −0.220

15 −0.715

Table 4. Rotation angle θz around the vertical axis of the ADV probe as a function of the position along the x axis.

Fig. 5 ADV measuring mesh realized within for the central pattern (5 ≤ y/(L/2) ≤ 7) for cases (left) H/k = 93% 
and (right) 148%, the grey areas indicate the blind zones for measurements.

https://doi.org/10.1038/s41597-020-00791-w
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The particules used were polyamide powder of 50 μm median diameter (Evonik Vestosint 1164 white). They 
were used to seeding the flow during the ADV measurements. It enables to increase the signal to noise ratio and 
the correlations inside the measuring volume. For some ADV measurements, hollow glass particles (Hologlass 
sphere) of 10 μm diameter were also used. The inlet tank has not been cleaned up because the mixture of particles 
is not problematic for ADV measurements whereas it has been for PIV measurements. Indeed, for PIV meas-
urements, two different particle sizes imply that the illumination will not be homogeneous. Only hollow glass 
particules were used for the PIV measurements.

The Fig. 6 shows that with a different rotation angle correction θz (Table 4) and less than 1° 30, it is possible at 
the same point to obtain at the measurement uncertainty almost the same velocity profile whatever the direction 
of the probe (towards y = 1 or y = 0).

As regards the PIV measurements, the artificial grass was cut so that the laser could go through it, so some 
perturbations are expected, and also we made sure that the laser sheet was straight and the calibration with the 
camera at a very low angle. The Table 5 presents the frequency and the time between two image bursts used for 
each flow case.

Data usage caution. It should be noted that aligning 833 square cylinders was not an easy task. We esti-
mated a maximum shift of 5 mm in both longitudinal and transverse directions which represents 8% of the square 
cylinder width.

Usage Notes
This dataset is intended to bring insight into the transition from emergence to slight submergence of house mod-
els focusing on their impact on the velocity field in a dense urban area. As extreme flood data are very scarce 
or non-existent in the field, this dataset could be used as a benchmark data for other experimental studies and 
numerical modelling of flows through a simplified urban area. This is relevant in the flood risk management.

Another use of this dataset is to compare the data with other configurations and to conclude upon the physical 
processes involved.

code availability
WinADV software was used to process the ADV velocity data. Data were filtered using the despiking technique of 31.  
The data measured with the PIV system were post-processed with Davis software from LaVision company.
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Fig. 6 Vertical profile of the longitudinal time-averaged velocity ū at x = 12 m and y/(L/2) = 6, towards the glass 
sidewall located at y = 0, or towards the plexiglass sidewall positioned at y = 1; after taking into account the 
correction alignment angle of the probe (Table 4) for the flow H/k = 0.93.

H/k [%]

Frequencies [Hz]

y/(L/2) = 6 y/(L/2) = 6.55 y/(L/2) = 7

42 4 3 3.5

93 5 3 3.5

98 5 3 3.5

148 2.5 3 4

Time between two image burst [μs]

H/k [%] y/(L/2) = 6 y/(L/2) = 6.55 y/(L/2) = 7

42 4000 8000 —

93 1000 20000 16500

98 1000 8000 16500

148 1000 6000 9000

Table 5. Frequencies and time between two image burst used for the PIV measurements as a function of the 
lateral position y for each flow case.
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