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Abstract—This paper proposes a novel approach called IDrISS
that exploits electromagnetic (EM) side-channel signals to de-
sign non-protocol based Intrusion Detection System (IDS). EM
emanations side-channels are captured on power lines of an
infrastructure. They are used to identify the presence of any type
of electronic devices onto a physical network. IDrISS can learn
the structure of the EM unintentional emanations of the legit
devices composing the infrastructure as a reference profile. In a
second step, it records and analyses the current emanations to
compare and detect any kind of unwanted emanations. IDrISS is
used as a Intrusion Detection System (IDS) that can trig an alarm
as soon as a intrusion is detected. The results show that intrusion
can be detected in various scenarios whatever the activity of the
legit computers of the network. Furthermore, the capture device
used is based on inexpensive off-the-shelf components that makes
the deployment onto real network easy.

Index Terms—Side-channel signals, intrusion detection, dictio-
nary learning, sparsity, recurrent neural networks

I. INTRODUCTION

A. Context and related works

Detecting intruders on a network is part of the analysis of
Information Systems Security (INFOSEC). The goals of the
intruder can be multiple: interception and listening of network
traffic and exchanged data, commands injection, etc. Existing
solutions for detecting intruders on a network are mainly based
on the network’s traffic analysis in order to detect any form
of anomaly. Indeed, known techniques recover all network
traces in order to filter legitimate traffic and detect traces that
the intruder would generate (see for example [1], [2]). With
the advent of wireless networks, intruders can now seek to
integrate directly into wireless traffic [3]. However, the pro-
posed approaches assume the analysis of the targeted protocol.
Therefore, an intruder complying with the protocol cannot be
detected by the system as being an intruder, especially if he is
listening passively. Another approach could be to use current
consumption analysis. This type of approach would be based
on the electricity power consumption of the intrude device.
However the intruder might have a consumption much lower
than that of the network considered which would make it
undetectable by current analysis.

Unlike network’s analysis based approaches, our method
does not rely on any a priori knowledge on the network.
It also does not rely on electricity power consumption but
instead on Electro Magnetic (EM) side-channel signals which
contain much more information. In [4], [5], the EM signal is
used to detect abnormal behavior on a chip like, for example,
the execution of a malicious program. The proposed method
is a local analysis with a EM probe . Moreover, whereas
the former detects the intruder’s activity effect on a single
device’s EM side-channel signal, we aim at detecting the
intruder EM emanations in an aggregate of possibly several
devices emanations. Thus, our method can find applications
in many fields such as networked (or isolated) computer
systems, control and data acquisition systems, the Internet of
Things, wired and wireless networks. We detail this approach
in section II, present some numerical experiments in section III
and conclude in section IV.

B. Notations

We adopt the following notation conventions :
• lower case and bold letters are used for vectors;
• upper case and bold letters are used for matrices;
• by default, vectors are represented as columns;
• Greek letters are used for hyper-parameters;
• non-bold letters are elements in a matrix or in a vector.

II. PROPOSED METHOD

A. Side-channel signals sensing

All electronic devices produce EM emanations that not only
interfere with radio devices but also compromise the data
handled by the information system. A third party may perform
a side-channel analysis and recover the original information,
hence compromising the system privacy. While pioneering
work of the domain focused on analog signals [6], recent
studies extend the eavesdropping exploit using an EM side-
channel attack to digital signals and embedded circuits [7].
Side channels are used to retrieve the information completely.
However, even though the information cannot be retrieved
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Fig. 1. Block diagram of the proposed method: the network is made of legit devices and an intruder. All generate EM emanations that couple onto the power
lines. IDrISS captures the EM signal with a current probe and SDR system that sends the raw IQ data to a processing data device.

entirely, the EM emanation can embed another type of in-
formation such as the device type (computer, monitors, etc.)
or activity cycle (sleep mode, idle, working, etc.)

We consider a generic scenario involving n legit devices
and one unknown device (see Fig. 1). The EM emanations of
both the legit and the unknown devices are sensed though
an acquisition system which consists in a receiver and an
analog digital converter (ADC). In our scenario, we consider a
current probe to recover the EM by conduction. The receiver
is a SDR device with its associated filters and ADC. This
acquisition system senses the signals that are used for training
and monitoring.

B. Sparse modelling of side-channel signals

The first step of the learning phase is to detect and extract
from the signals received from the capture system, segments
corresponding to periods of activity of equipment whose EM
emanation were measured. On these segments, the signals
are expected to exhibit particular morphologies. These signals
are complex-valued. Although the phase is certainly infor-
mative, we focus the analysis on the amplitude signal. The
previously mentioned segments are then the continuous and
non-extendable periods over which the amplitude takes values
greater than a given threshold. This threshold constitutes a
sensitive parameter, the choice of which will be discussed later.
A typical example of amplitude signal is given in Fig. 2.

Activity patterns are extracted, registered w.r.t. their time-
wise barycenters as illustrated in Fig 3 and zero-padded so that
they have the same length. These patterns are extracted for the
all legit equipments and stacked into a matrix P of size n×m,
n being the number of activity patterns extracted and m their
length. We factorize P into two sparse non-negative matrices:
P = WD where W and D are n × p and p ×m matrices.
We use the method presented in [8] via the python toolbox
NIMFA1. This amounts to decomposing the activity patterns
into simpler shared sub-features which are the are the p rows

1http://nimfa.biolab.si/index.html, accessed in Febuary 2020

Fig. 2. Amplitude signal: the braces indicate some activity segments.

Fig. 3. Registered activity patterns.
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Fig. 4. Elementary activity features.

of the matrix D. We can see examples of these sub-features
in Fig. 4.

In the following, we refer to D as the dictionary and to
D’s rows as the atoms. We note these atoms d1, · · · ,dp. By
design, these atoms can be used sparsely to reconstruct activity
patterns. So for any given amplitude signal x = [x1, · · · , xT ]
we can compute a sparse convolutive representation of x as
follows:

x =

p∑
i=1

hi ∗ di, (1)

∗ denoting the convolution product and hi being a sparse non-
negative weights vector of length T associated with the ith.
These weights determine the presence and the magnitude of
the different atoms at different times in the magnitude signal.

We estimate them by solving an optimisation problem of
the form:

min
h1,··· ,hp

1

2
‖x−

p∑
i=1

hi ∗ di‖22 +
T∑

i=1

wi‖[h1[i], · · · ,hp[i]]‖2,

s.t. hi ≥ 0,
(2)

The weights w1, · · · , wT are hyper-parameters set in order
to mitigate the l2 norm induced bias, according to the strategy
presented in [9]. Once this estimate has been made, we now
have at each time i a weight vector xi = [h1[i], · · · ,hp[i]]
which characterizes the contribution of each atom to the
magnitude of the amplitude signal at that time. The vector-
valued signal [x1, · · · ,xT ] constitutes a new, more structured
representation of the initial signal which will be used in the
following for sequential modeling.

C. Sequential modeling of legit devices activity

At this stage, we have a new vector-valued representation
of the amplitude signal. The first step is to quantize the new
representation space in order to represent the amplitude signal
using a finite vocabulary. In other words, we build a partition
of this new space as illustrated in Fig. 5 We recall that we
have at this stage a sparse vector-valued representation of
the training amplitude signal (see Fig. 6). The previously
mentioned partition should only be based on the vector values
of significant l2 norms, in other words, which are above
background noise.

Fig. 5. Partitionning.

Fig. 6. Sparse vector-valued amplitude signal representation. Each color
corresponds to one coordinate of the vector value at each time

These vector values are thus selected based on a threshold
on their l2 norms. This threshold should be high enough for
the noise related vectors to be filtered out. It can be set
according to l2 norms values histogram. The selected vectors
are first standardized i.e. the means and standard deviations
of each of their coordinates are set to 0 and 1 respectively.
The standardized vectors are then clustered using the k-
means algorithm. The number of clusters is another important
parameter that will be discussed later. The partitions are then
defined as being the regions of space closest to each of the
centroids of the formed clusters. In a second step, we return
to non-standardized vectors and before thresholding. We make
a new selection from a lower threshold than the first used
in order to retain more complete, although potentially more
noisy, information of the amplitude signal processed. Then
we recenter and rescale the set of selected vectors using the
means and standard deviation previously calculated. We extend
each of these vector by adding to it the number of time steps
separating it from the next selected vector and assign each
vector a partition number.

Let ui denote the vector corresponding to the time step ti
and li his partition number. Each partition can be interpreted
as a particular state of the legit devices activity. In order to
capture legit devices activities regularity, we train a Long-
Short Term Memory (LSTM) to predict the state or partition
number lk at time tk, based on the sequence of ui observed
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up to time tk−1. This model is then used to detect anomalies
as explained in the next subsection.

D. Intrusion analysis

The previous steps are performed using a reference training
signal. Given a new amplitude signal, we compute its repre-
sentation into the partitioned space previously built. It results
into a sequence of vectors v1, · · · ,vm, and the corresponding
partitions numbers lv1

, · · · , lvm
. Let pi denote the probability

estimated by our sequential model that the vector v1 belongs
to the cluster number lvi

conditionally to the preceding vectors
of the sequence:

pi = pr(lvi
|vi−1, · · · ,v1). (3)

The sequence p = p1, · · · , pm characterizes the compatibility
of the new amplitude signal with the model learn:

• values close to 1 indicate a strong fit with the model;
• conversely, values close to 0 indicate outliers from the

model point of view.
Hence, Thus, a consistent drop in the values on the pis would
be an indicator of abnormal activity, including the activation
of unknown equipment.

III. NUMERICAL EXPERIMENTS

A. Experimental Setup

The experimental setup is defined as follows: a current
probe is installed the power strip where all the legit computers
are plugged in as depicted in Fig. 1. A Radio Frequency
(RF) power amplifier is inserted after the current clamp. The
interception system is composed as follows the SDR device
is an Ettus B205 mini receiving with a 20 MHz bandwidth
to recover the emanations with a fine granularity [10]. The
recovered signal is a digitized radio signal of the form 16-bit
signed IQ samples. For the intrusion diagnosis, we consider a
situation in which there are two legitimate computers (different
from those used for dictionary learning) and potentially an
unknown computer. Traces from the three computers are
recorded separately and mixed offline following two scenarios.
On the one hand, the legit computers complex traces are
simply summed up. On the other hand, the traces are zeroed on
different random slots before summation to emulate switching
on and off. In both configurations, we use an uncorrupted
segment of the synthetic trace to learn a sequential model,
and we use it to analyze part of the trace to which we locally
added the unknown computer’s trace (see Fig. 7 and Fig. 8).

The training amplitude signal corresponds roughly to 1.6
seconds. The corrupted amplitude signal is one third of the
training amplitude signal.

B. Results

a) Dictionary learning: The dictionary D of section II-B
is computed based on complex traces recorded on the power
cables of two computers and their screens using a current
clamp as previously described. Activity segments are extracted
using a threshold manually set to 40, based on the histogram of
the values of the training amplitude signal. Thus the choice of

Fig. 7. Corrupted amplitude signal in the first scenario; the intruder is active
in the time slot between the dashed lines.

Fig. 8. Corrupted amplitude signal in the second scenario on the top; the
intruder is active in the time slot between the dashed lines; on the bottom the
periods of activity of each of the equipment are indicated.

this parameter can easily be automated. The number of atoms
(parameter p) is chosen so that the matrix factorization error
is negligible. We set it to 20. Actually, less atoms could have
been computed using a different dictionary learning method
(see for instance [11]), as we can see in Fig. 4 that several
atoms are practically identical up to a shift.

b) Sequential modeling: In order to partition the new
representation space previously described, we set the number
of clusters to 100. The more clusters there are, the smaller
the partitions and the more sensitive the detection is to small
disturbances due to the activity of an intruder. However, a
high number of clusters requires more data for learning the
sequential model. There is therefore a compromise to be found,
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Fig. 9. Intrusion detection in the first scenario on the top and the second
scenario on the bottom. The activation of the unknown equipment causes a
detectable rupture thanks to the learned sequential model.

with a fixed amount of data. This hyperparameter has to
be fine tuned accordingly, based on the prediction accuracy
of the sequential model on the training data. The vector
values are selected using a threshold of 100 for clustering
and a threshold of 10 for labelling and sequential model
learning. These thresholds are chosen manually based on the
histogram of the time step wise l2 norms of the vector-valued
representation of the training amplitude signal obtained by
solving problem 2. The later thresholding yields an average
compression of roughly 1/10 of the original amplitude signals.

We train a two layers LSTM with a hidden and output layers
size of 3. We get a prediction accuracy of more than 80% on
a test uncorrupted signal, which confirms that the underlying
regularities present in the amplitude signal have been well
preserved. This accuracy is empirically stable, regardless of
the non deterministic results of the k-means clustering.

c) Intrusion detection: Following the methodology de-
scribed in Section , we calculate the signal p for the corrupted
traces in the two scenarios. We then calculate in a sliding
window of size 100 on the signal p, the percentage of values
greater than 0.5. One can see the results obtained in Fig. 9.

In both cases, activation of the unknown equipment results
in a detectable increase in the number of implausible tran-
sitions in the analyzed sequence. However we observe that
the break is less neat in the second scenario. This is simply

due to greater statistical variability in the data in this case
which makes the sequential model harder to train. In this case,
therefore, more training data should be used. Besides, these
results have to be consolidated with a thorough false detection
rate analysis.

IV. CONCLUSION

We presented an intrusion detection method called IDrISS
based on side-channel signal analysis. From these signals,
recorded only for legit equipment, we learn a vocabulary
and an operating syntax using a recurrent neural network.
The learnt model then allows us to detect deviations from
the expected operation, indicating the activity of an unknown
equipment. We evaluated this methodology on realistic data.
The capture device used is based on inexpensive off-the-
shelf components. In a configuration with two legit and one
unknown equipment and under two different scenarios, we
obtained convincing detection results. The continuation of this
work will focus on adapting the proposed methodology to the
monitoring of an arbitrary number of legit equipment.
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David. Coeurjolly, Marco. Cuturi, Gabriel. Peyré, and Jean-Luc. Starck,
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