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Spatio-temporally heterogeneous environments may lead to unexpected
population dynamics. Knowledge is needed on local properties favouring
population resilience at large scale. For pathogen vectors, such as tsetse
flies transmitting human and animal African trypanosomosis, this is crucial
to target management strategies. We developed a mechanistic spatio-tem-
poral model of the age-structured population dynamics of tsetse flies,
parametrized with field and laboratory data. It accounts for density- and
temperature-dependence. The studied environment is heterogeneous, frag-
mented and dispersal is suitability-driven. We confirmed that temperature
and adult mortality have a strong impact on tsetse populations. When
homogeneously increasing adult mortality, control was less effective and
induced faster population recovery in the coldest and temperature-stable
locations, creating refuges. To optimally select locations to control, we
assessed the potential impact of treating them and their contribution to
the whole population. This heterogeneous control induced a similar popu-
lation decrease, with more dispersed individuals. Control efficacy was no
longer related to temperature. Dispersal was responsible for refuges at the
interface between controlled and uncontrolled zones, where resurgence
after control was very high. The early identification of refuges, which
could jeopardize control efforts, is crucial. We recommend baseline data
collection to characterize the ecosystem before implementing any measures.
1. Introduction
Environmental heterogeneity drives insect population dynamics [1]. Spatially, it
induces movements from source patches (i.e. area where the local population
increases) to sink patches (i.e. area where the local population decreases),
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possibly enhancing population resilience in unsuitable patches
[2]. Temporally, environmental suitability can vary over time
both locally owing to microclimate variations, e.g. impacting
vegetation growth [3], and at a larger scale owing to seasonal
unfavourable periods. Spatial and temporal environmental
heterogeneities, therefore, have distinct effects. If confounded,
this can lead to erroneous predictions of ecological processes
[4]. Relating such a complex time- and space-varying habitat
with population dynamics remains a challenge [5].

This becomes crucial when managing vector-borne
diseases whose transmission depends on interactions between
vectors and hosts, and thus on landscape structure [6].
A rescue effect (i.e. new individuals arriving rescue local
population from extinction) may occur because of spatial het-
erogeneity and individual dispersal, inducing resilience of the
controlled population, especially if control is not area-wide
(i.e. targeting an entire vector population within a circum-
scribed area) [7]. In addition, vectors are also subjected to
seasonal habitat suitability [8]. Such spatial and temporal vari-
ations could induce unexpected changes in vector population
dynamics. However, management programmes of vector
populations often are designed without considering local
environmental characteristics.

Tsetse flies (Glossina spp.) are vectors of human and
animal African trypanosomes, a major pathological con-
straint for productive livestock and sustainable agricultural
development in sub-Saharan Africa [9]. They are widely dis-
tributed across sub-Saharan Africa, occurring in 38 countries
and infesting around 10 million km2 [10]. Over 60 million
people are continuously exposed to the risk of becoming
infected, and farmers in tsetse-infested areas suffer up to
20–40% losses in livestock productivity leading to an esti-
mated annual loss of US$4500 million [11]. Among the 31
species and subspecies of tsetse flies, less than one-third is
of economic and human health importance, the remaining
mostly thriving in wildlife areas or located in thinly popu-
lated forested areas [12]. Management efforts have been
ongoing for decades in Africa but largely failed to create sus-
tainable tsetse-free areas, i.e. the tsetse distribution has been
reduced with less than 2% [13,14]. Although tsetse flies
have a complex ecology and biology, their slow reproduction
rates make them an ideal target for an eradication strategy.
This, however, requires a better understanding of their
spatio-temporal dynamics [15].

Modelling helps to better understand insect population
dynamics [16] and predict their trends under changing con-
ditions [17]. Sparse and heterogeneous knowledge can be
integrated, producing simulations complementary to field
observations and experiments [18]. Complex behaviours can
be studied and scenarios tested [19], and when hypotheses
and limits are clear [20],models canguidedecision-making [21].

There are a few models which deal with tsetse biology and
population dynamics [22–25]. They have rarely been used to
guide decision-making in operational programmes [26–29].
Thosewhichhave,mostly failed topredict population resilience,
leading to inaccurate guidelines [15]. In addition, most control
programmes were not implemented following area-wide prin-
ciples [7]. Their failure could be explained by population
resurgence in non-treated patches or re-invasion by neighbour-
ing populations [30,31]. It is still unclear which patch properties
are relevant to define sources and sinks in a hostile environment
created by eradication efforts, and whether dispersal can lead
to population resurgence. Spatial complexity considerably
influencesmodel predictions [31–33], and population dynamics
differ among local patches of variable suitability, possibly affect-
ing dynamics at a larger scale.

Our objective was to assess the effect of spatial dispersal
along with spatial and temporal environmental heterogeneity
on tsetse fly population dynamics and control. Control was
implemented as spatially targeted increases in adult fly mor-
tality. We developed a mechanistic spatio-temporal model
that incorporates environmental heterogeneity through a
data-driven approach. The model was applied to a Glossina
palpalis gambiensis population of the Niayes (Senegal) that is
subject to an ongoing eradication project [34]. Less than 4%
of the habitat is considered favourable for G. p. gambiensis
[35] and tsetse populations are highly structured across the
metapopulation [36]. This knowledge was incorporated
in the model, accounting for combined effects of spatial
complexity, density-dependence and temperature on the
age-structured population.
2. Material and methods
(a) Key knowledge on tsetse biology
Meteorological variables influence the abundance and spatio-tem-
poral distribution of tsetse flies [37,38], with average temperature
being the most influential one [39]. However, its influence com-
pared to, or combined with, demographic processes is poorly
understood. Tsetse flies reproduce by adenotrophic viviparity
(electronic supplementary material, figure S1A). The egg hatches
in the female’s uterus. The developing larva is nourished by the
milk glands until larviposition. Between 20 and 30°C, the lower
the temperature is, the longer the period between larvipositions
[40]. Similarly, colder temperatures prolong the pupal period
[41]. The first larviposition occurs around day 18 post emergence.
The period between larvipositions is 10 days on average [39].
Temperatures above 30°C increase adult mortality [37]. Mortality,
related to predation and feeding success, is density- [42] and age-
dependent [43], with remarkably high losses in nulliparous flies
(up to her first larviposition) partly owing to starvation risk [39].
This species acquires feeding preferences, i.e. the host selected
for the first blood meal, can influence the one selected for the
second meal. This learning capability increases the hunting
efficiency of older flies [44].

Tsetse flies are classified into three groups based on their
behaviour, habitat preference and distributions, i.e. forest (subge-
nus Fusca), savannah (subgenus Morsitans) and riverine flies
(subgenus Palpalis). While most previous models applied to the
savannah species Glossina pallidipes and Glossina morsitans, we
focused on the riverine species G. p. gambiensis that thrives in
forest galleries and riparian thickets [45]. The habitat of this
species stretches along rivers and, therefore, its dispersal is
mostly in one dimension. However, in some areas, like the
Niayes of Senegal (electronic supplementary material, figure
S1B), rivers and associated vegetation have disappeared owing
to climate change and the distribution of G. p. gambiensis popu-
lations is fragmented because of the very patchy vegetation
[35]. Consequently, the populations disperse in two dimensions
like tsetse flies of the fusca and morsitans groups. In addition, in
such fragmented landscapes, tsetse flies display localized, small
subpopulations with relatively short dispersal. Isolated popu-
lations in fragmented habitats are ideal targets for eradication
using area-wide integrated pest management (AW-IPM)
approaches [7,46]. Hence, our case study is of broad relevance
to better understand and predict riverine tsetse fly spatio-
temporal population dynamics in rapidly changing ecosystems
which are gradually becoming the norm [47].
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Figure 1. Within-cell model diagram of tsetse fly population dynamics (time unit: day). Transitions between stages except from pupa (P) to nulliparous female (N)
trigger the birth of a new pupa P1. Transitions occur at development rate δS for stage S ∈ {P, N, Fx} ( parity x ∈ {1, 2, 3, 4+}) according to temperature θt,c at time
t in cell c, giving rise daily to a minimum jump of l states from each state i of stage S, with (1−q)St,c,i individuals going from state St,c,i to state Stþ1,c,iþl and qSt,c,i
individuals going to Stþ1,c,iþlþ1. If i + l > nS (respectively, i + l + l > nS, with nS the maximum number of states in stage S ∈ {P, N, Fx}), then selected individuals
go to the next stage. Equations are in the electronic supplementary material, S4.1. (Online version in colour.)
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(b) Data on tsetse biology and the environment
The effect of temperature on mortality, fecundity and the length of
the pupal period of G. p. gambiensis was assessed under experi-
mental conditions for the specific populations inhabiting the
target area [48] (electronic supplementary material, S2.1). Dispersal
of G. p. gambiensis was assessed from release–recapture data [49]
(electronic supplementary material, S2.2). Field data on population
age structure were available thanks to a study focusing on natural
abortion rates (electronic supplementary material, S2.3). The
observed age structure was compared with simulation results for
qualitative evaluation of the model. In tsetse, the physiological age
structure is an important feature which depends mainly on the sur-
vival rate and the lengthof thepupationperiod, both conditionedby
temperature [12]. When the temperature drops (cold dry season),
pupation lengthens, adult flies live longer and the population
becomes older [41]. The reverse occurs during the hot dry season.

The spatio-temporal environmental heterogeneity was realisti-
cally representedusingadata-drivenapproach. First, local carrying
capacities (electronic supplementarymaterial, figure S1C and S3.1)
weredefined as themaximumsustainable numberof tsetse flies per
cell (model spatial unit), estimated as SI × ADT/σ. SI is the suit-
ability index (estimated with a species distribution model [34]
based on maximum entropy), σ the trap efficiency (probability
that a trap catches a fly within 1 km² within a day [50], set to
0.003 [34]) and ADT the apparent density of the population (flies
sampled per trap per day) [51]. All available trap catch data col-
lected in the Niayes before the start of the eradication campaign
(2007–2010) were used. Second, local daily temperatures were
modelled by approximating local temperatures truly perceived
by tsetse flies. Temperatures measured in weather stations are not
those experienced by flies in resting places which are normally 2–
6°C cooler than ambient temperature [52]. Furthermore, tempera-
ture increases from the centre to edges of gallery forests. High
resolution macro-climate data freely available for 2011 in the
studied area were corrected using temperature data recorded in
selected suitable habitats (electronic supplementarymaterial, S3.2).

(c) A mechanistic spatio-temporal model of tsetse fly
population dynamics

A mechanistic and deterministic compartmental model was
developed to predict the spatio-temporal dynamics of the
G. p. gambiensis population accounting for environmental hetero-
geneity and density-dependence. The most relevant data
available for G. p. gambiensis (published and new) were used to
calibrate the equations representing the processes involved in
the population dynamics, i.e. adult mortality, pupal development
and time to larviposition. Locally, individuals were categorized
into pupae (P), without differentiating males and females, nulli-
parous females (N) and parous females with four ovarian ages
(F1, F2, F3, F4+, figure 1) [53]. Adult male (M) densities are
considered not limiting for mating. However, they play a role
in density-dependent processes and were thus modelled with
only death affecting their number [12]. We considered the flies
not limited in their access to hosts.

The environment was modelled using a grid (cell resolution:
250 × 250 m; study area: 30 × 30 cells; electronic supplementary
material, figure S1C). The model, fully described in electronic
supplementary material, S4, was implemented in Python as a
discrete-timemodelwith a one-day time step (code available, elec-
tronic supplementary material, S7). Parameter values are
provided in electronic supplementary material, table S2.

Within each cell, the population size per life stage decreased
with mortality. We used a constant mortality rate for pupae,
given the lack of data on this parameter [27]. Mortality of nulli-
parous females was twice as high as that of parous females
[54]. Adult mortality increased with temperature above 24°C,
while below this threshold and for the range of temperatures
observed in the field, a constant mortality was assumed
[33,39]. Density-dependence occurred when the adult population
exceeded the carrying capacity of a cell [39]. In addition, individ-
uals evolved between stages as a function of temperature. Pupal
development was fitted on data (electronic supplementary
material, S2.1). For nulliparous and parous females, consistency
of experimental data was checked against published equations
[39]. A pupa was produced at the end of both nulliparous and
parous female stages.

Fly dispersal pattern was designed to favour suitable over
unsuitable habitat (electronic supplementarymaterial, S4.2). A sig-
moidal density-dependent dispersal rate was assumed [55],
adapted for individuals competing to access resources [42]. Fly
dispersal to neighbouring cells was determined by the relative
cell attractiveness, designed to favour the emptiest cells and cells
of greatest carrying capacity if similarly filled. We used data to
calibrate the dispersal radius, i.e. the maximum discrete jump (in
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number of cells) allowed in a day (electronic supplementary
material, figure S4).

After a 3-year burn-in period starting from local populations
at carrying capacities and using reference parameter values (elec-
tronic supplementary material, table S2), a scenario without
control was implemented over 3 years and analysed (electronic
supplementary material, S4.3, S4.4). Carrying capacities were
spatially heterogeneous but assumed constant over time. Daily
perceived temperatures were estimated per cell for 1 year and
were repeated the following years. The model integrated all cur-
rent knowledge on processes governing population dynamics of
G. p. gambiensis. We end up with a single model structure, where
each biological process was carefully calibrated based on new or
published data on our study species. However, as parameter cali-
bration cannot be perfect, the individual and joint effects of
parameter variations on aggregated output variance (electronic
supplementary material, S5), and especially population size,
were evaluated. We performed a variance-based global sensi-
tivity analysis using the Fourier amplitude sensitivity testing
(FAST) method, recommended for this type of model [56]. Pre-
dicted age structure was compared with field data for females
of ovarian age 1, 2 and 3, because traps do not catch nulliparous
and females of ovarian age 4 and 4+ as efficiently as females of
intermediate ovarian ages [57].

(d) Spatially targeted control strategies and population
resurgence

Optimized strategies were defined by the minimal proportion of
cells to be controlled, their optimal location and the control effort
required. The methods used are fully described in the electronic
supplementary material, S6. In brief, control was mimicked by
increasing female mortality during 1 year, starting from the
same initial conditions as in the scenario without control. For
iteratively reduced proportions of controlled cells (starting with
a homogeneous control), we assessed the minimal mortality
increase required to reduce the female population size to 5 and
2% of its initial value over the whole grid after 1 year. We stopped
reducing the proportion of controlled cells once it became imposs-
ible to achieve the targeted population reduction whatever the
mortality. The control efficacy was assessed with respect to the
female population size at both grid and cell scales, identifying:
(i) the cells which contributed most to the total female population
after 1 year of control; (ii) the local impact of 1 year of increased
mortality (ratio between the female abundance after 1 year in the
scenario with and without control); and (iii) the cells which con-
tributed most to population recovery (highest local growth rate)
in a scenario with female mortality set back to its reference
value (i.e. control has stopped) for 1 year, testing population
resurgence. We analysed the relationship between the local
environmental variables (carrying capacity, mean temperature,
temperature variance in each cell) and the three indicators afore-
mentioned, reflecting different properties of the population
spatial structure. To assess whether spatial dispersal impacted
control efficacy and population resurgence, we ran similar
simulations with the dispersal process turned off.
3. Results
(a) New insights from biological data
Using all available data, the female fly mortality function
differed from published ones (electronic supplementary
material, figure S2A). Up to 24°C, female fly mortality rate
was 0.013 d−1, but mortality increased exponentially with
temperatures to reach 0.023 d−1 at 32°C (lifespan of 43–77
days). Male mortality was higher than female mortality at
all temperatures (electronic supplementary material, figure
S3). Pupa emergence followed a logistic function, providing
a new pattern compared to Hargrove’s equation [39] (electro-
nic supplementary material, figure S2B). The daily dispersal
range proved to be less than 250 m, which was equivalent
to the width of one cell (electronic supplementary material,
figure S4). Finally, carrying capacities were highly hetero-
geneous and ranged between 106 and 104 761 flies km−2;
(median: 2330, cell resolution: 0.0625 km2). By contrast,
spatial variations of local temperatures were small (electronic
supplementary material, figure S8).

(b) Temperature and mortality as key factors driving
population size

The scenario without control was closely in line with field
observations made before the start of the eradication cam-
paign in the Niayes (electronic supplementary material,
figure S6). Population dynamics was seasonally influenced
and driven by temperature as expected and variations were
larger between cells than within cells (electronic supple-
mentary material, figure S7). The population growth rate
was −0.63% during the last year. On average, 40, 33 and
27% of the young parous females deposited 1, 2 or 3 larvae,
respectively. The spatial variability of age structure was
three to four times lower than its temporal variability.

A 5% variation in temperature resulted in significant
population increase or extinction, largely outweighing the
effect of a similar variation in carrying capacity (electronic
supplementary material, figure S9), which emphasized the
need for considering reasonable temperature variations.
Model outputs other than age structure were highly sensitive
to variations in adult mortality (µ{N,F,M}), which explained
more than 50% of population size variance (electronic sup-
plementary material, figure S11). It emphasized the need to
study in more detail the impact of mortality variations on
the spatio-temporal population dynamics. Model outputs
were only moderately sensitive to variations in pupae devel-
opment (δP). Nulliparous (δN) and parous (δF) female
development rates, pupae mortality (µP), carrying capacities
(k) and dispersal (g) barely contributed to output variance.

(c) Efficacy of control measures driven by environmental
heterogeneity and dispersal

Increasing adult mortality to levels comparable to those
obtained during control programmes [26] induced a sharp
decline in population size after 1 year of control (figure 2).
The life expectancy of the female flies had to be reduced
from 60 (no control) to 35 days, to reduce the population to
2% of its original size using a homogeneous control effort
(point ‘2’, figure 2a). Cells of highest carrying capacity con-
tributed the most to population size irrespective of whether
control was implemented (figure 2b2) or not (figure 2b1).
At low fly population density (66 flies km−2), new patterns
emerged related to cell-specific properties. Surprisingly,
increasing mortality homogeneously had a heterogeneous
impact: the decrease in local relative population density (i.e.
the local control efficacy, figure 2c2) was not correlated with
carrying capacity (electronic supplementary material, figure
S12A), but with local temperature. The coldest cells that
experienced the smallest variations in temperature showed
the least impact (electronic supplementary material, figure
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S12B–D). This pattern was obvious despite the small vari-
ations in mean temperature (23.7–24.3°C) and standard
deviation (1.98–2.37°C), which were not correlated (electronic
supplementary material, figure S12C and D). When neglect-
ing tsetse fly dispersal, results were similar but with a
lower effect of temperature and less variations among cells
(electronic supplementary material, SI7, figures S14 and S15).

Targeting cells contributing the most to population man-
agement (greatest carrying capacity and most impacted by
an increased mortality) could achieve a similar decrease in
population size as a homogeneous control, but required an
additional effort in increasing mortality in targeted cells.
Besides, the population was much more fragmented and
control efficacy was no longer related with temperature.
Controlling 70% of well-chosen cells was as efficient as control-
ling the entire area (almost the same mortality was applied).
Reducing further the proportion of controlled cells required a
sharp increase in mortality to obtain a similar efficacy.
To reduce population to 2% of its original size while applying
a heterogeneous control (pink point ‘3’, figure 2a), life expect-
ancy had to be reduced from 60 (no control) to 23 days in
47% of the cells (average life expectancy over the entire
area of 43 days). Controlling less than 47% of the cells could
not reduce population below 2% of its initial size. Cells contri-
buting the most to the total population were scattered in the
area (figure 2b(iii)). The local relative population decrease
(figure 2c(ii)) was slightly associated with carrying capacity
(electronic supplementary material, figure S13A) and the con-
trol was more effective in cells with intermediate than low
carrying capacity. No effect of temperature was observed
(electronic supplementary material, figure S13B,C). Similar
patterns were observed if the population was to be reduced
to 5% of its initial size. By contrast, if neglecting fly dispersal,
the control efficacy was much less variable. Temperature and
its variations impacted control efficacy as in the homogeneous
case (electronic supplementary material, figure S16). This indi-
cated that a non-spatial model largelymisestimates the efficacy
of targeted control and may lead to different conclusions.
(d) Population resurgence after control
Population resurgence 1 year after control did not lead to
reach pre-control population size, irrespective of whether
control was homogeneous or heterogeneous, but resurgence
could be very high in local refuges. After a homogeneous
control effort, the population growth rate was 34.7% yr−1 at
the grid scale and was highly heterogeneous in space
(figure 3a). The highest and positive growth rates were
found in refuges, i.e. the coldest cells with the least variation
in temperature (figure 3c,d) and where the impact of the con-
trol effort was previously the lowest (brown symbols). One
year after the control effort had stopped, local growth rates
were still negative in cells where the control had been effective
(green and blue symbols). Carrying capacity did not impact
resurgence (figure 3b). Similar results were obtained when
neglecting fly dispersal (electronic supplementary material,
figure S17).

In the case of a heterogeneous control effort, the growth
rate of the population was lower (13% yr−1 at grid scale) but
very high in a few refuge cells where the population could
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be multiplied by 6–44 (figure 4a). It was not correlated with
local characteristics or with scores used to target controlled
cells (figure 4b–d). Refuges were located on the interface
between controlled and uncontrolled zones (figure 4a). Moni-
toring efforts after the control period should particularly focus
on cells of intermediate carrying capacity (figure 4b). Results
largely differed when neglecting dispersal (i.e. no recoloniza-
tion is possible), results being then similar to the homogeneous
case (electronic supplementary material, figure S18). This
shows again that using a non-spatial model is not relevant to
assess targeted control strategies and subsequent conse-
quences on population dynamics.
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4. Discussion
Environmental heterogeneity, together with spatial dispersal
of individuals, not only drives the temporal dynamics
of G. p. gambiensis populations at a large scale, but also its
spatial distribution and control efficacy. We showed that a
homogeneous increase in adult mortality resulted in a hetero-
geneous impact. The coldest cells that had the smallest
variations in temperature acted as refuges, where the control
was less effective and the population resurged faster after
the control effort was stopped. We propose that, to increase
the chances of success, control strategies should account for
environmental heterogeneity and emphasize: (i) local areas
of high suitability characterized by a high carrying capacity,
(ii) local refuges characterized by lower local temperatures
within the relevant range for tsetse (23.7–24.0°C here), and
(iii) local areas with low variability of the temperature. In the
case of a heterogeneous and optimized control, targeting the
most relevant cells resulted in more dispersed individuals,
and control efficacy was no longer related to temperature.
This could be owing to the score used to target cells, which
is a balance between cell contribution and control impact.
Indeed, cells preferentially targeted are the ones where the
population decreases the most during control, especially if
they highly contribute to the global population. Population
resurgence was slow after the heterogeneous control effort
had stopped, but was very high in local refuges that were
located at the interface between controlled and uncontrolled
zones. Refuges, despite representing only a small surface
area suitable for tsetse flies, could jeopardize control efforts
by providing areas from which recolonization may occur
after control, reinforcing the need for area-wide integrated
pest management approaches [58]. We also evidenced the
need for spatial models to assess targeted control strategies
and their consequences on the population dynamics after con-
trol has stopped. We favoured spatial heterogeneity over
temporal variability of control measures because it is closer
towhat is observed in the field. In a control programme, insec-
ticide traps are set at a heterogeneous density based on the
availability of suitable habitat, and then maintained and
replaced when necessary (at least every six months) to main-
tain the control pressure [34]. Likewise, the density of sterile
males to be released is proportional to the amount of suitable
habitat and constant over time.

This mechanistic spatio-temporal model developed to
predict the dynamics of G. p. gambiensis populations and
how these behavewhen adult mortality is increased is innova-
tive compared to already published models. Our model
incorporated environmental heterogeneity through a data-
driven approach and accounted for variable temperatures
and carrying capacities in space and time, as well as for fly
dispersal. It can be applied to other areas with available data
and a known metapopulation structure. Using a landscape
predicted from remote sensing data and realistic temperature
data, the importance of refuges was evidenced, which was
previously not obvious. Published models barely account for
the spatial dynamics of tsetse populations [27,59], or only in
one dimension while assuming theoretical carrying capacities
[33]. A single spatial agent-based model has been proposed
previously [25], which dynamically assigns patch suitability
in a binary way (1 or 0) using environmental data, but
which does not account for temperature-dependence in
biological processes and only tests homogeneous control
scenarios. Predicted age structure was in good agreement
with field data and proved robust as it barely varied following
parameter variations. Amplitude and duration of seasons are
expected to be major drivers influencing ovarian age distri-
bution of the population, but this could not be assessed here
as temperature data were only available for 1 year.

In terms of model parametrization, recent field and lab-
oratory data on mortality, development and dispersal were
incorporated into our model, decreasing the paucity of infor-
mation on tsetse species other than G. m. morsitans [60]. Our
sensitivity analysis highlights the need for more biological
studies to better infer mortality variation with temperature,
and more accurately estimate temperatures as perceived by
insects, an issue recently raised for another tsetse species
[60]. Such a complementary interplay between models, field
observations and laboratory experiments is fundamental to
make accurate predictions.

The effect of temperature on fly population dynamics both
at large and local scales emphasizes the need for further inves-
tigating the impact of climate change on tsetse populations
[61]. It is unlikely that flies will cross the Sahara, but they
can migrate to higher altitudes particularly in eastern and
southern Africa and invade trypanosoma-free zones [12]. In
addition, adjacent isolated populations could merge owing
to the changing habitat, which could possibly impair control
operations. Conversely, new populations could become iso-
lated especially in view that temperature is the main driver
of landscape friction for tsetse fly populations [46].

The dynamics of tsetse fly populations proved to be much
more sensitive to mortality than reproduction and this is con-
sistent with the specialist nature of tsetse flies occupying a
narrow niche. Individual survival of Glossina spp. is priori-
tized over reproduction [48], as they have evolved towards
optimal use of energy and resources [62]. This makes them
highly adapted to their ecological niche. Therefore, tsetse
flies are less likely to leave their habitat and expose themselves
to other environments, which keeps the population at or near
carrying capacity. The field of ecology has theorized in the past
that fast action methods (e.g. insecticides) are better suited for
species showing high reproductive rates, short generation
times, broad food preferences and good dispersal abilities
[63]; and that, in contrast, pests reproducing at low rates
with long generation time, but good competitive abilities
would be more efficiently managed using host resistance, cul-
tural and sterilization methods. This has already been
nuanced, as such characteristics should be considered in con-
junction with species relationships in communities [63]. Our
study shows that it is time to move past this dichotomy and
consider the effect of combined and spatially targeted control
measures to achieve eradication.

Traps, targets and insecticide-treated livestock are control
tactics increasing adult mortality, which can drastically
reduce tsetse populations [34,64,65]. However, disregarding
the existence of refuges, where increasing mortality is not
as effective as in other areas, can give a false sense of accom-
plishment. Indeed, obtaining very low tsetse densities can be
insufficient to eradicate the population as recently demon-
strated against G. p. gambiensis in northwestern Ghana [66],
the Loos islands in Guinea [64] and the Mouhoun river in
Burkina Faso [65]. The obtained decrease in population den-
sities in those examples fluctuated between 90 and 99%,
which are the levels of population reduction used in our
model (95 and 98%). Heterogeneous control is feasible in
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practice. For instance, traps can be installed heterogeneously
over the habitat (e.g. [34]). Our model will be very useful to
highlight which zones to control. An interesting perspective
would be to predict how many traps per hectare should be
set per zone, according to zone characteristics and the level
of mortality targeted locally.

Our model provides a relevant tool to evaluate complex
strategies as it accounts simultaneously for density-depen-
dence, spatio-temporal environmental heterogeneity and all
stages of the tsetse flies’ life cycle possibly targeted by control
measures. Our approach gives indications on how to trigger a
drastic decline of the population. It provides cues on how to
spatially optimize control but could further minimize the
operational burden by proposing optimal periods of inter-
vention. Future developments should include more realistic,
diverse and customable control scenarios, evaluated not
only based on their efficacy for population reduction but
also their cost in terms of on-the-ground implementation
effort. In addition, to predict population dynamics at very
low densities and assess final steps of eradication strategies,
a stochastic framework should be developed to enable
quantifying the probability of population extinction.

To conclude, carrying capacity largely explained the
contribution of local source spots to tsetse fly population
dynamics at a large scale, but unfavourable conditions
resulted in a progressive disappearance of such spots and
the existence of refuges located in cold areas where the temp-
erature was less variable. Areas to be controlled should be
chosen with caution when facing a heterogeneous habitat.
A homogeneous control effort applied for 1 year had less
impact on tsetse population size in these refuges. By contrast,
applying a heterogeneous control resulted in refuges located
on the interface between controlled and uncontrolled zones,
and previous temperature-dependent refuges disappeared.
We confirmed that the study area should be characterized
before control to target the most relevant cells, which is the
underlying concept of AW-IPM. Fly dispersal should be
accounted for to adequately assess the efficacy of such a
heterogeneous control.
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