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Abstract. In a context of climate change, trends in extreme
snow loads need to be determined to minimize the risk of
structure collapse. We study trends in 50-year return levels of
ground snow load (GSL) using non-stationary extreme value
models. These trends are assessed at a mountain massif scale
from GSL data, provided for the French Alps from 1959 to
2019 by a meteorological reanalysis and a snowpack model.
Our results indicate a temporal decrease in 50-year return
levels from 900 to 4200 m, significant in the northwest of
the French Alps up to 2100 m. We detect the most important
decrease at 900 m with an average of —30% for return lev-
els between 1960 and 2010. Despite these decreases, in 2019
return levels still exceed return levels designed for French
building standards under a stationary assumption. At worst
(i.e. at 1800 m), return levels exceed standards by 15% on
average, and half of the massifs exceed standards. We believe
that these exceedances are due to questionable assumptions
concerning the computation of standards. For example, these
were devised with GSL, estimated from snow depth maxima
and constant snow density set to 150kgm™3, which underes-
timate typical GSL values for the snowpack.

1 Introduction

Extreme snow loads can generate economic damages and
casualties. For instance, more than USD 200 million in
roof damages occurred during the Great Blizzard of 1993
(O’Rourke and Auren, 1997). In 2006, at the Katowice In-
ternational Fair, the roof of one of the buildings collapsed
under a layer of snow, leading to 65 casualties and 140 in-

jured (BBC News, 2006). In France, snow loads over Rous-
sillon in 1986, caused both EUR 17 million in damages and
a major power outage due to overloading of electrical cables
and pylons by sticking snow (Vigneau, 1987; Naaim-Bouvet
et al., 2000).

Ground snow load (GSL) is defined as the pressure ex-
erted by accumulated snow on the ground, which can be di-
rectly associated with accumulated snow on structures, e.g.
on roofs (Sanpaolesi et al., 1998). In detail, the observed
height of accumulated snow is called snow depth (in m).
The density of this snow can vary widely between precipi-
tation particles (psnow ~ 100kgm™3) and a ripe snowpack
(psnow ~ 500kgm™3). Multiplying snow depth by snow
density gives the surface mass of snow (in kgm™2). Sur-
face mass of snow corresponds to the snow water equivalent
(SWE), which is the height of water (in mm) we could ob-
tain if we melt all the snow in a 1 m? area. Indeed, since water
density is pwaTer = 1000kg m~3, we have that 1 mm of wa-
ter on 1 m? has a surface mass of 1 kgm™2. Snow load is the
pressure exerted by this surface mass of snow (in Nm~2 or
Pa) and equals the SWE times the gravitational acceleration
(2=9.81ms™?).

Snowpack variables related to GSL (snow depth, SWE)
evolve with climate change. As shown in Table 1, the lit-
erature on past trends in snowpack variables for the West-
ern Alps shows a decreasing trend. The literature on pro-
jected trends also points to a decrease (stronger for the sec-
ond half of the 21st century under a high greenhouse gas
emission scenario than with strong reductions in greenhouse
gas emissions) for mean winter (December—-May) SWE in
the European Alps (IPCC, 2019). However, anthropogenic
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climate change impacts climatic variables in their averages
as well as in their extremes (Klein Tank and Koénnen, 2003;
IPCC, 2012). For instance, annual maxima of snow depth
have decreased in Switzerland (Marty and Blanchet, 2012).
Projected trends in extreme snowpack variables are prone to
strong uncertainties (Strasser, 2008; Beniston et al., 2018) as
both mean winter temperature (IPCC, 2019) and winter pre-
cipitation extremes (Rajczak and Schir, 2017) are projected
to increase in the European Alps.

The impact of climate change on GSL was not taken
into account in current European standards for structural de-
sign, a.k.a Eurocodes (Sanpaolesi et al., 1998), which drive
French standards (Biétry, 2005). These standards define that
structures must withstand their own weight plus a pressure
proportional to a characteristic value. The latter is the sta-
tionary 50-year return level of GSL, exceeded once every
50 years on average. Thus, studying trends in 50-year return
levels of GSL is needed for updating these standards (Croce
et al., 2018). In the literature, past and projected trends in
50-year return levels of GSL have rarely been investigated
with the exception of Rézsas et al. (2016), Il Jeong and
Sushama (2018), and Croce et al. (2018). In the French Alps,
several studies focused on extreme snow variables (Biétry,
2005; Gaume et al., 2012, 2013) and their spatial dependence
(Nicolet et al., 2015, 2016, 2017, 2018). However, trends in
50-year return levels of GSL remain unexplored.

We fill these gaps by studying annual maxima of GSL
provided every 300 m of altitude at a mountain massif scale
for the 23 French Alps massifs. We rely on the SAFRAN-
Crocus reanalysis (Vernay et al., 2019) produced by the
SAFRAN-Crocus chain (Durand et al., 2009a; Vionnet et al.,
2012) available for the period 1959-2019. The major advan-
tage of this reanalysis is to benefit from an advanced snow-
pack model which provides daily estimates of ground snow
load values, while previous studies relied on approximate
values directly related to snow depth with a crude estimation
of snow density (Biétry, 2005). Thus, our approach considers
only natural snow processes: we do not account for snow re-
moval throughout the year and consider all processes (accu-
mulation, thaw—freeze, melt, compaction etc.) occurring dur-
ing the winter season.

Our statistical methodology consists in applying stationary
and non-stationary extreme value models to annual maxima
time series. We select one model by massif and altitude with
the Akaike information criterion (AIC) statistical criterion,
validate the selected model with the Anderson—Darling test,
and assess its significance with the likelihood ratio statistical
test. Finally, for each massif and altitude, we compute the
relative change of 50-year return levels of GSL between 1960
and 2010, and we compare the non-stationary return level
in 2019 with the stationary return level designed for French
building standards.

This paper is organized as follows. Section 2 presents our
data. Section 3 describes standards for ground snow load.
Then, Sect. 4 explains our methodology. Results, discussion
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and conclusions are introduced in Sects. 5, 6 and 7, respec-
tively.

2 Ground snow load data

The study area covers the French Alps which are located be-
tween Lake Geneva to the north and the Mediterranean Sea
to the south (Fig. 1). The climate is contrasted, colder and
wetter in the northern Alps and much drier in the southern
Alps (Durand et al., 2009a). This region is typically divided
into 23 mountain massifs of about 1000km?>. We rely on the
SAFRAN-Crocus reanalysis (Vernay et al., 2019) from the
SAFRAN-Crocus chain (Durand et al., 2009a; Vionnet et al.,
2012) available from August 1958 to July 2019 at the scale
of these massifs, every 300 m of altitude from 300 to 4800 m.
Contrary to gridded products, this reanalysis assumes for a
given altitude the homogeneity of the different variables at
the scale of the massif. Also, annual maxima are available
from 1959 to 2019. Indeed, annual maxima denote the max-
ima during a year centred on the winter season; for example,
annual maxima for 1959 correspond to the maxima from the
1 August 1958 to the 31 July 1959.

To sum up, GSL equals SWE from the SAFRAN-Crocus
reanalysis times the gravitational acceleration. We study time
series of annual maxima of GSL for each massif from 1959
to 2019 every 300 m of altitude from 300 to 4800 m (Fig. 1).

The SAFRAN-Crocus reanalysis is produced by a chain of
two models. First, SAFRAN meteorological reanalysis (Du-
rand et al., 2009a) performs a spatialization of the weather
data (precipitation, temperature, humidity, radiation, wind
speed) over the massifs and altitudes. Then, the Crocus
snowpack model (Vionnet et al., 2012) infers snow depth
and SWE based on SAFRAN time series. Crocus is a one-
dimensional multilayer physical snow scheme, which sim-
ulates the snowpack evolution over time, by accounting for
several processes such as thermal diffusion, phase changes
and metamorphism.

The SAFRAN-Crocus reanalysis has been evaluated
against various observation datasets, as reported in previ-
ous publications (Lafaysse et al., 2013; Vionnet et al., 2016;
Revuelto et al., 2018; Vionnet et al., 2019). In most cases,
the evaluation is carried out against in situ snow depth ob-
servations and remote sensing snow cover information. For
example, Vionnet et al. (2016) evaluated SAFRAN—Crocus
snow depth data against 79 observed snow depth data in the
French Alps for the 2010-2014 time period, with mean bias
and standard error values of 18 and 37 cm, respectively. This
corresponds to typical values for snow modelling systems
applied in various regions on Earth. Because of lower data
availability, evaluations against observed SWE values are
less frequent than against snow depth data, although we note
that Crocus has been shown to perform extremely well com-
pared to other snow cover models, in terms of SWE, across
many observation sites worldwide (Krinner et al., 2018) and
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Table 1. Past trends in snowpack variables, snow depth (HS) and snow water equivalent (SWE), according to existing studies in the Western
Alps, i.e. in Italy (IT), France (FR) and Switzerland (CH). In the Trend column, “north” and “south” refer to the considered country.

Variable Indicator Trend Country Time Source
HS Seasonal mean (Nov to Apr)  Decrease CH 1931-1999  Laternser and Schneebeli (2003)
Winter mean (Dec to Feb) Decrease in the north  FR 1958-2007  Durand et al. (2009b)
Mean annual maxima Decrease CH 1930-2010  Marty and Blanchet (2012)
Seasonal mean (Nov to May)  Decrease IT 19512010  Terzago et al. (2013)
Seasonal mean (Nov to Apr)  Decrease in the south CH 1961-2012  Schoner et al. (2019)
SWE 1 April value Decrease IT 1965-2007  Bocchiola and Diolaiuti (2010)
1 April value Decrease FR,IT,CH 1968-2012 Marty et al. (2017)
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Figure 1. (a) Three time series of annual maxima of ground snow load (GSL) from 1959 to 2019 for 3 massifs at low (900 m), mid (1800 m)
or high (2700 m) altitude and (b) 23 mountains massifs of the French Alps and their orographic features (Durand et al., 2009a).

SAFRAN-Crocus exhibits satisfying performance in terms
of snow depth and SWE in the Pyrenees (Quéno et al., 2016),
providing confidence, with respect to other existing datasets,
in using this model chain for GSL values. Further model eval-
uations, using additional datasets, are required to continue
assessing and improving the quality of the model chain. Fur-
thermore, we highlight that we only use SAFRAN-Crocus
reanalysis values on flat field, and we did not use simulations
on slopes; hence it is not relevant to discuss the impact of
slope and aspect on the results of this study.

3 Standards for ground snow load in the French Alps

GSL French standards (Biétry, 2005) are based mostly on
Eurocodes (Sanpaolesi et al., 1998) and on prior French
standards. Each French department, and by extension each
French Alps massif, is associated with a region (C or E)
that sets characteristic 50-year return level values of GSL be-
tween 200 and 2000 m of altitude (Fig. 2).

https://doi.org/10.5194/nhess-20-2961-2020
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Figure 2. (a) French standards 50-year return levels of ground snow
load (GSL) with respect to altitude for regions C and E. (b) Map of
the region type for each massif.

French standards were elaborated with annual maxima
time series of snow depth on the ground measured at stations
from 1945 to 1992. GSL data were approximated from an-
nual maxima of snow depth and by assuming that snow den-
sity equals 150kgm™3. Following Eurocodes, the character-
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istic value of GSL is defined as the 50-year return level of a
Gumbel distribution (Sect. 4). This distribution was fitted us-
ing the least squares method and by removing the top annual
maximum when considered exceptional (Biétry, 2005) ac-
cording to a criterion not explicitly mentioned in the French
report cited as reference. However, in the Eurocodes, the
standard method was to consider the top maximum as ex-
ceptional if it was 1.5 times larger than the second largest
maximum (Sanpaolesi et al., 1998). In our methodology, we
do not remove the top annual maximum.

4 Statistical methodology

Following extreme value theory, we employ two stationary
models and six non-stationary models for time series of an-
nual maxima of GSL (Sect. 4.1). We select a single model
for each time series (i.e. for each massif and altitude) with
the AIC statistical criterion, validate this model with the
Anderson—Darling test, and assess its significance with the
likelihood ratio statistical test (Sect. 4.2). Finally, we com-
pute the relative change of 50-year return levels of GSL be-
tween 1960 and 2010, quantify the uncertainty of return lev-
els in 2019 to compare them with the stationary return levels
designed for French standards (Sect. 4.3).

4.1 Stationary and non-stationary models based on
extreme value distributions

Climate extremes are generally studied with statistics. As un-
derlined in the IPCC special report on climate extremes, a
large amount of statistical literature builds on extreme in-
dices to examine moderate extremes (IPCC, 2012). However,
since we focus on extremes that are more rare, it is recom-
mended to rely on extreme value theory (EVT, Coles, 2001).
Such statistical models provide and hypothesize additional
prior information in order to compensate for the limited num-
ber of empirical observations that commonly span only sev-
eral decades. These models can be used to extrapolate be-
yond the empirical observations and to estimate return levels
(Sect. 4.3).

EVT offers a suitable framework to analyse extreme val-
ues, i.e. to model the form of the tail for almost any proba-
bility distribution. Asymptotically, as the central limit theo-
rem motivates sample means modelling with the normal dis-
tribution, the Fisher—Tippett—Gnedenko theorem (Fisher and
Tippett, 1928; Gnedenko, 1943) encourages sample maxima
modelling with the generalized extreme value (GEV) distri-
bution. This theorem justifies that the maximum of finite-
sized blocks with a large enough block size can be modelled
with the GEV distribution. In practice, an annual maximum
is thus usually considered a realization of a GEV distribution.
Three parameters define the GEV distribution: a location pu,
a scale o > 0 and a shape ¢ (a.k.a extremal index or tail in-
dex). The GEV distribution includes three specific types of
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distributions: Weibull (¢ < 0), Fréchet (¢ > 0) and Gumbel
(¢ =0). Thus, by definition, if Z represents an annual maxi-
mum of GSL, we can assume that Z follows a GEV distribu-
tion (i.e. Z ~ GEV(u, o, ¢)), which implies the following:

P(Z <2z

1
exp[—(1+ ¢S5 F1if ¢ #0
_ ) and where u, denotes max(u, 0), (1)
exp[—exp(—<H)]if ¢ =0,
in other words if Z ~ Gumbel(u, o).

In a context of climate change, a large amount of hydro-
logical literature builds on non-stationary modelling (Milly
et al., 2008) to assess whether a time series is generated
by a unique probability distribution (stationary model) or
if the generating probability distribution is changing (non-
stationary model). Non-stationary extremes are usually stud-
ied with both non-stationary modelling and EVT (Katz et al.,
2002). Annual maxima are assumed independent but not nec-
essarily identically distributed (Serinaldi and Kilsby, 2015).
Such approaches combine a stationary random component
(a fixed extreme value distribution) with non-stationary de-
terministic functions that map each temporal covariate ¢ to
the changing parameters of the distribution (Montanari and
Koutsoyiannis, 2014). In a non-stationary context, Zhang
et al. (2004) showed that tests based on this parametric ap-
proach have stronger power of detection when compared
with non-parametric methods.

We consider non-stationarity for both the Gumbel distribu-
tion and the more general GEV distribution, since they repre-
sent natural extensions of the Gumbel distribution which was
used for French building standards (Sect. 3). For any model,
we have Z(t) ~ GEV(u(t),0(t),¢(t)), as the Gumbel dis-
tribution corresponds to ¢ () = 0. For a model M, we denote
as 0 a4 all parameters for its functions (u(¢), o (t) and ¢ (¢)).
We focus on simple linear functions due to the limited length
of time series (60 years). The linearity starts in 1959, which
is the first winter with available data. As shown in Table 2,
we consider only models with a constant shape parameter
but where the location and/or the scale parameter can vary
linearly with years ¢.

4.2 Model selection, validation and significance

Model selection. Let z = (21959, ..., 22019) represent a time
series of annual maxima of GSL, i.e. for a massif and an al-
titude (Sect. 2). First, models are fitted with the maximum
likelihood method. For every model M, we compute the
maximum likelihood estimator @ a4, which corresponds to
the parameter 6 A4 that maximizes the likelihood:

5/\4 = argmaxoMﬁ(OM; z)where L(Oaq;2) = p(z|0A)

oP(Z
[ TrGinw.ow.c0) = [[ 2D =50,
t

! aZt
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Table 2. Statistical models considered for annual maxima of GSL are based on the Gumbel or the GEV distribution and are extensions of the
stationary Gumbel model. For non-stationary models, the location and/or the scale vary linearly with years ¢ after the starting year 1959.

Model type Distribution ~ Model name (1) o) ¢@) Om #Om
Stationary gg?,bel ﬂgo Mo 20 (5)0 EZE: Zg? o) §
Non-stationary gg{l]bel ﬁ’;‘m o+ p1 X (—1959) oy 20 Eﬁg Zi Zg,) 20) i
Non-stationary gg\n]bel ﬁ‘;m 2] g + 01 x (1 —1959) (;)0 Eﬁg: Zg: Z:,) o) i
Non-stationary glélil/bel ﬁg:}lm Ho + 1 X (£ —1959)  og + 07 x (1 — 1959) 20 Eﬁg Zi Zg: Zi) %) ;—L

(@)

Then, for each z, i.e. for each massif and altitude, we select
the model My with the minimal AIC value (Akaike, 1974),
as it is the best information criterion in a non-stationary con-
text with small sample sizes (Kim et al., 2017). We define

My = argmin p i, Taple 2 AIC(M), where AIC(M)

=2 [#0 0 —log LOM: D)1,
where #6 a4 is the cardinality of O o4 . 3)

The selected model My can be any model from Table 2,
i.e. a stationary or a non-stationary model. The subscript N
designates the number of additional parameters compared to
the stationary Gumbel model Mg, i.e. N =#0 aq,, —#0 pq,,-

Model validation. Quantile—quantile (Q—Q) analysis is
performed for all selected models. To apply this analysis to
both stationary and non-stationary model, we rely on Katz
(2012), who suggests the following: (i) to transform the data
to stationary Gumbel and (ii) to use a Q—Q plot analysis on
the transformed data with respect to a Gumbel distribution.
Q-0 plots reveal that transformed data are well fitted by a
stationary Gumbel distribution; hence that data are well fitted
by the selected models (Appendix B). Moreover, according
to the comparative study of Abidin et al. (2012), the most
powerful goodness-of-fit test for the Gumbel distribution is a
combination of the Anderson—Darling test and the maximum
likelihood estimator. We apply this test on the transformed
data using Saeb (2018) and found that we cannot reject the
null hypothesis (samples generated from the Gumbel model)
at the 5 % significance level for almost all our selected mod-
els (98 %), justifying their good fit. We refer to Appendix B
for more details.

Model significance. If the selected model My is not the
model My, then — since models are nested — we can com-
pute the significance of M y with respect to M with a likeli-
hood ratio test (Coles, 2001). This test assesses whether there
is enough evidence to reject the stationary Gumbel model

https://doi.org/10.5194/nhess-20-2961-2020

My in favour of the selected model M . The null hypoth-
esis can be stated as follows: the N additional parameters
of the model My can be set to zero. In other words, we
want to check if setting to zero the N additional parame-
ters of the model My are supported by the data z. Under
the null hypothesis, the likelihood ratio test statistic (LR)
has an asymptotic Xz%/ distribution: LR(O Aq,,,0 A1, 2) =

LOM,:2) . . .
=21 —(M—OZ)NXI%,, where ~ means distributed under
LOMy;2)

suitable regularity conditions. In practice, the test works as
follows. We first choose a 0.05 level of significance. Then,
if LR is greater than a2 the 1-0.05 = 0.95 quantile of the

X,2\, distribution, we reject the nested model My in favour of
the selected model M . If the selected model My is non-
stationary, we consider the associated trend as significant.

4.3 Return levels

In a stationary context, the T -year return level, which corre-
sponds to a return period of T years, is the classical metric
to quantify hazards of extreme events (Cooley, 2012). For a
stationary model, there is a one-to-one relationship between
a return level (a quantile exceeded each year with probabil-
ity p) and a return period (a duration exceeded every T = %
years on average).

In a non-stationary context, return level and return pe-
riod concepts (Cooley, 2012) become further ambiguous, are
prone to misconceptions and can lead to misleading conclu-
sions (Serinaldi, 2015). We focus on the yearly level for a
fixed probability of exceedance, a.k.a effective return level
(Katz et al., 2002; Cheng et al., 2014), as it conveys best that
hazard evolves with time.

For the stationary Gumbel model My, the return level
Zp(@aq,) is defined as the level exceeded each year
with probability p. In other words, if Z denotes an an-
nual maximum, then P(Z <z,(0 aq,)) =1— p. This re-
turn level is constant through time and equals z, (0 Aq,) =
no—oolog(—log(1—p)). In this paper, we set p = % =0.02
as it corresponds to the 50-year return period defined by

Nat. Hazards Earth Syst. Sci., 20, 2961-2977, 2020
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French standards (based on European standards) for the de-
sign working life of buildings (Sect. 3).

For the selected model My, the return level is de-
fined as the yearly level for a fixed probability of ex-
ceedance p. For any model considered in Table 2, we ob-
tain 2, (O aq, 1) = o+t X(t—1959)—W[1—
(—log(1 — p))~%], where we set i1, 07 or ¢ to 0 if they are
not defined in the model M. For example, for the Gum-
bel model My, the return level is constant: for any year
1, 2p(O My, 1) =limgy— oo+ Z (1 — (—log(1— p)) =) =
o — oplog(—log(l — p)).

For any considered model, the time derivative of the re-

. 32p O Ayt
turn level is constant, as Z”(TMN) =l —%(1—(—10g(1—

p))~%). It quantifies the yearly change of return level. Thus,
the relative difference of return levels between year #; and
year t; is as follows:

relative change (2, (0 A1y, 11), 2p (O Ay 12))
_ Zp(aMNvtz) _Zp(oMNs tl)

Zp(oMNﬂtl)
h—t 9z, (0 N
_ 2 1 Zp( My ) (4)
Zp(oMNvtl) at

In the context of maximum likelihood estimation, uncer-
tainty related to return levels can be derived by the delta
method, which quickly provides confidence intervals both in
the stationary and non-stationary case (Coles, 2001; Gille-
land and Katz, 2016). First, the return level estimator asso-
ciated with the maximum likelihood estimator simply equals
2p (0 Am). Then, due to the asymptotic normality of the max-
imum likelihood estimator (MLE), we can assume that, even
with a finite number of data, the MLE is normally dis-
tributed. Therefore, under regularity chditions, limits Qf the
1 — o =95 % confidence interval are O o4 g X v, @ am),
where qe is the 1 — 7 quantile of the standard normal distri-
bution, and v;, is a function that maps each parameter 6 A4
to the variance of the approximate normal distribution asso-
ciated with its return level z, (0 a4). For a full expression of
the function v;, and for details on the delta method, we refer
to Theorem 2.4 of Coles (2001). In particular, this theorem
explains that the delta method is valid for ¢y < 1, which is
respected in our case as —0.5 < ¢y <0.5 (Segt. 4.4). Also,
uncertainty of non-stationary return levels z, (0 a4, t) can be
obtained by incorporating the covariate ¢ in the function z,,.

4.4 Application

First, we exclude four time series of annual maxima with
more than 10 % of zeros, i.e. years without GSL. Then, we
fit models to time series and retain only those models with
-0.5< a) < 0.5. This impacts three time series. We make
this choice because Z‘B > 0.5 designates distributions with an
“exploding” tail which are known to be physically implausi-
ble (Martins and Stedinger, 2000). Following Sect. 4.2, we

Nat. Hazards Earth Syst. Sci., 20, 2961-2977, 2020

E. Le Roux et al.: Non-stationary extreme value analysis of ground snow loads

Non significant model

Il Significant model

i.e. for all massifs and altitudes (%)

Frequency of selected model w.r.t all time series

M, M Mo Mo M., M, Mo, Mgy

G
Models

Figure 3. Distribution of selected models. Frequency of selected
model (in %) with respect to all time series, i.e. for all massifs and
altitudes. For the selection procedure and the definition of signifi-
cance, we refer to Sect. 4.2.

select one model for each time series (i.e. for each massif
and altitude) with the AIC statistical criterion. Then, we ex-
clude the five time series (2 %) where the selected model
does not pass the Anderson test. Finally, we assess if the se-
lected model is significantly more appropriate than the sta-
tionary Gumbel model M with a likelihood ratio test.

5 Results
5.1 Selected models

Figure 3 shows that a stationary model, i.e. models My
and Mg, is selected for a majority (57 %) of time series
studied (Sect. 2). Models with a linearity in both the loca-
tion and scale parameters are the most frequently selected
non-stationary models (22 %). For both stationary and non-
stationary models, Gumbel models are always more often se-
lected that their corresponding GEV models (Figs. 3, 4). All
in all, we highlight that 39 % of selected models are signif-
icantly more appropriate than the stationary Gumbel model
M.

Figure 4 depicts shape parameter values for the selected
models at 900, 1800 and 2700 m. We notice that a majority
of massifs are white, illustrating that a (stationary or non-
stationary) Gumbel model (i.e. {o = 0) is selected (Sect. 5).
This emphasizes that a Gumbel distribution often explains
more succinctly the data than a GEV distribution. Also, with
the GEV distribution, the estimated most likely shape param-
eter EF) is often quite uncertain; that is, confidence intervals
are large, which is the main reason why French standards
did not rely on it. This uncertainty in EE) likely comes from
the limited length of time series. Therefore, additional data
would enable a more robust estimation of EE) and thus reduce
uncertainty.
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Figure 4. Shape parameter values for the selected models at low (900 m), mid (1800 m) or high (2700 m) altitude. Markers show selected
model My, while filled markers symbolize models that are significantly better than the Gumbel model M (Sect. 4.2). Grey areas denote
either time series that were excluded (Sect. 4.4) or missing data, e.g. when the altitude considered is above the top altitude of the massif.

In Fig. 4, we further observe that non-null shape param-
eters at low altitudes (900 m) are always positive (brown-
coloured massifs); that is, a Fréchet distribution is preferred.
On the other hand, for high altitudes (1800 and 2700 m) non-
null shape parameters are always negative (green-coloured
massifs); that is, a Weibull distribution is favoured. Simi-
lar results for the shape parameter have been observed for
snow depth by Blanchet et al. (2009), Blanchet and Lehning
(2010), and Schellander and Hell (2018). This reflects the
different nature of annual maxima of GSL between low and
high altitudes. At high altitudes, annual maxima are mainly
due to snowpack accumulation during several months, while
at low altitudes this accumulation is limited, and thus annual
maxima roughly correspond to heavy precipitation.

5.2 Trends in return levels of ground snow load

Figure 5 maps the relative change of 50-year return levels
of GSL between 1960 and 2010 (Eq. 4) at 900, 1800 and
2700 m (see Appendix A for maps at all altitudes). Quanti-
tatively, for northwest massifs, we observe that return levels
have decreased by up to 60% at 900 m (dark blue), while
at 1800 m this decrease is less marked (pale blue). Qualita-
tively, these decreasing trends are frequently due to signif-
icant changes both in the location and scale parameters of
the Gumbel or GEV distribution (small and large diamond-
shaped filled markers). At 2700 m, or in the south at 900 and
1800 m, we often do not observe any trends (white), since
stationary models are selected (small and large cross-shaped
markers).

Figure 6 emphasizes the evolution of decreasing trends be-
tween 900 and 4800 m of altitude. We observe that decreas-
ing trends are significant for more than one-third of the mas-
sifs, located in the northwest of the Alps (Appendix A), up
to 2100 m (black bars). In half a century, return levels have
dropped on average by up to 30 % at 900 m. Until 3300 m, we
observe a decline in the percentage of massifs with a signifi-
cant decreasing trend. Above 3300 m, we do not find any sig-
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nificant decreasing trend. For both the relative decrease and
the percentage of massifs with a decreasing trend, we notice
a similar declining pattern. We also notice more decline be-
tween 3300 and 3900 m than at 3000 m, which echoes results
from Liithi et al. (2019), who found that, in the Alps above
3000 m, the relative decrease for projected winter mean of
fresh SWE is more marked than at 3000 m (see their Fig. 8).
We emphasize, however, that most meteorological observa-
tions used as input to the SAFRAN-Crocus reanalysis are
situated below 2000 m. Therefore, trends beyond 2000 m al-
titude should be considered with great caution.

Figure 7 illustrates that, for altitudes 300 and 600 m, in
general no trends are found except for a few decreasing
trends at 600 m and two time series (1 at 300 m, 1 at 600 m)
with important increasing trends (4100 % for one massif at
600 m). Despite this important increase in relative change,
annual maxima of snow load remain small (< 1 kN m~2). In-
deed, we found that these annual maxima correspond to snow
load accumulated in a few days and thus are mainly driven
by heavy precipitation rather than a seasonal snowpack ac-
cumulation. In particular, we hypothesize that the important
increasing trend observed in the south at 600 m (colour red)
might be caused by a regional phenomenon, resulting from
Mediterranean humid air masses flowing northward into the
north of Italy and then westward to the eastern part of the
French Alps, that might be intensifying with global warm-
ing (Garavaglia et al., 2010; Gottardi et al., 2012; Faranda,
2020).

To sum up trends in return levels of ground snow load,
from 900 to 4800 m, either no trends or decreasing trends of
50-year return levels of GSL are found (Figs. 5, 6, Fig. Al),
while at 300 and 600 m, no clear trends are found (Fig. 7).

5.3 Comparison of return levels of ground snow load
with French standards

We compare 50-year return levels of GSL and their uncer-
tainty (Sect. 4.3) to French standards first for two massifs
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(Fig. 8) then globally (Fig. 9). We consider GSL data from
300 to 1800 m because standards are defined from 200 to
2000 m (Sect. 3).

Figure 8 illustrates these levels and their uncertainty for
two massifs (Vercors and Beaufortain) associated with differ-
ent French standards regions. Standards are often exceeded
at higher altitudes (e.g. at 1800 m). Also, Fig. 8 exemplifies
the impact of accounting for decreasing trends in return lev-
els. Indeed, we observe that return levels from the stationary
Gumbel model M (left) are often larger than effective re-
turn levels in 2019 (last year of data) from the selected model
My (right).

Figure 9 sums up the comparison between French stan-
dards and 50-year return levels for all 23 massifs. We dis-
play (i) the percentage of massifs whose return level exceeds
standards and (ii) the mean relative difference between return
levels and standards. Limits of the confidence intervals are
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approximated as the percentage of exceedances for the limits
of return levels’ 95 % confidence interval are displayed with
black bars. Limits of the confidence intervals for the mean
relative difference are displayed in shaded blue. The number
of massifs considered is equal to 7 at 300 m, 17 at 600 m and
23 at 900 m and above.

First, if we estimate return levels from data with the French
standards method (Fig. 9 left), i.e. with a stationary Gum-
bel model My, and GSL data approximated with snow depth
obtained from reanalysis and psnow = 150kg m™3, then we
observe few exceedances (less than 10%) and that on aver-
age return levels remain below standards, as the mean rel-
ative difference remains below zero. Thus, in this setting,
estimations from our reanalysis are consistent with French
standards.
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However, if we consider the actual GSL, i.e. computed
with SWE from the reanalysis, then French standards dras-
tically underestimate return levels. Indeed, with a station-
ary Gumbel model My, then for altitudes above or equal to
900 m, French standards are exceeded for a majority of mas-
sifs (Fig. 9 centre). But, if we consider the selected model
My, i.e. if we account for the decreasing trend in 50-year re-
turn levels, we have fewer exceedances at all altitudes (Fig. 9
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right). In the latter case, at worst, i.e. at 1800 m, return levels
exceed standards by 15 % on average, and half of the massifs
(60 %) exceed standards.

Furthermore, despite the fact that uncertainty intervals
(black bars) can be large, it does not impact the main conclu-
sions of this article. Indeed, in Fig. 9 right at 1800 m, we still
have between 40 % and 80 % of massifs exceeding French
standards.
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6 Discussion
6.1 Methodological considerations

We discuss in depth the statistical models chosen for this
study. It is well-known that an annual-maximum-based ap-
proach can be wasteful in terms of data (Coles, 2001). How-
ever, since our objective is to estimate 50-year return levels
and since we have 60 years of data, we still decide to rely
on the annual-maximum-based approach (with the GEV dis-
tribution) rather than on the concurrent approach based on
threshold exceedances (with the generalized Pareto distribu-
tion). Also, with the GEV distribution, our methodology is a
direct extension of French building standards (Sect. 3).

For the non-stationary models, we focus on simple deter-
ministic functions of time (. (), o (¢), £ (t)) due to the limited
length of time series. A linear non-stationarity seems prefer-
able to a non-stationarity based on the Heaviside step func-
tion due to the continuous nature of climate change. We start
the linear non-stationary at the initial year, i.e. 1959.

We decided to consider non-stationarity only for the lo-
cation and scale parameter. Indeed, in the literature, a linear
non-stationarity is considered sometimes only for the loca-
tion parameter (Fowler et al., 2010; Tramblay and Somot,
2018) but more often both for the location and the scale
(or log-transformed scale for numerical reasons) parame-
ters (Katz et al., 2002; Kharin and Zwiers, 2004; Marty and
Blanchet, 2012; Wilcox et al., 2018). Also, we consider a
non-stationarity for both parameters because the scale pa-
rameters were not proportional to the location parameters,
which could have otherwise simplified our parametrization.
Finally, the shape parameter is typically considered constant
in the literature, and we follow this approach.
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For time series containing zeros, French standards rely
on a mixed discrete—continuous distribution. They fit both
a Gumbel distribution on non-zero annual maxima and the
probability of having a non-zero annual maxima. However,
with our reanalysis data, this approach sometimes leads to
fitting non-stationary extreme value models with fewer than
40 non-zero annual maxima. Therefore, we rather decided
to exclude any time series with more than 10 % of zeros
(Sect. 4.4), to ensure that we fit models with more than 55
non-zero annual maxima. In practice, our approach gives 50-
year return levels close to the approach from French stan-
dards (absolute difference remains lower than 0.1kNm~2).

6.2 On the limitation to approximate annual maxima
of ground snow load with annual maxima of snow
depth

SWE times the gravitational constant equals GSL. However,
most countries do not measure SWE but only have access
to snow depth (HS) (Haberkorn et al., 2019). In that case,
snow density is required to obtain SWE (and subsequently
GSL) from HS (Sect. 1). In particular, French standards
approximate annual maxima of GSL with annual maxima
of HS and by assuming a constant snow density, equal to
psnow = 150kgm™3. In Fig. 10, we highlight limitations of
such approaches with our reanalysis that provides, for the
whole snowpack, daily values of SWE, HS and thus of snow
density.

We find that annual maxima of GSL are always underes-
timated by French standards’ approximation (Fig. 10 left).
The main reason is that, when annual maxima of GSL
are reached, snow density is on average largely superior to
psNow = 150kg m—3 (Fig. 10 centre). Indeed, we observe
that at the time of the annual maxima of GSL the snow den-
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Figure 10. Limitation of approximating annual maxima of ground snow load (GSL) from annual maxima of snow depth (HS). (a) Difference
between annual maxima of GSL and GSL computed from annual maxima of HS and psnow = 150kg m~3. (b) Snow density when annual
maxima of GSL are reached. (¢) Difference between annual maxima of HS and HS when annual maxima of GSL are reached.

sity is around & 350kgm™> on average at 2700 m and close
to & 250kgm™> on average at 900 m. Finally, despite high
variations along the years, we also notice that, when annual
maxima of GSL are reached, snow depth can be much lower
than the annual maxima of snow depth (Fig. 10 right), which
is another argument against the use of snow depth maxima as
a proxy for GSL maxima.

7 Conclusions

Based on both a reanalysis and a snowpack model, we detect
an overall temporal decreasing trend of 50-year return levels
of ground snow load (GSL) between 900 and 4200 m, which
is significant up to 2100 m in the northwest of the French
Alps. This confirms other studies in the Western Alps which
also found overall decreasing trends in linked snowpack vari-
ables: SWE and snow depth. The largest decrease is found at
900 m with —30 % for return levels between 1960 and 2010.
Despite these decreases, in 2019 return levels still exceed re-
turn levels designed for French building standards under a
stationary assumption. At worst, i.e. at 1800 m, return levels
exceed standards by 15 % on average, and half of the massifs
exceed standards.

We hypothesize that this number of exceedances might
be due to an underestimation of GSL by French standards.
Indeed, these standards were devised with GSL estimated
from snow depth maxima and constant snow density equal
to 150kgm™3, which underestimate typical GSL values for
the snowpack. Another reason for these exceedances might
be ill-designed relationships between altitude and snow load.
As shown in Fig. 2, French standards return levels increase
linearly with altitude in three steps. Indeed, French stan-
dards (Biétry, 2005) follow previous national standards that
advised for a linear relationship between altitude and snow
load instead of relying on European standards’ results that
showed a quadratic relationship for the Alpine region (San-
paolesi et al., 1998). Thus, at higher altitudes, French stan-
dards underestimate actual return levels, which might explain
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the augmenting percentage of exceedance observed with the
altitude (Fig. 9 right).

Many potential extensions of this work could be consid-
ered. First, our methodology could be extended with more
advanced definitions of non-stationary return levels (Rootzén
and Katz, 2013; Serinaldi, 2015). Also, instead of consid-
ering time series of annual maxima as spatially indepen-
dent, we believe that our analysis may benefit from an ex-
plicit modelling of the spatial dependence between extremes.
Then, reanalyses are increasingly available at the European
scale (e.g. Soci et al., 2016), which could be used for extend-
ing this work to a wider geographical scale. This requires,
however, remaining cognizant of the limitations of such re-
analyses, in particular (i) the temporal heterogeneity of the
meteorological data input to these reanalyses (Vidal et al.,
2010); (ii) the lack of observations at high altitudes, requir-
ing caution in analysing trends for high-altitude locations;
and (iii) model errors (e.g. snowpack model errors) which
need to be taken into account when analysing the results.

Finally, even if, according to our analysis, GSL exceeds
French standards return levels in the French Alps, (Fig. 9
right), few destructions related to snow loads actually oc-
curred. Several reasons might explain that. First, French stan-
dards consider a coefficient that maps GSL return levels to
roof snow load return level, i.e. multiplication by a coeffi-
cient that summarizes several roof features: shape, exposure
and thermal transmission (Sanpaolesi et al., 1998). This co-
efficient might be overprotective. Also, following European
standards, roof designers must add safety coefficients to en-
sure roofs’ reliability. Indeed, they actually build roofs that
withstand the sum of (i) the characteristic value of perma-
nent action, i.e. self-weight, multiplied by a safety coefficient
equal to 1.35 and (ii) the characteristic value of variable ac-
tion, i.e. roof snow load return level, multiplied by a safety
coefficient equal to 1.5 (Sanpaolesi et al., 1998 Eq. 8). Above
all, French standards do not take into account that, after in-
tense days of snowfall, the snow accumulated on the roof
either slides off or is removed. In that case, the main risk
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lies in extreme snow events that might accumulate enough
snow in a few days to exceed French standards. Undeniably,
most known snow load destructions resulted from such in-
tense snow events, sometimes combined with liquid precipi-
tation that often heavily increases snow load. The response of
these short but extreme and complex snow events to climate
change might be an interesting topic for future research.
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Appendix A: Trends in return levels of ground snow
load

In this section, we report, for every 300 m of altitude from
900 to 4200 m, the map of the relative change of 50-year re-
turn levels of GSL between 1960 and 2010 (Fig. Al). Trends
at 4500 and 4800 m are not reported, since they only concern
the Mont Blanc massif, where no significant trend is inferred
at these altitudes.
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Figure Al. Trends in return levels of ground snow load (GSL) between 900 and 4200 m of altitude. Markers show selected model My,
while filled markers symbolize models that are significantly better than the Gumbel model M (Sect. 4.2). Grey areas denote either time
series that were excluded (Sect. 4.4) or missing data, e.g. when the altitude considered is above the top altitude of the massif.
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Appendix B: Detailed methodology for the model
validation

Quantile—quantile plot. Standard diagnosis tools for both
stationary and non-stationary extreme value models (Coles,
2001; Katz, 2012) rely on a probability integral transforma-
tion f to the standard Gumbel distribution, i.e. Gumbel (0, 1).
Indeed, if Z(t) ~ GEV(u(?),0(t),¢(t)), then f(Z(t)) =

4(—1t)log(1 +;(r)%) ~ Gumbel(0, 1). Thus, if z =

(21959, - - -, 22019) represent a time series of annual maxima,
then let Z1959 = f(21959), - - -» 22019 = f(22019)-
Quantile—quantile (Q—-Q) plot is a standard diagnosis
based on the comparison of empirical quantiles (computed
from the empirical distribution) and theoretical quantiles
(computed from the expected distribution). On the one
hand, Z(1),...Z¢1) are the empirical quantiles, which cor-
respond to the ordered values of the Z;. On the other hand,

—log (— log (6—12>) y..., —log (— log (%r)) correspond to
the theoretical quantiles. Indeed, if Z ~ Gumbel(0, 1), then
P(Z<i) =exp—e =4 < 7=—log(—log(5)).
Thus, the (Q-Q plot is comprised of the pairs
{(—log(—log(Z)).2m):i=1.....61}

In Fig. B1, we display Q-0 plots for the three time series
of annual maxima of GSL displayed in Fig. 1. We observe
that the left and the right O—Q plots show a good fit, as the
points stay close to the line. However, for the centre Q—Q
plot, all points are close to the line, except for the highest em-
pirical quantile that is largely above the corresponding theo-
retical quantile. As a whole, when observing all O—Q plots
(not shown) most time series show a good fit, except for a
few time series (fewer than 10) which have a pattern similar
to the centre Q—Q plot in Fig. B1.

E. Le Roux et al.: Non-stationary extreme value analysis of ground snow loads

Anderson—Darling test. Q—Q plot is a qualitative tool to
validate the goodness of fit for probability models. For the
quantitative validation of the goodness of fit of the selected
models, we rely on the Anderson—Darling statistical test,
which is the most powerful test for the Gumbel distribution
according to the comparative study of Abidin et al. (2012).

In practice, with this test, we assess whether the trans-
formed annual maxima Z), ..., Z(1) are likely to be gener-
ated from a standard Gumbel distribution. Let n = 61 denote
the number of samples, and Femp denotes the cumulative dis-
tribution function of the empirical (Fgym for standard Gum-
bel) distribution. Then, Anderson—Darling test is based on
the distance:

Al=n / (Femp(x) — Faum (x))*w (x)d Faym (x)

n
i=1

+log[1 — Fgum(Z(n+1—i))]} —n,

2i —1 5
" {IOg[Fgum(Z(i))]

(BI)

where w(x) places more weight on the tail of the standard
Gumbel distribution. For details, we refer to Abidin et al.
(2012).

We apply this test on the transformed data using Saeb
(2018) and found that we cannot reject the null hypothe-
sis (samples generated from the Gumbel model) at the 5 %
significance level for almost all our selected models (98 %),
justifying their good fit. As explained in Sect. 4.4, we ex-
clude time series whose selected models do not pass this
Anderson—Darling test.

(@) (b)

Empirical quantile
Empirical quantile

(c)

Empirical quantile

-1 0 1 2 3 4 -1 0 1
Theoretical quantile

Theoretical quantile

2 3 4 5 -1 0 1 2 3 4
Theoretical quantile

Figure B1. Q-0 plots of the selected models for the three time series displayed in Fig. 1. (a) Ubaye massif at 900 m fitted with the model
My, (b) Vercors massif at 1800 m fitted with the model M ,,. (¢) Beaufortain massif at 2700 m fitted with the model M.
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website: https://doi.org/10.25326/37 (Vernay et al., 2019).
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