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Abstract
Random forests were introduced in 2001 by Breiman and have since be-

come a popular learning algorithm, for both regression and classification.
However, when dealing with time series, random forests do not integrate the
time-dependent structure, implicitly supposing that the observations are in-
dependent. We propose some variants of the random forests designed for
time series. The idea is to replace the standard bootstrap with a dependent
bootstrap (i.e block bootstrap) to subsample time series during the tree con-
struction phase to take time dependence into account. We then present two
numerical experiments on electricity load forecasting. The first one, at a dis-
aggregated level, is based on an application to load forecasting of a building
and illustrate how the variants may perform. The second one is at a more
aggregated level (French national forecasting) but focusing on atypical peri-
ods. For both, we explore a heuristic for the choice of the block size, the new
parameter.

Keywords— Block bootstrap, Random forests, Time series
AMS Subject Classification— 62M10, 62P30.

1 Introduction
Random forests were introduced in 2001 by Breiman in [1] and are since then one of
the most popular algorithms in machine learning [2]. The popularity comes from the
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wide range of applications in which they are known to perform well on even high di-
mensional, are fast to compute and easy to tune. Successful applications can be cited:
chemo-informatics [3], ecology [4, 5], 3D object recognition [6] and time series prediction
[7, 8, 9, 10, 11].

Suppose that we have a random sequence (Xt, Yt)t∈Z ∈ X ×Y such that

(1.1) Yt = f (Xt) + εt

and the error εt is such thatE [εt |Ut] = 0. The purpose of random forests is to estimate,
by only observing a training sampleDn = ((X1, Y1), . . . , (Xn, Yn) , the regression function

∀x ∈ X, f (x) = E [Yt |Xt = x] .

Random forests can be related to two main sources, regression trees [12] and bagging
[13]. Regression trees are constructed by a recursive partitioning of the input space based
on some criterion to estimate the regression function f . At each step of the tree construc-
tion, a split is selected (a variable and a location on the variable) based on the evaluation
of the criterion among all the admissible splits based on all the variables. The cell is cut in
two on the selected split and the previous step is reiterated on the new cells. A tree is then a
piecewise constant decomposition of the input space. We can associated to the input space
partitioning a binary tree where each node corresponds to a test matching how the input
space was cut. An illustration is given in fig. 1 of a partitioning in the two-dimensional
space and its associated binary tree. The principle of bagging (short form of bootstrap
aggregating) is to create M randomly generated training sets by randomly sampling αn
observations with or without replacement from the set Dn and to construct on each set a
predictor. Once the predictors are constructed, the bagging prediction for a new observa-
tion x is an aggregation, generally the empirical mean, of the predictions given by the M
predictors for the point x. This procedure aims to improve stability and accuracy of the
base predictor. In the context of random forests the predictors are regression trees. In order
to explain the random forest procedure we then have to explicit the construction of one
tree.

The first step is the bootstrap/subsampling: αn points are selected with or without
replacement among the n realisations. Then a tree is constructed based on these αn selected
points. At each node of the tree the best split (the variable and the location on this variable)
is determined by minimising the intra-node variance. This is commonly called the CART
criterion introduced in [12]. Instead of minimising this criterion among all the admissible
splits based on all the variables the choice of inputs is restricted to a random subset of fixed
size mtry. This procedure is then iterated on each node produced after binary splitting until
stopping conditions are met. The first stopping rule is when the variance in a node is equal
to zero. Since this is rarely the case a second condition is that the number of observations
in a node must be greater than a given threshold.

Even if the theoretical settings of random forests was until recently restricted to the
i.i.d case, a theoretical study extending it to the time-dependent case is proposed in [14].
In addition, applications on time series could be found, as previously cited, in [7, 10], in
electricity load forecasting [8], [9], [11].

The bootstrap step determines which observations are chosen to construct a tree. The
original bootstrap which we call standard (or i.i.d) bootstrap from [15] consists of randomly
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Figure 1: A partitioning of [0, 1]2 and the associated binary tree.

drawing αn observations among the n with or without replacement. Note that we use
here an abuse of language, the bootstrap is standardly defined as drawing n observations
among the n observations with replacement. The goal of this bootstrap is to replicate the
distribution of Dn. However, this is adapted to the case of independent and identically
distributed observations. When the data has an underlying dependence structure as for
time series the i.i.d hypothesis is not verified anymore and using the standard bootstrap
destroys the dependent structure. We illustrate this phenomenon for a dataset from [16]
which is described in section 3.1. We observe in fig. 2 the original load over the month of
January. Using the standard bootstrap we obtain the series in fig. 3 and immediately note
that the structure we had in the original series is all gone. By contrast, using a moving
block bootstrap, described in section 2, using a block length of 24 hours we recover similar
patterns as in the original series of fig. 4.
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Figure 2: Original load hourly sampled.
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Figure 3: Bootstraped load
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Figure 4: Block bootstrapped load with
block size of 24h
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We list here a few papers using blocks bootstrap in the forecasting literature. The
first one is [17] in which they use a sieve bootstrap to perform bagging with exponential
smoothing models. They use exponential smoothing to decompose the data, then fit an
autoregressive model to the residuals, and generate new residuals from this AR process.
Finally, they fit the exponential smoothing model that was used for decomposition to all
bootstrapped series. Another work is from [18] who propose a method of bagging which is
as follows. After applying a Box-Cox transformation to the data, the series is decomposed
into trend, seasonal and remainder components. The remainder component is then boot-
strapped using the moving block bootstrap, defined in section 2, the trend and seasonal
components are added back, and the Box-Cox transformation is inverted. For each one
of these bootstrapped time series, a model among several exponential smoothing models
is chosen, using the bias-corrected AIC. Then, point forecasts are calculated using all the
different models and the resulting forecasts are combined using the median. We refer to
[19] for more details about the recent developments in bootstraps methods for dependent
data.

The aim of this work is to show that the forecasting performance could be improved
by replacing the bootstrap step by what we call block bootstrap variants, to subsample time
series during the tree construction phase and thereby keep the dependent structure. Since
random forests were already introduced in this introduction. The next section presents
the different block bootstrap variants, the new algorithm and a new way to compute the
variable importance. We then present two numerical experiments. The first one is based on
an application to load forecasting of a building from the dataset described in [16] and see
how the variants may perform. The second one on the French national forecasting problem
and explore a heuristic on the choice of the new parameter.

2 Random forests for time series

2.1 Block bootstrap variants
Non-overlapping block bootstrap A first variant is found in [20]: the non-overlapping
block bootstrap. The idea is to construct a number of non-overlapping blocks and then to
draw uniformly, with replacement, among the constructed blocks. More precisely, let ln be
the size of a block and B ≥ 1 the greatest integer such that lnB ≤ n. The blocks are then
constructed the following way

Bb =
(
X(b−1)ln+1, . . . , Xbln

)
b = 1, . . . , B.

The bootstrap setD?
n is then obtained by drawing K blocks,

(
B?1 , . . . , B?K

)
, uniformly with

replacement in the collection of non-overlapping blocks(Bb)1≤b≤B for a suitably chosen K.

Moving block bootstrap [21] and [22] introduced the so-called moving block boot-
strap. The idea is, instead of picking randomly one observation among the n observations
as for the standard bootstrap, the moving block bootstrap pick randomly a block of ln con-
secutive observations. Repeating this step and concatenating all the selected blocks, we
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get a new time series with a preserved structure at least in each block. More precisely, let
us denote by Bi,ln = ((Xi, Yi), . . . , (Xi+ln−1, Yi+ln−1) the block of size ln beginning with
the observation (Xi, Yi) for i ∈ {1, . . . , n − l + 1} . The procedure then consists to draw ran-
domly K indices (I j)1≤k≤K uniformly on the set {1, . . . , n − ln + 1} and associate one block
to each index, (BIk )1≤k≤K . The bootstrap set is then defined asD?

n = (BI1 , . . . , BIK ) .

Circular block bootstrap When studying the moving block bootstrap we can note
that less weight is given to certain parts of the time series which also leads in theory to
non negligible bias when computing the mean. A way to correct this issue is given in
[23] introducing the so-called circular block bootstrap. The idea is to wrap the time series
writing Xi := Xin where in = i mod n, X0 := Xn and then use the same procedure as
in the moving block bootstrap where the index I is drawn uniformly on the set {1, . . . , n}
instead.

Note that in each above variant, taking ln = 1 we recover the standard bootstrap of
[15]. For a given number of selected observations in each tree αn the number of blocks K
is such that K = αn

ln
.

2.2 Proposed random forest for time series
Our proposition in order to incorporate the dependence structure is by replacing the first
step for the construction of a random tree in the random forest building procedure, namely
replacing the standard bootstrap step with one of the block bootstrap variant recalled in
section 2.1. The adapted algorithm is found in algorithm 1 underlining the modification
with respect to the original random forest procedure.

2.3 Bloc permutation importance
Random forests can be used to rank with respect to a decreasing order of importance the
variables. One way to measure the significance of a variable is the Mean Decrease Accu-
racy introduced in [1] which stems from the idea that if a variable is not important, then
permuting its value should not change the prediction accuracy.

For each tree, we have access to the so-called out-of-bag observations denoted by
OOBm, composed of the observations not included in the bootstrap sample Dm

n used to
construct the mth tree. The OOBm sample can then be used to estimate the out-of-bag error
denoted by errOOBm. In order to compute the importance of the variable X( j), the values
of the jth variable are randomly permuted in the OOB sample and compute for each tree an
out-of-bag error estimation for the permuted observations. The importance of the variable
X( j) is then obtained by averaging the difference between the out-of-bag error before and

after permutation. More formally, if, for the mth tree, we denote by ˜errOOB j
m the OOBm

sample’s error when the jth variable is permuted, then the importance of the variable X( j)

is defined by

VI
(
X( j)

)
=

1
M

M∑
m=1

(
˜errOOB j

m − errOOBm

)
.
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input: ((X1, Y1), . . . , (Xn, Yn))
parameters: M,αn, mtry, τn, ln
stopping criteria: the variance in the node is zero or the number of
observations in a node is below the threshold τn

for j← 1 to M do
Construct the jth tree:

• Draw αn ≤ n observations
using a block bootstrap variant with parameter ln.

• Repeat recursively on each resulting node the following steps until a
stopping criterion is met:

– At each node, select randomly mtry variables

– Select the best split using the variance criterion among the previously
chosen variables.

– Cut according to the chosen split.

end
output for a new observation x : mean of the M predictions given by the
trees for x.

Algorithm 1: Random forest for time series
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The higher the increase in the prediction error after the permutation of the jth variable in the
out-of-bag observations, the more important the variable is. However, if the permutation
of X( j) doesn’t change much the error prediction then the importance of the considered
variable is small.

In the case of dependent observations we are faced with the same issue as in the con-
struction of the random forests, namely the permutation of variable in the out-of-bag ob-
servations does not preserve the dependent structure. In the case where block instead of
standard bootstrap is used in the random forest we introduce a new variable importance
computation: the block (permutation) variable importance. However, using a block boot-
strap variant doesn’t necessarily lead to a out-of-bag observations with constant number of
consecutive observations but we solve this issue in the following. Let us first suppose that
the out-of-bag observations can be separated in blocks of size of the block size parameter
in the forest ln and denote by B∗m the blocks in the out-of-observations for the mth tree. In
order to compute the importance of the jth variable, the permutation of the considered vari-
able is done by only permuting the blocks in B∗m and preserving the structure in each block.
We can then compute a block permuted out-of-bag error estimation for the jth variable

denoted by errOOB j
m. The block variable importance for the jth variable is then defined

by

VI
(
X( j)

)
=

1
M

M∑
m=1

(
errOOB j

m − errOOBm

)
.

The out-of-bag observations stemming from the block bootstrap with parameter ln is
not necessarily composed of blocks of the size ln but the non-overlapping block bootstrap.
In order to obtain an OOB sample which has the same block size as in the construction of
the random forest we adapt the obtained out-of-bag observations to get a new set of blocks
of out-of-bag observations. The construction of the latter is as it follows. If a block of
consecutive observations in the out-of-bag observations is of the right length ln we add it
to the block out-of-bag observations and if the length is larger than ln and less than 2ln we
draw a random subset of consecutive observations of length ln. If a block of consecutive
observations in the out-of-observations has a length less than ln then the block is not kept.
Then the block out-of-bag observations is composed of the kept block observations of
length ln and satisfies the conditions to compute the block permutation variable importance
as previously defined.

3 Numerical experiments
We consider two experiments in this work. One regarding the performance the variants
may attain on a real world application of load forecasting, at a disaggregated level, on one
of the building dataset from [16], which is composed of different building loads with hourly
observations. The other regarding the choice of the block length parameter, this time on
the French national load forecasting problem, at a more aggregated level but focusing on
atypical periods.

We run the experiments by implementing the extra features we propose in this paper
as an extension of the R package ranger [24], and thus inherit the availability in both
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C++ and R. Our R package rangerts is freely available from the github repository https:
//github.com/hyanworkspace/rangerts. In the following experiments, the results
are obtained over 50 runs. The parameters of the random forest are set to default except
for the mtry parameter which is optimised on a validation set and the block size parameter
for which we carry out an in-depth analysis in section 3.2.

3.1 First load forecasting application: On the performance and vari-
able importance

This experiment is based on the so-called building loads, a collection of 507 whole build-
ings electrical meters made publicly available. We refer to the paper [16] for a complete
description of the collection. We consider one specific building in the building data genome
project called UnivLab Patrick. This building belongs to the college laboratory category
located in the New York time zone and has an area of around 7054 square meters. We have
access to its electricity load from the 1st January 2015 to the 31th December 2015 with a
sampling rate of one observation per hour. The weekly profile is found in fig. 5. We see a
clear daily trend as well as a clear distinction between the week and the end of the week
due to less activity. We also have access to exogenous variables: the temperature as well as
to the schedule of the building, indicating if a day is ordinary, a break or a holiday. We de-
compose the year in three parts: the training set is composed of the observations from the
1st January to the 31st October, the validation set corresponds to the month of November
and the test set corresponds to the month of December.
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Figure 5: Weekly profile hourly sampled of the UnivLab Patrick dataset.

Let us denote by Yt the system load of the building at hour t. In this experiment, we
aim to forecast at a horizon of 24 hours. Based on the weekly profile, having hourly
sampled observations, the chosen model is inspired by [25] in which they also considered
random forests with a similar model for the same kind of problem. This results in the
model described in eq. (1.1) with Xt of the form

(3.1) Xt = (Yt−24, Yt−168, Tempt, Schedulet, Hourt, InstantWeekt, DayTypet, Toyt)

where

• Tempt corresponds to the temperature at instant t;

• Schedulet take three values: Regular, Break, Holiday;

• Hourt corresponds to the hour of the day at instant t;

• InstantWeekt corresponds to the hour in the month;

• DayTypet corresponds to the day of the week;

• Toyt corresponds to the day of the year divided by 366.

The selected value for mtry according to the performance on the validation set is mtry =
2. For this parameter we computed the different variants varying the block size parameters
multiple of 6 hours up to 90 hours. We first optimise the performances on the validation
set, looking for the best block size value minimising the RMSE and then plug it in for the
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test set. The performance are resumed in fig. 6. We observe an improvement for the three
variants with an improvement up to 11% for the mean RMSE compared to the standard
random forest. We also show the evolution of the performance according to the block size
parameter in fig. 7. We observe for the three variants a similar pattern in the evolution
of the performance, namely a decrease for which the three variants performs better than
the standard random forest and then an increase. We note that, even if the performance get
worse when the block size is large, we also have a large window for which the performance
is far better for these three variants with an optimal block size parameter of around 24 hours
also corresponding to the forecasting horizon and the main seasonality of the data.
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Figure 6: Performance of the differ-
ent variants for mtry = 2, evaluated on
the month of December of the UnivLab
Patrick dataset.
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Figure 7: Performance of the variants
for mtry = 2 when the block size
changes, evaluated on the month of De-
cember of the UnivLab Patrick dataset.
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Figure 8: Variable importance mov-
ing bootstrap variant under the standard
permutation on the UnivLab Patrick
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Figure 9: Block moving bootstrap vari-
ant importance with block size of 24h
on the UnivLab Patrick dataset.
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Figure 10: Variable importance non-
overlapping variant under the standard
permutation on the UnivLab Patrick
dataset.
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Figure 11: Block non-overlapping vari-
ant importance with block size of 24h
on the UnivLab Patrick dataset.

Computing the variable importance for blocks of size 24 hours we obtain figs. 8 to 11.
We observe that the difference between the standard variable importance and the block
variable importance is essentially noticeable for the non-overlapping block bootstrap vari-
ant. The most evident difference is for the variable Hour for which the importance is set
to zero using the block variable importance. Since the blocks are of length 24 hours and
always beginning at the same time, permuting the blocks will not change the out-of-bag
error since each permutation is replaced by an identical copy and thus the output from this
procedure for the variable Hour.

3.2 Second load forecasting application: On the block length choice
We discuss here the choice of the block length parameter, found in every block bootstrap
variant. In the previous experiment, we notice that the optimal choice for the block length
was 24 hours, corresponding to the daily step and seasonality in the dataset. However,
the last experiment is done by optimising the block length on the validation set error. It
would be interesting to choose this parameter more wisely in order to avoid unnecessary
computations and we think that it should be proportional to the (minimal) seasonality in
the dataset. The block bootstrap aims to build blocks that preserve the dependency in them
but that the blocks are independent to a certain extent. In the case of seasonal trends, the
intuition would consequently be to choose blocks correlated to basic seasonal components.
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We illustrate this with another dataset, on the French national load with goal to forecast
at a 24 hours horizon as well, having a longer span of time and thus having more stable
results.

We consider the French electricity load of the year 2015 as the training set with a
sampling rate of one observation per day at noon. The test set for this experiment are the
months April and October of the year 2016, corresponding to the transition between sum-
mer and winter season, a particularly difficult period to forecast. We observed in various
experiments that the random forests for time series variants work the best when it is "diffi-
cult" to forecast. This typically corresponds to the shoulder seasons in the load forecasting
field. We use here the model described in eq. (3.1) as well without the variables Hour and
InstantWeek. Since the observations are daily occurrences, the minimal seasonality would
be the week. Hence, we consider three values for the block length parameter: 7, 14 and 21
days. The selected value for mtry is 3 corresponding to the worst case scenario, in the sense
that for another value of mtry the block bootstrap variants are doing better than shown in
this example. Note that for this example we removed the non-overlapping block bootstrap
variant. We have found that this variant needs more observations to get consistent results,
providing less diversity in the trees due to its construction.
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Figure 12: Performances evaluated on
April 2016 on the French load forecast-
ing problem of the different variants for
three block length values.
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Figure 13: Performances evaluated on
October 2016 on the French load fore-
casting problem of the different variants
for three block length values.
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The results are found, respectively for April and October 2016, in figs. 12 and 13. We
observe that, for both month, we have a consistent improvement of the performance in
comparison to the standard random forest for each choice of block length. We even note
significant improvement in the performance when taking twice or thrice the seasonality for
April. However, taking larger values than these would lead to a diversity problem in the
trees as mentioned before and thus have less consistent performance. This concludes that
the heuristic for the block length parameter choice would be to take the smallest seasonality
up to a multiplying factor of two or three.

4 Conclusion and Perspectives
We introduced a new variant of random forests taking into account the temporal depen-
dency of the observations and showed that we can improve significantly the performance
on forecasting tasks when choosing the right block length. A variant of the variable im-
portance based on the block bootstrap mechanism is also introduced. The non-overlapping
variant seems to be mistaken regarding the importance of the variables, forgetting some
variables fundamental to the forecasting problem as the hour variable in our first applica-
tion, and thus we do not advise to use this variant for this purpose. However, both moving
and circular variants seem to perform much better than the standard random forests when
the block length is well-chosen, and we showed that a good heuristic for the block length
choice is correlated to a multiple of the smallest seasonality.

This work is mainly methodological, a first perspective would be to prove theoreti-
cal results on the random forests variants under time-dependent observations hypotheses.
Consistency of random forests is proven under stationary and β−mixing hypotheses in [14]
when trees are not fully grown and the observations are subsampled. The previously cited
works regarding the block bootstrap as [20, 21, 22, 23] also show consistency of some esti-
mators, generally under less restrictive hypotheses. It would be interesting to prove similar
results on the variants by adapting and combining the previous proof techniques.

We have considered one specific field of application to illustrate the potential value
of the random forests variants. Of course, a more extensive study of other time series
forecasting context could be considered for future works. It could also be useful to develop
a more adaptive and automatic way to choose the block length parameter. Finally, it could
be interesting to explore more deeply under which conditions (input variables, etc.) the
variants work, going well beyond the scope of this paper.
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