
HAL Id: hal-03129747
https://hal.science/hal-03129747

Submitted on 3 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

a · (x · x) or (a · x) · x?
Jean-Michel Muller

To cite this version:
Jean-Michel Muller. a · (x · x) or (a · x) · x?. ARITH 2021 - 28th IEEE Symposium on
Computer Arithmetic, Jun 2021, Torino (virtual meeting due to the COVID Pandemic), Italy.
�10.1109/ARITH51176.2021.00015�. �hal-03129747�

https://hal.science/hal-03129747
https://hal.archives-ouvertes.fr

a · (x · x) or (a · x) · x?
Jean-Michel Muller

CNRS, LIP, Université de Lyon
Lyon, France

jean-michel.muller@ens-lyon.fr

Abstract—Expressions such as ax2, axy, or ax3, where a is a
constant, are not unfrequent in computing. There are several
ways of parenthesizing them (and therefore, choosing the
order of evaluation). Depending on the value of a, is there a
more accurate evaluation order? We discuss this point (with
a small digression on spurious underflows and overflows).

Index Terms—Floating-point arithmetic, rounding error
analysis, evaluation of expressions.

INTRODUCTION AND NOTATION

In this paper, which aims more at “floating-point
pedagogy” than at complex research, we discuss the
evaluation of expressions of the form ax2, axy, or ax3

in binary floating-point arithmetic, where a is a con-
stant and x is a variable. There are several ways of
parenthesizing these expressions, which correspond to
different evaluation orders (for instance, ax2 may be
evaluated as (a · x) · x—i.e., ax is evaluated first—or
as a · (x · x)—i.e., x2 is evaluated first). A question
that naturally arises is: is one of these schemes better than
the other ones? The word “better” may have different
meanings here, because several criterions are possible:
one may wish to maximize parallelism, in the hope of
having a faster evaluation;1 one may try to minimize
the relative error of the result, in the hope of making the
whole calculation more accurate; or one may try to avoid
as much as possible spurious underflows or overflows (a
spurious underflow or overflow is an underflow or overflow
that occurs during an intermediate step, resulting in
an inaccurate, infinite or NaN returned result, whereas
the exact result is well within the domain of normal
floating-point numbers). Deciding the adequate order
of evaluation will be in general the programer’s task
(through unambiguous parenthesizing and/or adequate
compilation options). In some cases (no parenthesizing
and the language specification does not impose in that
case an order of evaluation, which is for instance the case
of FORTRAN [2], [5]) it can be the compiler’s task and
one of the goals of this paper is to persuade compiler
designers that is such cases, attempting to minimize the
evaluation delay is not always the only sensible option
at hand.

In the following, we assume a radix-2, precision-p,
floating-point (FP) arithmetic [1], [5]. The notation RN(t)

1This is not a trivial issue: in practice, the parenthesizing may impact
register allocation and sub-expression sharing.

stands for t rounded to the nearest FP number. We
assume no particular tie-breaking rule in our proofs, and
our examples are generated assuming ties-to-even. The
number u = 2−p = 1

2ulp(1) denotes the roundoff error
unit. If x is a nonzero real number, with 2k ≤ |x| < 2k+1

(i.e., 2k is what Rump defines as ufp(x) [6]), µ(x) = x/2k

denotes the “infinite-precision significand” of x. Barring
underflow or overflow, the relative error due to rounding
to nearest a nonzero real number x, i.e.,∣∣∣∣RN(x)− x

x

∣∣∣∣
is bounded by u/µ(x). This allows one for instance to
show that the relative error due to rounding is bounded
by u/(1 + u) [4], and to show very tight bounds on the
relative errors of Floating-Point operations [3], [6]. We
assume that all intermediate calculations are performed
in the same format.

Take as an example the computation of ax2 as a·(x·x).
What is actually computed is RN(a · RN(x · x)). If we
denote εs the relative error of the square and εm the rela-
tive error of the subsequent multiplication, the computed
result r satisfies

r = ax2 · (1 + εs)(1 + εm) = ax2 · (1 + εs + εm + εsεm).

In the following, we will consider order-1 errors. That
is, we will approximate the above-given relative error
εs + εm + εsεm by εs + εm. Order-1 error bounds are not
enough if one wishes an absolute certainty that the error
is less than the bound, but they suffice for comparing
computation schemes, which is the aim of this article.

I. COMPUTATION OF ax2

For symmetry reasons, we assume that a and x are
positive. We also assume that they are (strictly) between
1 and 2. This is done without loss of generality provided
that no underflow or overflow occurs in the calculation.2

A. First choice: a · (x · x)
We start by computing the square of x. The relative

error of that operation is bounded by u/µ(x2), i.e., by u
x2 if x <

√
2,

2u
x2 if x >

√
2.

(1)

2We define underflow as the IEEE 754 Standard does: an inexact zero
or subnormal result.

(what we choose for x =
√
2 does not matter: since x is

a floating-point number, if cannot be equal to
√
2).

The relative error of the second operation (namely, the
multiplication of the previously-obtained square by a) is
bounded by u/µ(ax2). Since ax2 is between 1 and 8, the
bound u/µ(ax2) is equal to

u
ax2 if x <

√
2
a ,

2u
ax2 if

√
2
a < x < 2√

a
,

4u
ax2 if x > 2√

a
.

(2)

One easily checks that
√

2
a <
√
2 and

√
2 < 2√

a
. Hence

one can divide the interval [1, 2) where x lies into four
subintervals, and in each subinterval compute the total
relative error bound (obtained by summing the error
bounds of the individual operations, given by (1) and
(2)), which is a function of a and x. Then for each
subinterval one can compute the maximum value of
the relative error bound, which is a function of a only
(this is easily done: in each subinterval the bound is a
decreasing function of x, so that its maximum is attained
at the leftmost point of the interval). This is done in
Table I.

TABLE I: Largest relative error in each of the subintervals (we
compute a · (x · x)).

Interval for x
[
1,
√

2
a

] [√
2
a
,
√
2
] [√

2, 2√
a

] [
2√
a
, 2
]

1
u
× rel. error 1

x2 + 1
ax2

1
x2 + 2

ax2
2
x2 + 2

ax2
2
x2 + 4

ax2

1
u
× largest val. 1 + 1

a
1 + a

2
1 + 1

a
1 + a

2

From Table I we immediately deduce that the relative
error is bounded (at order 1 in u) by

u×max

{
1 +

1

a
; 1 +

a

2

}
=

{ (
1 + 1

a

)
· u if a ≤

√
2(

1 + a
2

)
· u if a >

√
2.

(3)

Figure 1 plots the bound (3) and the actually obtained
largest relative error (for all x) in the case p = 16 for
a ∈ [1, 2) (to generate the figure, since for each value
of a we need to consider all possible values of x, we
are limited to small values of the precision p). The plot
shows that the bound (3) is tight.

B. Second choice: (a · x) · x
We now start by computing a · x. The relative error of

that operation is bounded by u/µ(ax), i.e., by u
ax if x ≤ 2

a ,

2u
ax if x > 2

a .
(4)

The relative error of the second operation is bounded
by u/µ(ax2), i.e., the same bound as in (2). After having
noted that

√
2
a < 2

a and 2
a < 2√

a
we can divide the

Fig. 1: The relative error bound for the computation of ax2 as
a · (x ·x), in multiples of u and as a function of a ∈ [1, 2), along
with the largest actually obtained values for p = 16.

interval [1, 2) where x lies into four subintervals and
compute for each subinterval the maximum of the sum
of the bounds (2) and (4). This is done in Table II.

TABLE II: Largest relative error in each of the subintervals (we
compute (a · x) · x).

Interval for x
[
1,
√

2
a

] [√
2
a
, 2
a

] [
2
a
, 2√

a

] [
2√
a
, 2
]

1
u
× rel. error 1

ax
+ 1

ax2
1
ax

+ 2
ax2

2
ax

+ 2
ax2

2
ax

+ 4
ax2

1
u
× largest val. 2

a
1 +

√
2

2
√
a

1 + a
2

1 + 1√
a

Hence the relative error is bounded (at order 1 in u)
by

u×max

{
2

a
; 1 +

√
2

2
√
a
; 1 +

a

2
; 1 +

1√
a

}
.

Elementary manipulation shows that for a ∈ [1, 2), 2
a ≤

1+ 1√
a

and 1+
√
2

2
√
a
≤ 1+ 1√

a
. Therefore the relative error

bound can be simplified and becomes

u×max
{
1 + a

2 ; 1 +
1√
a

}
=


(
1 + 1√

a

)
u if a ≤ 2

2
3(

1 + a
2

)
u if a > 2

2
3

(5)

Figure 2 plots the bound (5), and the actually obtained
largest relative error (for all x) in the case p = 16 for
a ∈ [1, 2).

C. Comparison of the schemes for ax2

Figure 3 plots the bounds (3) and (5). If a < 22/3 ≈
1.587 the bound corresponding to a · (x · x) is smaller, if
a ≥ 22/3, both bounds are equivalent. This is confirmed

Fig. 2: The relative error bound for the computation of ax2 as
(a ·x) ·x, in multiples of u and as a function of a ∈ [1, 2), along
with the largest actually obtained values for p = 16.

by Figure 4, where we have plotted the difference of the
actual relative errors of both schemes in the case p = 16.

Fig. 3: The two bounds for the computation of ax2 (multiplied
by 1/u), as a function of a ∈ [1, 2). If a < 22/3 the bound
corresponding to a · (x · x) is smaller than the other one, if
a ≥ 22/3, both bounds are equal.

Hence we conclude that for a in an interval of the form
2k × [1, 22/3], a · (x · x) has a better relative error bound
(and, in general, a better actual relative error) than (a·x)·
x, and that for a in an interval of the form 2k × [22/3, 2),
the relative error bound is the same (and the actual errors
are of similar order) for both schemes.

Does this mean that we should recommend always
computing the square first, i.e., using the scheme a·(x·x)?
This is not that simple. The scheme (a · x) · x has an ad-

Fig. 4: Actual relative error (multiplied by 1/u) of (a · x) · x
minus actual relative error of a · (x ·x) for a ∈ [1, 2) in the case
p = 16.

vantage when it comes to avoiding spurious underflows
or overflows. Assume that a is a normal floating-point
number. If a·x underflows (i.e., the obtained result is 0 or
subnormal) this means that |x| < 1, so that |ax2| is even
smaller than |ax|. If a·x overflows this means that |x| > 1,
so that |ax2| is larger than |ax|. In both cases, we see that
an intermediate underflow or overflow is possible only
when |ax2| is below the underflow threshold or over the
overflow threshold: a spurious underflow or overflow
is therefore impossible. This is obviously not the case
when we use the scheme a · (x · x): a simple example in
binary64 arithmetic is x = 2600 and a = 2−500.

Hence what we should recommend to programmers
is:

• for applications where avoiding spurious under-
flows or overflows is most important, use the
scheme (a · x) · x;

• for applications where accuracy is most important,
use the scheme a · (x · x) (or, maybe better, use
the scheme a · (x · x) for µ(a) < 22/3 ≈ 1.587 and
the scheme (a · x) · x for µ(a) > 22/3: at least in
the second case we are protected from the risk of
spurious underflows or overflows).

Example: consider calculation of function x → 3x2

(i.e., µ(a) = 1.5). If we use the scheme a · (x · x),
the relative error bound (given by (3)) is 1.75u, and
an exhaustive test in binary32 arithmetic shows that
(unless underflow/overflow occurs) the largest attained
error is ≈ 1.74826 · u. If we use the scheme (a · x) · x,
the relative error bound given by (5) is around 1.816u,
and the largest attained error in binary32 arithmetic is
≈ 1.814977u.

II. SAYING SOMETHING ABOUT axy?

What we have just done partly generalizes to the
computation of axy. Using a reasoning very similar to
the one of Section I-A, one easily shows that if we
evaluate axy as a · (x · y), the relative error bound (3)
still applies. On the other hand, if we evaluate axy as
(a · x) · y one easily builds values x and y so that µ(ax)
and µ(axy) are very close to 1 so that the only relative
error bound one can deduce is 2u (i.e., independent of
a). So what we can recommend is: if µ(a) is far enough
from 1 and 2 (i.e., we are somewhere in the middle of the
graph of Figure 1—a typical example is the calculation of
3xy) it is worth using expression a · (x ·y), otherwise, the
choice does not matter. Unless for the application being
considered we have some a priori information on the
order of magnitude of x and y, we cannot say anything
on spurious underflow or overflow.

III. COMPUTATION OF ax3

Let us now consider the computation of ax3 where a
is a constant. Again, for symmetry reasons, we assume
that a and x are positive. We also assume that they are
(strictly) between 1 and 2. This is done without loss
of generality provided that no underflow or overflow
occurs in the real calculation. Different parenthesizings
can be considered: (a · x) · (x · x), ((a · x) · x) · x),
(a · (x · x)) · x), and a · (x · (x · x)). Here, we will focus
on the first two, because they have properties that may
make them preferable for numerical programers: the first
one favors parallelism, and the second one allows one to
avoid possible spurious underflows and overflows (for
the same reason as the one presented in Section I-C).

A. First choice: (a · x) · (x · x)

What is actually computed is RN
(
RN(ax) · RN(x2)

)
.

We have already considered the relative error bounds for
the evaluation of π1 = x2 (see (1)), and π2 = ax (see (4)).
The relative error of the last operation π1 ·π2 is bounded
by u/µ(π1π2). Since the product π1π2 is between 1 and
16, this gives the following relative error bound for the
last operation:

u
ax3 if x <

(
2
a

)1/3
2u
ax3 if

(
2
a

)1/3
< x <

(
4
a

)1/3
4u
ax3 if

(
4
a

)1/3
< x < 2

a1/3

8u
ax3 if x > 2

a1/3 .

(6)

To split the interval [1, 2) (for a) into subintervals where
the various bounds of (1), (4), and (6) are constant, we
need to order the comparison constants of these equa-
tions, i.e., the numbers

√
2, 2

a ,
(
2
a

)1/3,
(
4
a

)1/3, and 2
a1/3 .

One easily shows (and this is illustrated by Figure 5)
that:

• if a <
√
2 then(
2

a

)1/3

<
√
2 <

(
4

a

)1/3

<
2

a
<

2

a1/3
;

• if a >
√
2 then(
2

a

)1/3

<
2

a
<

(
4

a

)1/3

<
√
2 <

2

a1/3
.

Fig. 5: The ordering of the comparison constants of (1), (4), and
(6) changes at a =

√
2.

We can now split the interval [1, 2) where x lies into
6 subintervals.
• if a <

√
2 then the sum of the relative errors and

its maximal value in each subinterval are given in
Table III.
One deduces that the relative error bound in that
case is

u×max

{
1 + 2

a ; 1 +
(

1
2a2

) 1
3 +

(
a
2

) 2
3 ; 1 +

√
2
a ;

1 +
(

1
4a2

) 1
3 +

(
a2

2

) 1
3

; 1 + a2; 1 + 1

a
2
3
+ a

2
3

2

}
which is equal to

u×

 1 + 2
a if a < 21/3 ≈ 1.25992;

1 + a2 if a > 21/3.
(7)

• if a >
√
2 then the sum of the relative errors and

its maximal value in each subinterval are given in
Table IV.
One deduces that the relative error bound in that
case is

u×max

{
1 + 2

a ; 1 +
(

1
2a2

) 1
3 +

(
a
2

) 2
3 ; 1 + a2

2 ;

1 +
(
a
4

) 2
3 +

(
2
a2

) 1
3 ; 1 + 2

√
2

a ; 1 + 1

a
2
3
+ a

2
3

2

}

which is equal to

u×

 1 + 2
√
2

a if a < 25/6 ≈ 1.7818;

1 + a2

2 if a > 25/6.
(8)

Hence, we conclude from (7) and (8) that the relative
error bound of the calculation of ax3 as (a · x) · (x · x) is

u×


1 + 2

a if a < 21/3 ≈ 1.25992;

1 + a2 if 21/3 < a <
√
2;

1 + 2
√
2

a if
√
2 < a < 25/6 ≈ 1.7818;

1 + a2

2 if 25/6 < a.

(9)

Figure 6 plots the bound (9) and the actually obtained
largest relative error (for all x) in the case p = 16 for
a ∈ [1, 2). The plot shows that the bound (9) is tight.

Fig. 6: The error bound for the computation of ax3 as (a · x) ·
(x · x), in multiples of u and as a function of a ∈ [1, 2), along
with the largest actually obtained values for p = 16.

B. Second choice: ((a · x) · x) · x)

We start by computing (a · x) · x: the relative error of
that calculation was studied in Section I-B, with bounds
given for the various subintervals in Table II. The relative
error of the last operation is bounded by u/µ(ax3), i.e.,
it is given by (6). As previously, we need to order the
comparison constants of Table II and (6).

• if a <
√
2 then(

2

a

)1/3

<

(
2

a

)1/2

<

(
4

a

)1/3

<
2

a
<

2√
a
<

2

a1/3
,

and the calculation of the error bounds in the subin-
tervals is depicted in Table V.

We deduce that the relative error is bounded by

u×max

{
3
a ;

2a2/3+21/3a1/3+22/3

2a2/3 ; a
√
2+
√
2+2
√
a

2
√
a

;

2a2/3+22/3a1/3+21/3

2a2/3 ; 1 + a
2 + a2

2 ;

1√
a
+ 1 +

√
a
2 ; 1 + 1

a1/3 + 1
a2/3

}
,

which is equal to

u×

 1 + 1
a1/3 + 1

a2/3 if a < 1.405198;

1 + a
2 + a2

2 if a > 1.405198.
(10)

• if a >
√
2 then(

2

a

)1/3

<

(
2

a

)1/2

<
2

a
<

(
4

a

)1/3

<
2√
a
<

2

a1/3
.

and the calculation of the error bounds in the subin-
tervals is depicted in Table VI.
We deduce that the relative error is bounded by

u×max

{
3
a ;

2a2/3+21/3a1/3+22/3

2a2/3 ;

a
√
2+
√
2+2
√
a

2
√
a

; 1 + a
2 + a2

4 ;

22/3a1/3+2a2/3+24/3

2a2/3 ; 1√
a
+ 1 +

√
a
2 ;

1 + 1
a1/3 + 1

a2/3

}
,

which is equal to

u×

 22/3a1/3+2a2/3+24/3

2a2/3 if a < 1.68744;

1 + a
2 + a2

4 if a > 1.68744.
(11)

Regrouping (10) and (11), we conclude that the error
bound of the calculation of ax3 as ((a · x) · x) · x is

u×


1 + 1

a1/3 + 1
a2/3 if a < 1.405198;

1 + a
2 + a2

2 if 1.405198 < a <
√
2;

22/3a1/3+2a2/3+24/3

2a2/3 if
√
2 < a < 1.68744;

1 + a
2 + a2

4 if 1.68744 < a.

(12)

Figure 7 plots the bound (12) and the actually obtained
largest relative error (for all x) in the case p = 16 for
a ∈ [1, 2). The plot shows that the bound (12) is tight.

C. Comparing both strategies

The error bounds of both strategies are plotted, as
functions of a ∈ [1, 2], in Figure 8. The two curves cross
at a ≈ 1.32007 and a ≈ 1.7394. Comparing these curves
leads to the following suggestion:
• if accuracy is what matters most, use (a · x) · (x · x)

if µ(a) is in [1, 1.3) or [1.7, 2), and ((a · x) · x) · x if
µ(a) ∈ [1.3, 1.7];

Fig. 7: The error bound for the computation of ax3 as ((a · x) ·
x) · x, in multiples of u and as a function of a ∈ [1, 2), along
with the largest actually obtained values for p = 16.

• if avoiding spurious underflow or overflow is what
matters most, always use ((a · x) · x) · x;

• if parallelism is what matters most, always use (a ·
x) · (x · x).

Hence, there is no “general solution” that is always
the best: depending on the application, one may know
that the variables lie in some restricted range (so that
underflows and overflows are just impossible), or that
spurious underflows and overflows must be avoided at
all costs.

Fig. 8: The error bounds of the two schemes for ax3 studied in
this paper: (a ·x) · (x ·x) (plain line) and ((a ·x) ·x) ·x (dashed
line). The two curves cross at a ≈ 1.32007 and a ≈ 1.7394.

Example: consider calculation of function x → 3x3

(i.e., µ(a) = 1.5). If we evaluate the function as (a · x) ·

(x · x), the error bound given by (9) is 2.886u and the
largest attained error in binary32 arithmetic is 2.865u. If
we evaluate the function as ((a ·x) ·x) ·x, the error bound
given by (12) is 2.655u and the largest attained error in
binary32 arithmetic is 2.612u.

CONCLUSION

We have shown through small examples that when
evaluating some expressions that contain a constant, it
may be interesting to use different orders of evaluation
depending on the value of the constant. Such a choice
may be taken by the programmer or, when the program-
mer does not indicate an unambiguous order through
parenthesizing and the language specification does not
impose an order of evaluation, by the compiler.

REFERENCES

[1] IEEE. IEEE Standard for Floating-Point Arithmetic (IEEE Std 754-
2019). July 2019.

[2] International Organization for Standardization. Programming lan-
guages – Fortran – Part 1: Base language. International Standard
ISO/IEC 1539-1:2004, 2004.

[3] Claude-Pierre Jeannerod and Siegfried M. Rump. On rela-
tive errors of floating-point operations: optimal bounds and
applications. Mathematics of Computation, (87):803–819, 2018.
https://hal.inria.fr/hal-00934443.

[4] D. Knuth. The Art of Computer Programming, volume 2. Addison-
Wesley, Reading, MA, 3rd edition, 1998.

[5] Jean-Michel Muller, Nicolas Brunie, Florent de Dinechin, Claude-
Pierre Jeannerod, Mioara Joldes, Vincent Lefèvre, Guillaume
Melquiond, Nathalie Revol, and Serge Torres. Handbook of Floating-
Point Arithmetic, 2nd edition. Birkhäuser Boston, 2018. ACM G.1.0;
G.1.2; G.4; B.2.0; B.2.4; F.2.1., ISBN 978-3-319-76525-9.

[6] S. M. Rump. Error bounds for computer arithmetics. In 2019 IEEE
26th Symposium on Computer Arithmetic (ARITH), pages 1–14, 2019.

TA
B

LE
II

I:
La

rg
es

t
re

la
ti

ve
er

ro
r

in
ea

ch
of

th
e

su
bi

nt
er

va
ls

(w
e

co
m

pu
te

(a
·x

)
·(
x
·x

),
an

d
a

is
le

ss
th

an
√
2

).

x
∈

[1
,(2 a

) 1/3]
[(2 a

) 1/3
,√

2]
[√ 2,

(4 a

) 1/3]
[(4 a

) 1/3
,
2 a

]
[2 a
,

2
a
1
/
3

]
[2 a

1
/
3
,2
)

re
la
ti
v
e

e
rr
o
r

u
1 x
2
+

1 a
x
+

1
a
x
3

1 x
2
+

1 a
x
+

2
a
x
3

2 x
2
+

1 a
x
+

2
a
x
3

2 x
2
+

1 a
x
+

4
a
x
3

2 x
2
+

2 a
x
+

4
a
x
3

2 x
2
+

2 a
x
+

8
a
x
3

la
rg

e
st

v
a
lu
e

u
1
+

2 a
1
+
(1 2

a
2

)1 3
+
(a 2

)2 3
1
+
√
2 a

1
+
(1 4

a
2

)1 3
+
(a

2 2

)1 3

1
+
a
2

1
+

1 a
2 3
+

a
2 3 2

TA
B

LE
IV

:
La

rg
es

t
re

la
ti

ve
er

ro
r

in
ea

ch
of

th
e

su
bi

nt
er

va
ls

(w
e

co
m

pu
te

(a
·x

)
·(
x
·x

),
an

d
a

is
la

rg
er

th
an
√
2

).

x
∈

[1,
(2 a

) 1/3]
[(2 a

) 1/3
,
2 a

]
[2 a
,(4 a

) 1/3]
[(4 a

) 1/3
,√

2]
[√ 2,

2
a
1
/
3

]
[2 a

1
/
3
,2
)

re
la
ti
v
e

e
rr
o
r

u
1 x
2
+

1 a
x
+

1
a
x
3

1 x
2
+

1 a
x
+

2
a
x
3

1 x
2
+

2 a
x
+

2
a
x
3

1 x
2
+

2 a
x
+

4
a
x
3

2 x
2
+

2 a
x
+

4
a
x
3

2 x
2
+

2 a
x
+

8
a
x
3

la
rg

e
st

v
a
lu
e

u
1
+

2 a
1
+
(1 2

a
2

)1 3
+
(a 2

)2 3
1
+

a
2 2

1
+
(a 4

)2 3
+
(2 a

2

)1 3
1
+

2
√
2

a
1
+

1 a
2 3
+

a
2 3 2

TA
B

LE
V

:
La

rg
es

t
re

la
ti

ve
er

ro
r

in
ea

ch
of

th
e

su
bi

nt
er

va
ls

(w
e

co
m

pu
te

((
a
·x

)
·x

)
·x

,a
nd

a
is

le
ss

th
an
√
2

).

x
∈

[1
,(2 a

) 1/3]
[(2 a

) 1/3
,(2 a

) 1/2]
[(2 a

) 1/2
,(4 a

) 1/3]
[(4 a

) 1/3
,
2 a

]
[2 a
,

2 √
a

]
[2 √

a
,

2
a
1
/
3

]
[2 a

1
/
3
,2
)

re
la
ti
v
e

e
rr
o
r

u
1 a
x
+

1
a
x
2
+

1
a
x
3

1 a
x
+

1
a
x
2
+

2
a
x
3

1 a
x
+

2
a
x
2
+

2
a
x
3

1 a
x
+

2
a
x
2
+

4
a
x
3

2 a
x
+

2
a
x
2
+

4
a
x
3

2 a
x
+

4
a
x
2
+

4
a
x
3

2 a
x
+

4
a
x
2
+

8
a
x
3

la
rg

e
st

v
a
lu
e

u
3 a

2
a
2
/
3
+
2
1
/
3
a
1
/
3
+
2
2
/
3

2
a
2
/
3

a
√
2
+
√
2
+
2
√
a

2
√
a

2
a
2
/
3
+
2
2
/
3
a
1
/
3
+
2
1
/
3

2
a
2
/
3

1
+

a 2
+

a
2 2

1 √
a
+
1
+
√
a 2

1
+

1
a
1
/
3
+

1
a
2
/
3

TA
B

LE
V

I:
La

rg
es

t
re

la
ti

ve
er

ro
r

in
ea

ch
of

th
e

su
bi

nt
er

va
ls

(w
e

co
m

pu
te

((
a
·x

)
·x

)
·x

,a
nd

a
is

la
rg

er
th

an
√
2

).

x
∈

[1,
(2 a

) 1/3]
[(2 a

) 1/3
,(2 a

) 1/2]
[(2 a

) 1/2
,
2 a

]
[2 a
,(4 a

) 1/3]
[(4 a

) 1/3
,

2 √
a

]
[2 √

a
,

2
a
1
/
3

]
[2 a

1
/
3
,2
)

re
la
ti
v
e

e
rr
o
r

u
1 a
x
+

1
a
x
2
+

1
a
x
3

1 a
x
+

1
a
x
2
+

2
a
x
3

1 a
x
+

2
a
x
2
+

2
a
x
3

2 a
x
+

2
a
x
2
+

2
a
x
3

2 a
x
+

2
a
x
2
+

4
a
x
3

2 a
x
+

4
a
x
2
+

4
a
x
3

2 a
x
+

4
a
x
2
+

8
a
x
3

la
rg

e
st

v
a
lu
e

u
3 a

2
a
2
/
3
+
2
1
/
3
a
1
/
3
+
2
2
/
3

2
a
2
/
3

a
√
2
+
√
2
+
2
√
a

2
√
a

1
+

a 2
+

a
2 4

2
2
/
3
a
1
/
3
+
2
a
2
/
3
+
2
4
/
3

2
a
2
/
3

1 √
a
+
1
+
√
a 2

1
+

1
a
1
/
3
+

1
a
2
/
3

