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[1] The Infrared Atmospheric Sounding Interferometer (IASI) is a nadir-viewing remote
sensor due for launch on board the European Metop satellites (to be launched in 2005,
2010, and 2015). It is dedicated to the study of the troposphere and the lower stratosphere
to support operational meteorology as well as atmospheric chemistry and climate
studies. For this purpose, it will record high resolution atmospheric spectra in the thermal
infrared, allowing the measurement of several infrared absorbing species. This paper
describes the clear-sky retrieval scheme developed in the framework of the preparation of
the IASI mission for the operational, near real time, retrieval of O3, CH4, and CO
concentrations. It includes the inversion module, based on a neural network approach,
as well as an error analysis module. The studies undertaken on test simulations have
shown that a performance of the order of 1.5%, 2%, and 5% for the retrieval of total
columns of O3, CH4, and CO, respectively, can be achieved, and of the order of 28%,
15%, and 9% for the retrieval of partial columns of O3 between the surface and 6, 12, and
16 km high, respectively. The efficiency of the algorithm is demonstrated on the
atmospheric measurements provided by the Interferometric Monitor for Greenhouse Gases
(IMG)/ADEOS, allowing to obtain the first remote-sensing simultaneous distributions
of ozone and its two precursors, CO and CH4. INDEX TERMS: 0325 Atmospheric Composition

and Structure: Evolution of the atmosphere; 0365 Atmospheric Composition and Structure: Troposphere—

composition and chemistry; 0394 Atmospheric Composition and Structure: Instruments and techniques; 1640

Global Change: Remote sensing; KEYWORDS: atmospheric chemistry, trace gases, remote sensing
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1. Introduction

[2] The Infrared Atmospheric Sounding Interferometer
(IASI) [Phulpin et al., 2002], is a new tropospheric remote
sensor to be carried for a period of 15 years on the Metop-1,
2, and 3 weather satellites deployed as part of the future
EUMETSAT Polar System (EPS) starting from 2005. The
instrument consists of a Fourier transform spectrometer
associated with an imaging system, designed to measure
passively the spectrum of the Earth-atmosphere system in

the thermal infrared (IR) using a nadir geometry. It is a joint
undertaking of the French spatial agency CNES (Centre
National d’Etudes Spatiales) and EUMETSAT, the European
Organisation for the Exploitation of Meteorological Satel-
lites, with CNES managing the instrumental development
part and EUMETSAT operating the instrument in orbit.
Other space-borne instruments using the IR spectral range
to probe the troposphere (e.g., AIRS [Pagano et al., 2001]
on AQUA; MOPITT [Drummond and Mand, 1996] on
TERRA, and TES [Beer et al., 2001] on AURA) should
be flying during the IASI lifetime. The Interferometric
Monitor for Greenhouse Gases (IMG) [Kobayashi et al.,
1999], which operated in 1996–1997 on the Japanese
ADEOS platform (until the failure of ADEOS due to the
destruction of the solar paddle), was a forerunner of these
missions, measuring a valuable set of infrared atmospheric
spectra.
[3] The IASI mission will provide accurate measurements

of the temperature profiles in the troposphere and lower
stratosphere, as well as moisture profiles in the troposphere
in order to improve the quality of numerical weather
forecasts. It will also allow the probing of some of the
chemical components playing a key role in the climate
monitoring, the global change issues, and the atmospheric
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chemistry. A summary of the main instrumental character-
istics is provided in Table 1 (http://smsc.cnes.fr/IASI/
GP_instrument.htm) and the requirements in terms of geo-
physical products and accuracy are detailed in Table 2 [IASI
Sounding Science Working Group (ISSWG), 1998].
[4] The scientific activities undertaken to prepare the IASI

mission are coordinated through the ISSWG activities, under
the auspice of CNES and EUMETSAT. It includes, among
others, research work to improve spectroscopic databases
[Jacquinet-Husson et al., 2004], the development of fast
radiative transfer codes [Matricardi and Saunders, 1999;
Matricardi, 2003] and efficient inversion algorithm for the
target species [Prunet et al., 1998;Hadji-Lazaro et al., 1999;
Lubrano et al., 2000; Turquety et al., 2002; Aires et al.,
2002a; Chédin et al., 2003; Clerbaux et al., 2003], inter-
comparison exercises [Tjemkes et al., 2002; Clerbaux et al.,
2002], airborne and balloon campaigns [Té et al., 2002;
Newman and Taylor, 2002; Taylor et al., 2003], and data
assimilation [Clerbaux et al., 2001; Rabier et al., 2002].
[5] IASI and all the instruments cited previously are

passive remote sensors. One major difficulty of passive
remote sensing comes from the fact that the satellite
measurement is indirect, i.e. the information on the atmo-
spheric state is provided through the analysis of spectral
radiances. Inference of trace gas concentration from radi-
ance measurements requires the development of a retrieval
algorithm adapted to each instrument, which is a continuing
effort for several research teams around the world [e.g.,
Clerbaux et al., 1999; Hadji-Lazaro et al., 1999; Prunet et
al., 2001; Turquety et al., 2002; Luo et al., 2002; Aires et
al., 2002b; Coheur et al., 2003; Deeter et al., 2003]. A
strong constraint for IASI is associated with its near real-
time delivery of data, requiring a very fast inversion
procedure.
[6] This paper describes the Level 2 trace gas retrieval

algorithm currently implemented in the EPS core ground
segment for the operational analysis of carbon monoxide
(CO), ozone (O3), and methane (CH4). After some general
description of the inverse problem (section 2), the inversion
scheme based on a neural network is presented (section 3).
The sensitivity is accessed in terms of vertical resolution and
accuracy, and the performance of the algorithm is evaluated
(section 4). Synthetic IASI data were produced using radi-
ance measurements from the IMG instrument to test the
inversion algorithm (section 5), and conclusions for the
achievable performance of IASI are provided (section 6).

2. Trace Gas Concentration Retrieval

2.1. General Description

[7] The IASI instrument is a nadir-looking remote sens-
ing instrument which uses the Earth surface and its atmo-

sphere as radiation source. While crossing the atmosphere,
the IR radiation emitted is modified by the absorption,
emission, and scattering properties of the atmosphere. The
atmospheric spectrum recorded by the instrument in space is
the result of the radiative interaction of the IR radiation with
the atmosphere and is composed of thousands of absorption/
emission features organized in bands. The relationship
between profile abundance for a target gas and the absorp-
tion lines is a complex non-linear function of the emitting
surface features, the temperature distribution, the atmo-
spheric elements contributing to the radiative budget in
the same spectral range (other gases, clouds, aerosols), and
also of the instrumental characteristics as spectral response
function, spectral resolution, and radiometric noise. Atmo-
spheric state variables such as temperature or trace gas
concentration may be retrieved from the measured IR
upwelling radiances using the so-called inversion algorithm.
[8] Let y be the measurement vector containing the

measured radiances, and x be the concentration of a given
constituent, then the general remote sensing equation can be
written as follows [Rodgers, 2000]:

y ¼ f x; bð Þ þ ���� ð1Þ

where f represents the forward radiative transfer function, b
the other parameters having an impact on the measurement,
and ���� the measurement noise. In the case of a nadir
sounding instrument measuring the IR radiation, the vector
b includes the Earth surface radiative features (emissivity
and temperature), variables describing the state of the
atmosphere (vertical profiles of atmospheric temperature,
water vapor and other atmospheric constituents, clouds,
aerosols, etc.), and some characteristics of the instrument
(spectral response function and resolution). The inverse
problem consists in retrieving x̂, an estimate of the true state
x, from the measurement y, and can be written:

x̂ ¼ R y; b̂
� �

¼ R f x;bð Þ þ ����; b̂
� �

ð2Þ

where b̂ corresponds to an estimate of the non-retrieved
parameters b, and R is the inverse transfer function. The
inversion of geophysical parameters from remotely sensed
observations is well-known to be an ill-posed problem,
which can not be entirely defined by the measurement. A
priori knowledge of the state vector is required in order to

Table 1. IASI Instrumental Characteristics

Characteristics

Spectral range 645–2760 cm�1 (in 3 spectral bands)
Spectral resolution 0.35 to 0.5 cm�1

Instrumental noise 0.2 to 0.35 K (NEDT at 280 K)
Pixel size diameter of 12 km, 4 pixels matrix,

across track scanning
Data rate 1.5 megabits per second
Lifetime 5 years
Power/Mass 200 watts/210 kg

Table 2. Scientific Products That Will Be Measured From the

IASI Missiona

Geophysical Variable Required Accuracy

Temperature profile 1K/1 km troposphere
Sea Surface Temperature <0.5 K
Land surface temperature 1 K
Humidity profile 10%/1–2 km troposphere
Ozone total column 5%
Ozone profileb 10%
CO total column 10%
CH4 total column 10%
N2O total column 10%

aThe accuracy are provided for a 25 km horizontal resolution (averaged
of 4 pixels) and for cloud-free conditions.

bTwo to three pieces of independent information.
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determine the most probable solution, with a probabilistic
Bayesian approach. This a priori information consists of an
a priori state vector xa and its covariance matrix Sa, which
may be provided by a climatology or by model simulations.
The inverse problem can then be rewritten:

x̂ ¼ R y; b̂; xa
� �

ð3Þ

2.2. IASI Trace Gas Retrieval Algorithm

[9] In the framework of the preparation of the IASI
mission, a trace gas inversion algorithm is being developed
to retrieve O3, CH4, and CO concentrations from the IASI
IR measurements, using several additional physical and
geographical parameters. The structure of this algorithm is
summarized by the diagram in Figure 1. It is divided into
three steps: the first step consists in isolating the measure-
ments (apodized IASI radiances, or Level 1C products, and
additional geophysical products derived from IASI mea-
surements, or Level 2 products: note that the Level 1A data

correspond to the nonapodized calibrated spectra, and the
Level 1B correspond to the Level 1A data resampled to
nominal interval) which will be used as inputs to the
inversion algorithm, an inversion module based on neural
network (NN) techniques then estimates the trace gas
concentrations using this input data, and an error analysis
module finally provides information on the inversion char-
acteristics as well as an estimate of the error associated with
the inversion results, determined using auxiliary parameters.
[10] The input and output parameters of the inversion

algorithm are detailed in the following paragraphs, and a
description of the development of the inversion and error
analysis modules is provided in the following sections.
2.2.1. Input Parameters
[11] Figure 2 represents an example of a partial IASI-like

spectrum, which was obtained by adapting a spectrum
recorded by the IMG instrument to the IASI characteristics
following the method described in section 5.
[12] It exhibits strong O3, CH4, and CO absorption

features, enabling the global monitoring of these trace

Figure 1. Schematic representation of the IASI trace gas inversion algorithm, providing total and partial
(for O3 only) columns, and the associated error, for O3, CH4, and CO.
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gases. For each retrieved gas, m spectral channels
corresponding to strong absorption features and minimizing
the interferences due to other absorbing species have been
selected [Clerbaux et al., 1998]. They are indicated in
Figure 2, and are provided in Table 3.
[13] The radiances measured by the instrument at

these channels constitute the measurement vector y of
equation (1). All the selected channels are used in the input
vector, the information redundancy resulting in an increased
signal to noise ratio. In order to minimize the unwanted
contributions from the surface emissivity, aerosols, and, to a
lesser extent, clouds (all these parameters being fixed during
the development of the algorithm) a differential signal is
used. The IASI radiances are subtracted from radiances
referenced to a blackbody baseline, calculated using the
Planck’s law with mean emissivity values provided by
Wilber et al. [1999] (these values could be replaced by
IASI Level 2 emissivity data during the operational phase)
and the surface temperature extracted from IASI radiances
[Hadji-Lazaro et al., 2001]. The channel selection and this
pre-processing imply that the inversion algorithm mainly
uses absorption features of the studied species for the
retrieval, even if some information in the wings of absorp-
tion lines may be lost in the process.
[14] In addition to the measurement vector y, the inputs of

the NN module include the skin surface temperature and
the atmospheric temperatures on l selected pressure levels.
These temperatures constitute the vector b̂, corresponding to
an estimate of the most important parameters among the
non-retrieved parameters b. The pressure levels, indicated

in Table 4, have been chosen among the levels operationally
retrieved during the IASI mission (RTIASI pressure levels
[Matricardi and Saunders, 1999]). For O3, a greater number
of levels is required in order to provide information about
the location of the tropopause.
[15] Hence, for each species, an input is composed of m

differential Level 1C radiances (y), and l Level 2 temper-
atures (b̂), with m and l being specific to each constituent.
Some of the other parameters b, not used for the input to the
NN, may have an impact on the retrievals and are used for
the calculation of the error budget (as shown in Figure 1).
They could be added as input parameters in forthcoming
versions of the NN module. It currently includes the
emissivity, the cloud content (derived from 5 AVHRR -
Advanced Very High Resolution Radiometer [Saunders
and Kriebel, 1988] - channels and the IASI imager), the
H2O content, and geographical parameters like the surface
altitude (or surface pressure), the longitude, and the
latitude.
2.2.2. Output Parameters
[16] In order to evaluate the information content for O3,

CH4, and CO, we have undertaken preliminary sensitivity
studies on simulated IASI spectra. The number of indepen-
dent elements in the signal, the degrees of freedom
for signal (DOFS) [Rodgers, 2000], has therefore been
estimated. This study has shown that around 3.5 DOFS
on the O3 vertical distribution, 1.5 DOFS on the CO vertical
distribution, and 1 DOFS on the CH4 vertical distribu-
tion are available from the radiance signal. The vertical
resolution for the retrieval of an O3 concentration profile

Figure 2. Location on a IASI-like spectrum of the channels selected for the retrieval of O3, CH4, and
CO (in dark gray). The channels used for the calculation of the surface temperature are also indicated (in
light gray).
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has been estimated to be 8 km in the free troposphere and
10 km in the lower stratosphere.
[17] For CH4 and CO, the retrieval of a total column

amount gives a good outline of their tropospheric distribu-
tions since their vertical concentration distributions are
characterized by maximum concentration values in the
lower layers of the atmosphere, as shown in Figure 3. For
O3, 90% of the total amount is located in the stratosphere,
and the total column amount is therefore mostly influenced
by its stratospheric concentration. Information on its vertical
distribution is required in order to get access to its tropo-
spheric concentration.
[18] The parameters calculated by the inversion algo-

rithm, summarized in Table 5, are the total column for
each species, as well as several partial columns for
O3, corresponding to integrated concentration amounts
between the surface and (1) 6 km (C6): partial column

almost always located in the troposphere, whatever the
latitude may be; (2) 12 km (C12): good approximation of
the tropospheric column in the mid-latitudes; (3) 16 km
(C16): good approximation of the tropospheric column in
the tropics.
[19] In order to assess the performance that should be

achieved for their retrieval, the variabilities of the columns
have been evaluated by calculating the standard deviations
of their global distributions over one year (represented by
one day per month). This estimation is based on simulated
atmospheric profiles used in the development of the NN
module (see section 3.2 for a description of these profiles).
Over the year, the total column O3 varies by 2 to 5% in
the tropics and by 5 to 10% at mid latitudes. The partial
columns of O3 vary by 10 to 30% depending on the area:
the variability is lower than 10% above clean areas and
larger than 40% above polluted areas and above high
latitude regions for C12 and C16. The temporal variability
associated with the total column CH4 is globally com-
prised between 2 and 5%, and that of the total column CO
between 5 and 20%, depending on the location, with
variabilities larger than 20% for CO above highly polluted
areas. The calculated overall spatio-temporal variability is
equal to 18, 9, and 34% for the total columns O3, CH4,
and CO, respectively, and to 42, 57, and 87% for the C6,
C12, and C16 partial column O3, respectively. The target

Table 3. Radiances Selected for Each Trace Gas

Molecule
Spectral Interval,

cm�1
IASI Channel

Number
Number of

IASI Channels Total

O3 1 1001.50–1003.00 1427–1433 7
2 1005.00–1009.25 1441–1458 18
3 1011.50–1013.75 1467–1476 10
4 1015.25–1017.00 1482–1489 8
5 1018.50–1027.75 1495–1532 38
6 1033.75–1035.00 1556–1561 6
7 1035.75–1037.25 1564–1570 7
8 1037.75–1039.25 1572–1578 7
9 1039.75–1040.75 1580–1584 5
10 1041.75–1042.00 1588–1589 2
11 1043.75–1044.50 1596–1599 4
12 1045.50–1046.25 1603–1606 4
13 1047.50–1048.00 1611–1613 3
14 1049.75–1050.00 1620–1621 2
15 1052.50–1053.50 1631–1635 5
16 1054.25–1055.00 1638–1641 4
17 1056.25–1057.00 1646–1649 4
18 1057.50–1058.50 1651–1655 5
19 1061.00–1061.75 1665–1668 4
20 1063.25–1064.25 1674–1678 5

148
CH4 1 1230.00–1230.25 2341–2342 2

2 1235.75–1236.00 2364–2365 2
3 1241.00 2385 1
4 1245.75 2404 1
5 1246.50 2407 1
6 1247.50–1248.00 2411–2413 3
7 1249.75–1250.00 2420–2421 2
8 1253.25–1253.75 2434–2436 3
9 1263.25–1263.50 2474–2475 2
10 1275.00–1275.25 2521–2522 2
11 1282.75–1283.50 2552–2555 4
12 1302.75–1306.50 2632–2647 16
13 1327.00–1327.50 2729–2731 3
14 1332.00–1332.75 2749–2752 4
15 1341.75–1342.00 2788–2789 2
16 1342.75–1343.00 2792–2793 2
17 1346.50–1347.00 2807–2809 3

53
CO 1 2111.25–2112.00 5866–5869 4

2 2150.25–2150.75 6022–6024 3
3 2154.00–2154.50 6037–6039 3
4 2157.75–2158.75 6052–6056 5
5 2165.00–2166.00 6081–6085 5
6 2168.75–2169.50 6096–6099 4
7 2172.50–2173.25 6111–6114 4
8 2176.25–2176.50 6126–6127 2

30

Table 4. RTIASI Pressure Levels for Which the Temperatures Are

Entered to the NN Modulea

RTIASI Pressure Levels, hPa O3 CH4, CO

0.222227827 �
0.872158587 �
1.3611629 �
3.1094799 �
6.94999981 �
10.3699999 �
14.8100004 �
27.2600002 �
56.730011 �
77.2013168 �
93.2342148 � �
102.050011 �
111.598289 �
132.492386 �
155.428146 � �
180.673065 �
222.940018 � �
253.710022 �
286.600067 �
321.499939 � �
377.053253 �
436.949982 � �
499.539154 � �
543.052979 �
587.638245 � �
610.599976 �
667.708179 � �
727.435579 �
759.155699 �
792.183940 �
826.576006 �
899.686381 � �
978.981728 � �
Total number of levels selected (l � 1) 25 18

aCrosses indicate the (l � 1) pressure levels selected for each trace gas
retrieval.
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accuracy for the trace gas retrievals, required for a good
representation of their spatio-temporal variabilities is set to
5%, 2%, and 10% for total O3, CH4, and CO, respectively,
30% for the C6 partial column O3, and 20% for the C12
and C16 partial columns O3.
[20] In addition to the trace gas concentrations, two

selected radiances are retrieved in order to check the
internal consistency of the algorithm and support the error
diagnostic. Currently, this consistency test is implemented
for O3 only. These radiances correspond to channels at
976.75 cm�1, an atmospheric window, and at 1034.75 cm�1,
in the O3 absorption band, which were excluded from
the input measurement vector.

3. NN Module Development

[21] The inversion algorithm uses neural network tech-
niques, which present several properties required for the
real-time processing of satellite data. These techniques
allow the statistical modeling of complex, non-linear,
transfer functions using a probabilistic Bayesian approach,
are easily adaptable, and very efficient in the operational
phase. Since the late 1980s, several mathematic publica-

tions have demonstrated that standard multilayer feed-
forward NN (also called multi-layer perceptrons) with
one or two hidden layers of Heaviside step function
neurons can be considered as a class of universal approx-
imators: they can approximate any continuous function
uniformly on any compact set (they can estimate values of
these functions at any point, to any desired degree of
accuracy) provided sufficient degrees of freedom (neurons)
are available in the NN [Hornik et al., 1989; Blum and Li,
1991]. In practice, the function modeled by the NN needs
to be differentiable (at least for the NN training) and the
step function neurons are replaced by sigmoid function
neurons (hyperbolic tangent for example) as we will see in
the application presented in this paper. Various studies
have shown that multilayer perceptrons with hidden
sigmoid function neurons allow the solution of non-linear
inverse problems in geophysics [e.g., Thiria et al., 1993;
Hadji-Lazaro et al., 1999; Chevallier et al., 2000;
Richaume et al., 2000; Aires et al., 2001; Müller et al.,
2003; Jimènez et al., 2003]. An intercomparison exercise,
comparing different methods developed to retrieve CO
from IR measurements, has further demonstrated the good
performance of the neural network approach [Clerbaux et
al., 2002].
[22] The NN developed allows the modeling of the

transfer function R which links the inputs, including the
measurements y and the estimators b̂ of some parameters b
(the surface and atmospheric temperatures here, the other
parameters b being fixed during the development), to the
output quantities calculated: the nc trace gas columns ĉ and
the nr test radiances r̂. The inverse problem described by
equation (3) may be rewritten

ĉ; r̂f g ¼ F y; b̂;W
� �

ð4Þ

where the matrix W includes the parameters of the NN
global function F. The size of this matrix depends on the
architecture chosen for the NN, and determines the number
of degrees of freedom available for the solution of the
inverse problem. The parameters of W are adjusted during a
calibration phase, which uses a training database comprising
the a priori knowledge of the atmospheric state to be
retrieved as well as the physics of the problem to be solved
(i.e. the forward model). This information is provided
implicitly through the so-called training phase. The

Figure 3. O3, CH4, and CO concentration profiles for the
US 1976 standard atmosphere [Anderson et al., 1986].

Table 5. NN Module Architecture and Outputs Description for Each Studied Constituent

(m + l) Inputs S1 S2 Outputs Symbol Unit

O3 173 16 16 Total column ĉ(1) = CT Dobson unit (DU)

m = 147 Partial column [surface - 6 km] ĉ(2) = C6 DU

l = 25 + 1 Partial column [surface - 12 km] ĉ(3) = C12 DU

Partial column [surface - 16 km] ĉ(4) = C16 DU

Test radiance 1 (976.75 cm�1) r̂(1) �108 W/(cm2cm�1sr)

Test radiance 2 (1034.75 cm�1) r̂(2) �108 W/(cm2cm�1sr)

CH4 72 8 8 Total column ĉ = CT molecule/cm2

m = 53
l = 18 + 1

CO 49 8 8 Total column ĉ = CT molecule/cm2

m = 30
l = 18 + 1
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hypotheses made on several non-retrieved forward problem
parameters b which are not considered in the input vector
(the spectroscopic parameters and the instrumental char-
acteristics in particular), are also implicitly included in the
retrieval process through this W matrix. A detailed
description of the development steps is provided in the
following paragraphs.

3.1. Neural Network Architecture

[23] The first step to build an efficient neural network is
to find the optimal architecture, which has enough degrees
of freedom to solve the problem. The architecture of a
multilayer feed-forward NN is defined by the number of
layers, the number of neurons on each layer, the topology of
their connections, and the elementary transition functions
associated with each neuron. An efficient architecture is
chosen on the basis of empirical considerations depending
on the complexity of the problem to be solved [Bishop,
1995].
[24] In our case, successive performance testing has

shown that a well-suited architecture is a multilayer
perceptron with two hidden layers, as schematically
represented in Figure 4. The network is composed of an
input layer, comprising m + l neurons (m radiances y
and l temperatures b̂), which reads the inputs of the
algorithm, two hidden layers of S1 and S2 neurons, and
an output layer of nc + nr neurons. The neurons of the
hidden and output layers estimate the outputs using their
attributed elementary transition functions. The connections
between the different layers are weighted and biases can
be added to the neurons inputs. As the transfer function F
to be modeled is strongly non-linear, non-linear sigmoid
transition functions f have been chosen for the neurons of
the hidden layers:

f xð Þ ¼ tanh xð Þ ¼ ex � e�x

ex þ e�x
ð5Þ

The output layer is composed of nc + nr neurons with linear
transition functions g:

g xð Þ ¼ x ð6Þ

[25] For each quantity retrieved, the global transfer func-
tion modeled may be written:

ĉ pð Þ ¼ g
XS2
k¼1

w3
pk :f

XS1
j¼1

w2
kj:f

Xm
i¼1

w1
ji:y ið Þ

 ""

þ
Xmþl

i¼mþ1

w1
ji:b̂ i� mð Þ þ b1j Þ þ b2k

#
þ b3p

#
;

p ¼ 1; :::; nc ð7Þ

and

r̂ p� ncð Þ ¼ g
XS2
k¼1

w3
pk :f

XS1
j¼1

w2
kj:f

Xm
i¼1

w1
ji:y ið Þ

 ""

þ
Xmþl

i¼mþ1

w1
ji:b̂ i� mð Þ þ b1j

!
þ b2k

#
þ b3p

#
;

p ¼ nc þ 1; . . . ; nc þ nr ð8Þ

where wji
1, wkj

2 and wpk3 represent the matrices of connection
weights with i = 1, . . ., (m + l ) the elements of the input
layer, j = 1, . . ., S1 the neurons of the first hidden layer, k =
1, . . ., S2 the neurons of the second hidden layer and p = 1,
. . ., (nc + nr) the neurons of the output layer. The biases
associated with the neurons correspond to the vectors bj

1, bk
2

and bp
3. The weights and biases of the NN are included in

the W matrix.
[26] The NN architectures chosen for the inversion of

CO, O3, and CH4 are detailed in Table 5. The number of
parameters to be adjusted (in the W matrix), corresponding

Figure 4. Schematic representation of a neural network with 2 hidden layers of S1 = S2 = 8 neurons,
providing for one constituent nc columns c, and nr = 2 test radiances r̂(1) and r̂(2) from m radiance
channels (y), l � 1 atmospheric temperatures associated to fixed pressure levels, and the surface
temperature (b̂).
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to the number of degrees of freedom available for the
solution of the inverse problem, is equal to 3158 for O3,
665 for CH4, and 481 for CO.

3.2. Constitution of a Comprehensive Database

[27] NN techniques allow an approximation of the
transfer function F which links the inputs to the outputs
of the problem. This approximation, based on statistical
theory, requires a comprehensive dataset of known exam-
ples, representative of the behavior of the function to be
estimated. This dataset includes the physics of the problem
to be solved, with the forward model, and the a priori
known realistic variation range of the state to be retrieved. A
part of this dataset, called the training set, is used for the
fitting of the NN parameters W (weights and biases),
during the training phase. The examples which are not
included in the training set are divided into two additional
data sets: a validation set, used to check the generalization
capacities of the NN during the training phase, and a test
set, used to evaluate the performance of the inversion.
[28] In order to build a comprehensive and realistic

dataset, IASI spectra have been simulated using three-
dimensional chemistry-transport model (CTM) trace gas
simulations with temperatures extracted from the European
Center for Medium-Range Weather Forecasts (ECMWF)
analysis — defining the state of the atmosphere —, coupled
to a high resolution radiative transfer code.
[29] The atmospheric mixing ratio profiles of O3, CH4

and CO provided by the Model for OZone And Related
chemical Tracers MOZART version 1.0 [Brasseur et al.,
1998; Hauglustaine et al., 1998] have been used for that
purpose. MOZART simulates the evolution of 56 chemical
species with a 20 minutes time step, an horizontal
resolution of 2.8� � 2.8�, and on 25 levels from the
Earth’s surface up to 3 hPa. The model is driven by
dynamical and physical input fields generated by the
NCAR CCM2 general circulation model, updated every
3 hours. Since the MOZART photochemical scheme is
representative of the troposphere, the O3 profiles have
been connected above the tropopause height to the monthly
satellite based 4D ozone climatology from Li and Shine
[1995], interpolated to the MOZART grid, in order to get
full atmospheric profiles. The CH4 profiles have been
connected to a latitudinal dependant satellite based clima-
tology (D. Diebel, personal communication) between 19 km
and 60 km, and to the US 1976 standard atmosphere
[Anderson et al., 1986] above 60 km. The latitudinal
dependant model profiles from Anderson et al. [1986]
have been used to complete the CO profiles above 24 km.
The temperatures from the ECMWF analysis have been
colocated with MOZART grid points, and cloud-free
and aerosol free conditions have been considered, with a
constant mean emissivity estimated from values provided by
Wilber et al. [1999].
[30] Using these atmospheric state data, the IASI spectra

have been simulated using the Line-By-Line Radiative
Transfer Model (LBLRTM) [Clough et al., 1995a, 1995b,
2004] version 5.10 with the HITRAN 1996 spectroscopic
database [Rothman et al., 1998]. The simulated spectra have
then been convoluted with the instrument spectral response
function for IASI Level 1C data [Camy-Peyret et al., 2001].
The instrumental noise has been accounted for by adding a

random noise to the simulated spectra. A more detailed
description of the simulations used for the construction of
the training dataset is provided in Clerbaux et al. [1998].
[31] A dataset representative of a wide range of atmo-

spheric situations (spanning all seasons and locations) has
been constructed, in order to get only one general function F
for all the situations to be processed.
[32] To improve the NN generalization capacity and

avoid a forcing of the results by over-represented cases,
the training, validation, and test sets must be homoge-
neously representative of the different situations that the
algorithm will have to process in operational phase. A
selection of representative examples has been carried out
in the input space, using a principal component analysis to
reduce the dimensionality. The number of examples in-
cluded in the training datasets is at least equal to 10 times
the number of parameters to be determined during the
training (elements of the W matrix).

3.3. NN Training Phase

[33] A supervised learning is used for the training of the
neural network. The training phase consists in fitting the
NN parameters so that the outputs ĉ calculated by the NN
agree with the desired outputs c (real state) for the elements
of the training set. A stochastic gradient descent algorithm
has been used, based on the calculation of a cost function
C(W) which evaluates the quadratic difference between the
desired and the calculated outputs [Bishop, 1995].
[34] The training phase requires a long computation time

because of the minimization process. Conversely, the
operational phase only consists of algebraic computations
(W fixed) and is therefore very fast (about 1/100 second per
retrieval).

4. Characterization of the Retrievals and
Inversion Error Analysis

[35] A comprehensive assessment of the characteristics
and accuracy of the retrievals is required for an optimal use
of the data by the scientific community. It allows the
evaluation of the capabilities of the observing system,
including the instrument and the retrieval algorithm devel-
oped, and to access the level of accuracy achieved for the
trace gas concentration retrieval.

4.1. Sensitivity of the Observing System

[36] The sensitivity of the observing system (IASI instru-
ment and NN inversion algorithm) may be studied by
calculating the averaging kernel A characterizing the sensi-
tivity of the columns retrieved to the trace gas vertical
distribution, defined as

A ¼ @ĉ

@x
ð9Þ

It can be estimated by applying the gain matrix associated
with the input radiances Gy, characterizing the sensitivity of
the retrieval to the input radiances, to the weighting
functions or Jacobians K, characterizing the sensitivity of
the instrument to the observed species:

A ¼ Gy K ð10Þ
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with

Gy ¼
@ĉ

@y
ð11Þ

and

K ¼ @y

@x
ð12Þ

[37] The Jacobians have been calculated using forward
model simulations of the measurements, which requires that
the situation considered be fully known. K is defined as the
partial derivative of the measurement with respect to the
variable observed, so here, as the partial derivative of
the radiances with respect to the trace gas vertical concen-
tration profile. For this study, a method of perturbation was
used, so that

K ’ Dy

Dx
ð13Þ

where Dx is the perturbation applied to the concentration
profile x of the molecule studied. If x is defined on n
vertical levels, then K is a m � n matrix. The rows of K
correspond to the sensitivity of the radiance in a given
channel to the vertical distribution of the trace gas
concentration.
[38] Figure 5 shows, for one selected channel, the

corresponding row of the IASI Jacobians for the three
species, calculated for the example of the US 1976 standard
atmosphere [Anderson et al., 1986] using Dx = 10%. The
magnitude of the sensitivity depends on the intensity of
the radiance recorded at the corresponding channel, but the
shape as a function of altitude is similar for all the selected
channels. The sensitivity reaches a maximum in the free
troposphere, at altitudes between 6 and 10 km, and rapidly

decreases below �2 km. The sensitivity rapidly increases at
high altitudes (above �45 km for O3, and 35 km for CH4

and CO) due to the extremely small concentrations at these
levels. The reduced sensitivity to the lower layers of the
atmosphere (atmospheric boundary layer) is a common
problem to all nadir-viewing IR remote sensors, associated
with the lack of thermal contrast between the surface and
the boundary layer. The sensitivity also decreases at higher
altitudes, due to the decrease in atmospheric pressure
(inducing a decrease of the Lorentz collisional broadening
of the spectral lines). For O3, there is more information
above 25 km than for the other molecules due to its high
stratospheric concentrations (ozone layer).
[39] The gain functions G are defined as the partial

derivatives of the retrievals with respect to the input param-
eters, i.e., in our case, with respect to the input radiances y on
one part,Gy (already defined in (equation (11)), and the input
temperatures b̂ on the other, Gb:

Gb ¼ @ĉ

@b̂
ð14Þ

Gy is a nc � m matrix, where each element Gy
p,i = @ĉp/@yi

corresponds to the contribution of a given input yi to the
retrieval of the output variable ĉp, with i = 1, m and p = 1, nc
(similarly, Gb̂ is a nc � l matrix). They are computed
analytically for each retrieval by differentiation of the NN
global transfer function (equations (7) and (8)).
[40] The averaging kernel A (nc � n matrix) has been

estimated using a combination of the two sensitivity func-
tions K and Gy. The general behavior of the averaging
kernel profile is similar to that of the weighting functions K,
with opposite signs (increased concentration implies
decreased outgoing radiances, but increased columns): for
all the variables retrieved, the sensitivity is maximum in the
free troposphere.

Figure 5. IASI Jacobians for O4, CH4, and CO at three
characteristic radiance channels, calculated for the US 1976
standard atmosphere.

Figure 6. Averaging kernels characterizing the retrieval
of the O3 total (diamonds) and partial [0–6 km] (dots),
[0–12 km] (plus), and [0–16 km] (x-mark) columns
calculated for the standard atmosphere US 1976. The
dashed lines correspond to the ideal sensitivity profiles.

D21301 TURQUETY ET AL.: IASI TRACE GAS RETRIEVAL ALGORITHM

9 of 19

D21301



[41] The kernels obtained for the O3 columns retrieved
are plotted in Figure 6, together with the corresponding
‘ideal’ sensitivity profiles C. This figure highlights the
strong sensitivity of the columns to the free troposphere,
with a peak sensitivity around 6 to 8 km. For the total
column O3, a secondary peak is obtained at altitudes near
15–20 km, and the sensitivity remains large throughout the
stratosphere (up to 35–40 km), where the O3 concentration
is large enough to compensate the relatively small sensitiv-
ity of the instrument. The lower sensitivity to the boundary
layer will induce an uncertainty on the O3 retrievals, which
should be taken into account while using the data. For the
restitution of the O3 total column, the lower sensitivity to
the upper stratosphere may also induce uncertainties. This
study also shows that the partial columns O3 are not fully
independent from the adjacent atmospheric layers, the
contribution of the atmospheric layers located above the
limit altitude should be considered.
[42] For CO and CH4, the kernels are single peaked

functions with maximum sensitivities around 6 to 10 km
for CO, and around 8 to 10 km for CH4. The main source of
uncertainty also comes from the lack of sensitivity to the
boundary layer.
[43] In inverse problem solution, the sensitivity of the

observing system and the a priori information used are
provided with each retrieved product in order to allow for
them in the comparison of the inversion results with other
data or with model simulations [Rodgers and Connor,
2003]. Indeed, an observing system may be simulated by
performing a forward radiative transfer simulation and by
then applying the inversion process, or, more simply, by
using the linear characterization formalized by Rodgers
[2000] as follows:

ĉ ¼ C x̂ ¼ Cxa þ A x� xað Þ þGy���

¼ C� Að Þxa þ AxþGy��� ð15Þ

where C represents an integration operator allowing the
calculation of integrated columns from vertical distributions
(c = C.x). A is strongly dependent on the situation
considered, and must be evaluated for each retrieval. Its
evaluation requires forward model simulations (for calcula-
tion of K), for which the vertical distributions x must be
known (or estimated). In the particular case of the NN
inversion method, the retrieval is based on thousands of
representative atmospheric situations (training database),
and an a priori state in the statistical sense of the optimal
estimation can not be provided. The classical linear
characterization is therefore difficult to apply to the NN
scheme, but a direct comparison with other data can be
undertaken with good confidence provided that the training
set be statistically representative of the real state. The linear
representation may however be used for the error diagnosis
(see paragraph 4.3).

4.2. Statistical Performance of the Retrieval

[44] A good insight into the performance that can rea-
sonably be expected is given by a statistical approach: the
global inversion error is estimated on test data sets com-
posed of fully known examples. The inversion algorithm is
calibrated during the training phase, which implies that the
errors associated with the observing system are strongly
dependent on the quality of the learning set used. Both the

statistical representation of the examples chosen, and the
quality of these examples will have an impact on the
retrievals. Here, perfect forward model simulations are
assumed (i.e. no uncertainty due to the synthetic atmos-
pheres used — including the MOZART CTM, the clima-
tologies and the standard profiles —, nor due to the
spectroscopic parameters and radiative transfer model),
and only the homogeneity of the training set is investigated.
Therefore, test data sets with a statistical representation of
the different situations similar to that of the training set are
used.
[45] For each example of the data set, the retrieved

variables (ĉ) have been compared to the corresponding
desired values (real state c). Figure 7 represents the scatter-
plots of the test dataset for the different quantities retrieved.
Globally the agreement is good, the clouds of points are
well distributed around the first bisector, with no apparent
bias, except for the extremely low column amount, which
the NN seems to overestimate, and the very large ones,
which seem, on the contrary, to be underestimated. The
scatterplots also highlight that these ‘‘extreme’’ values
(small or large) are less represented in the data sets (fewer
examples).
[46] Our studies show that the retrievals will be biased

for situations under-represented in the learning set, which
is the case for the highest/lowest concentrations of the
trace gases considered, as previously highlighted, but also
for the very high/low surface temperatures. A large inver-
sion error on the retrievals is also expected for input data
that are not consistent with what the network has learned.
However, the performance is very satisfactory considering
the variability of the different column amounts to be
retrieved. Globally, the RMS error between retrieved and
desired values is estimated to less than 30% (3 DU) for the
C6 column O3, 15% (4 DU) for the C12 column O3, 9%
(4 DU) for the C16 column O3, 1.5% (5 DU) for the total
column O3, 2% (5 � 1017 molecules/cm2) for the total
column CH4, and 6% (9 � 1016 molecules/cm2) for the
total column CO.

4.3. Error Analysis

[47] Using equation (15) (simulated observation in a
linear formalism), the difference between the retrieval and
the true state is given by

ĉ� c ¼ A� Cð Þ x� xað Þ þG��� ð16Þ

This equation highlights the two principal sources of error
that should be considered.
[48] The first term of the right-hand side of this equation

corresponds to the error associated with the non-ideal
sensitivity of the observing system to the real state, and is
called the smoothing error. It depends on both the deviation
between averaging kernel A and ideal sensitivity profile C,
and the variability of the trace gas observed [Rodgers,
2000]. Its covariance matrix is a nc � nc matrix defined
as follows:

Ss ¼ A� Cð Þ:Sa: A� Cð ÞT ð17Þ

with Sa the covariance matrix of the vertical concentration
profile.
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Figure 7. Scatterplots between the concentration retrieved by the NN (retrieval) and obtained from the
model (target) in DU for O3 and in molecules.cm�2 for CH4 and CO, to assess the performance of the
retrieval for the test data set, composed of model simulations (17000 examples for O3, 18760 for CH4,
and 7392 for CO).
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[49] In the case of a NN inversion method, the unique a
priori information in the sense of the Rodgers linear
characterization does not exist. To constrain an ill-posed
inverse problem, the training database includes thousands of
representative atmospheric situations based on our a priori
knowledge. If we use the covariance of this dataset as
covariance matrix Sa, we do not take into account the
statistical character of the NN retrieval: the training data
are not only used to mitigate the lack of information
contained in the measurements (where the sensitivity is
lower), but also to calibrate the global inversion transfer
function. Furthermore, the NN is able to consider a reduced
domain of possible solutions. Therefore, the smoothing
error determined using the training set covariance matrix
overestimates the associated uncertainty and gives an erro-
neous estimation of the NN capabilities. It can however
provide information on the relative importance of the purely
statistical contribution. For the standard atmosphere, the
estimated smoothing error (corresponding to an upper limit
value) is equal to 36% for the C6 column O3, 15% for the
C12 column O3, 8% for the C16 column O3, 2% the total
column O3, 3% for the total column CH4, and 8% for the
total column CO.
[50] The second term on the right-hand side of

equation (16) corresponds to the impact on the retrieval of
the sensitivity of the algorithm to uncertainties on the input
parameters. The resulting inversion errors may be deduced
by applying the gain functions Gy and Gb, characterizing
the sensitivity of the inversion algorithm, to the measure-
ment errors on the input radiances ���� (radiometric noise) and
on the input temperatures ����b, respectively:

en ¼ Gy:���� ; Sn ¼ Gy:S���:Gy
T ð18Þ

eb ¼ Gb:����b ; Sb ¼ Gb:S����b :Gb
T ð19Þ

where S���� is the covariance matrix of ����, and S����b is the
covariance matrix of the error associated with the retrieval

of the surface temperatures and atmospheric temperature
profiles. For IASI, the expected radiometric noise — which
includes all noise contributions (detectors, amplifiers, A/D
converters, processing) and all errors sources which do not
result in a bias (e.g., errors due to field-of-view motion,
fluctuations of wavelength calibration, knowledge of the
spectral response function, fluctuations of the radiometric
calibration, http://smsc.cnes.fr/IASI/GP_instrument.htm) —
and temperature error covariance matrix (P. Prunet, personal
communication) are represented in Figure 8.
[51] Their estimated contribution to the global inversion

error is summarized in Table 6. The largest impact comes
from uncertainty on the temperature profile, while the errors
associated with noise on the input radiances and uncertainty
on the surface temperature are relatively small. These results
are largely explained by the magnitude of the input uncer-
tainties, but also by the sensitivity of the inversion algo-
rithm, and thus by the variability of the retrieved quantity.
Compensations between the various contributions may also
occur, we have therefore chosen to evaluate the global error
using the quadratic sum of the different contributions.

Figure 8. Expected radiometric instrumental noise for IASI, for a reference temperature of 280 K (left),
and temperature error covariance matrix (right). For the highest pressure levels, the temperature error
becomes relatively large, with values up to 10 to 25 K2 above 2 hPa.

Table 6. Inversion Error Associated With Errors on the Input

Radiances (en), Temperature Profile (eb=T), and Surface Tempera-

ture (eb=Ts
), Evaluated on a Test Data Set (17,000 Simulations for

O3, 18,760 Simulations for CH4, and 7392 Simulations for CO)a

s(en), % s(eb=T), % s(eb=Ts
), % s(einputs), %

ĉO3
(1) (C6) 5.3 6.3 0.4 4.7

ĉO3
(2) (C12) 7.5 8.6 0.5 6.4

ĉO3
(3) (C16) 8.2 9.4 0.5 7.2

ĉO3
(4) (CT) 1.5 2.4 0.2 1.7

ĉCH4
(CT) 0.3 0.6 0.01 0.4

ĉCO(CT) 3 3.6 1.7 2.9

aFor each retrieved variable, the standard deviation of the calculated
errors are indicated in percent, as well as that of the total resulting

uncertainty einputs =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2n þ e2b¼T þ e2b¼Ts

q
.
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[52] Since Gy and Gb are determined analytically, the
covariance matrices Sn and Sb can be evaluated for
each retrieval, provided S��� and S���b are known or can be
estimated.

4.4. Internal Consistency Checks

[53] The previous paragraphs were focused on the
error estimation for the trace gas retrieval. The same
considerations can be applied to the retrieval of the two
radiances r̂ retrieved in addition to the trace gas columns ĉ
(equation (3)). For r̂, low accuracy was found for situations
with a small representation in the training set, and low
precision was found for low signal to noise ratio measure-
ments or poor quality input temperatures (large uncertain-
ties). In practice, the algorithm may come across situations
that are not consistent with what the network has learned.
This will be the case, in particular, if the error on the surface
emissivities is too important, if the surface emissivities are
too far from the mean value used for the simulations of the
training set, or for bad quality measurements (with calibra-
tion problems for instance). When different instruments are
used for radiance measurements and temperature estimates,
inconsistencies may also occur. The comparison of the
retrieved and measured values for these test radiances
provides an inversion error of these variables which may
be used to highlight (and if required, eventually filter) less
reliable or non-reliable retrievals. It should be kept in mind,

however, that the error of the output radiances is not always
directly correlated to that of the trace gas columns.

5. Application of the Trace Gas Retrieval
Algorithm to the Analysis of the IMG//ADEOS
Measurements

[54] Although simulated observations are essential to the
development of the inversion method and to the character-
ization of the retrievals, the algorithm should be tested on
real data in order to evaluate the validity of the different
approximations made, by the use of CTM simulations in
particular.
[55] For this purpose, the infrared high-resolution spectra

recorded by the Interferometric Monitor for Greenhouse
Gases (IMG) on board ADEOS between August 1996 and
June 1997 provide very valuable test data. IMG/ADEOS is
indeed a precursor of IASI, which used similar observations
techniques (nadir-looking Fourier transform spectrometer),
optimized for the monitoring of trace gases. It therefore had
a slightly wider spectral range (600 to 3030 cm�1) and an
higher spectral resolution (lower or approximately equal to
0.12 cm�1).
[56] In order to enable the application of the IASI trace

gas retrieval algorithm to the IMG data, the IMG spectra
have been converted into IASI-like spectra by convolution
with the IASI instrument spectral response function [Camy-
Peyret et al., 2001]. The temperatures associated with the
IMG measurements were not available, and had to be
estimated. The surface temperatures have been derived
directly from the spectra, and the collocated ECMWF
temperature profiles have been used. The uncertainties
associated with the different input parameters were not
known so that a complete error analysis could not be
undertaken.
[57] The retrieved test radiances have been used to filter

the data that could not be correctly processed by the
algorithm, which comprises the low quality measurements
(low signal/noise) and the situation that were not correctly
represented in the training data set, corresponding, in
particular, to extreme surface emissivities and/or surface
temperatures, including clouds, deserts, shrub land and/or
snow/ice covered areas. An additional filtering has been
applied [Hadji-Lazaro et al., 2001] to totally remove the
cloudy pixels. These quality filters remove around 60–70%
of the cases, with 40–50% of the cases removed by the
cloud filter.
[58] This section presents the global distributions

obtained for the April 1–10, 1997 IMG period (highest
quality measurement period available) filtered and aver-
aged over a constant 5� � 5� grid. The global distributions
of CH4 and CO retrieved from the IMG measurements for
April 1–10, 1997 are shown in Figure 9, including
correlative measurements at different sites of the National
Oceanic and Atmospheric Administration (NOAA) Net-
work for the Detection of Stratospheric Change (NDSC),
providing a preliminary validation. The distributions of
total and partial column O3 are shown in Figure 10. A
direct comparison of the IMG distributions with the
available independent measurements is undertaken, which
provides a first idea of the performance that can be
expected.

Figure 9. Global distributions of IMG CH4 and CO total
columns for the April 1–10, 1997 IMG period. The data are
averaged over the time period and a 5� � 5� grid. The
corresponding available NDSC measurements are repre-
sented by colored circles on each map.
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[59] As already mentioned, the sensitivity of the differ-
ent instruments should be considered in order to make
accurate comparisons [Rodgers and Connor, 2003]. Work
is currently in progress to supplement this direct validation
with a validation taking into account the different character-
istics of the observing systems (instrumental and retrieval
characteristics).

5.1. Total Column CH4

[60] The largest concentrations of CH4 (Figure 9) are
observed in the Northern Hemisphere and in the mid-
latitudes of the Southern Hemisphere. Its global distribution
is representative of the major source regions. However, the
precise emission areas are difficult to locate due to its long
lifetime, of the order of 8 years [Intergovernmental Panel
on Climate Change (IPCC), 2001], which allows a transport
and mixing on hemispheric to global scales.
[61] The total columns measured by ground-based instru-

ments (solar tracking Fourier transform spectrometers) at
different sites of the NDSC network have been used (http://
www.ndsc.ncep.noaa.gov). The precision of these measure-
ments is estimated to 2%. The different sites which provided
measurements during the period studied are summarized in
Table 7, and the corresponding total columns are repre-
sented in Figure 9, together with the IMG distribution. In
order to increase the number of coincident points, NDSC
data were averaged over each measurement station and the
ten days period considered. However, only stations located
at the high latitude of the Northern Hemisphere provided

measurements. A good agreement is reached at Ny Ålesund
and Eureka but IMG seems to underestimate the column at
Fairbanks.
[62] A quantitative comparison of the collocated measure-

ments is limited since the only station for which collocated
IMG measurements are available (within a 2.5� � 2.5� area)
is Fairbanks. At this station, the bias between the two
measurements is equal to 5.6%, which is large compared
to the small variability of CH4. Further validation is needed
in order to conclude on the quality of the retrievals. The
good spatio-temporal coverage that will be achieved during
the IASI mission will facilitate such comparison.

5.2. Total Column CO

[63] The distribution of CO (Figure 9) is more correlated
to the emission areas than that of CH4. The highest columns
are retrieved above the polluted industrialized areas of the

Figure 10. Global distributions of IMG O3 total and partial columns for the April 1–10, 1997 IMG
period, filtered and averaged over a 5� � 5� grid and the time period.

Table 7. NDSC Stations Which Provided Measurements During

April 1–10, 1997a

Station Latitude Longitude Measurement

Lauder �45.05� 169.68� CO
Wollongong �34.45� 150.88� CO
Kitt Peak 31.90� �111.50� CO
St Petersbourg 59.88� 29.83� CO
Fairbanks 64.82� �147.87� CH4, CO
Ny-Ålesund 78.92� 11.93� CH4

Eureka 80.05� �86.42� CH4

aThe molecule measured is indicated for each station.
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Northern Hemisphere (North America, Europe and Eastern
Asia) and the regions of strong biomass-burning (e.g.,
Central Africa and South-East Asia). The lowest values
are observed in the Southern Hemisphere, where the source
regions are less important. The lifetime of CO, is a lot lower
than that of CH4, less than 2 months [IPCC, 2001], but
nevertheless allows a transport downwind the polluted
areas. CO plumes can be observed above the Northern
Pacific and the Northern and tropical Atlantic oceans.
[64] As for CH4, the NDSC data have been used to

validate the retrieved distribution. The total columns,
averaged over the period considered, are represented in
the global distributions of Figure 9, and a comparison of
the data collocated within a 2.5� � 2.5� area is shown in
Figure 11. The accuracy associated with the NDSC CO
measurements is estimated to 4%.
[65] The agreement between the NDSC measurements

and the retrieved IMG columns is good, with a mean bias
lower than 8%. Note that the stations of Lauder and St
Petersburg do not present well collocated IMG measure-
ments. Here again, the validation is highly limited by the
lack of comparison data. A more accurate validation will be
undertaken during the IASI mission.

5.3. Total Column O3

[66] The largest total columns of O3 (Figure 10) are
observed at high latitudes, especially in the Northern
Hemisphere and the lowest ones in the tropics. This
distribution is mainly controlled by the dynamics of the
stratosphere (ascendance in the tropics and the summer
hemisphere, subsidence at high latitudes, especially in the
winter hemisphere), where the lifetime of O3 can reach up to
several months. Low O3 columns are retrieved around the
North Pole, due to the massive photochemical destruction of

polar stratospheric O3 in spring. The large total columns
obtained above the polluted areas of the Northern Hemi-
sphere are attributed to O3 peaks in the troposphere.
[67] The availability of simultaneous measurements from

the Total Ozone Mapping Spectrometer (TOMS) [Heath et
al., 1975], present on board ADEOS together with IMG,
allowed a representative validation of the total column
retrievals. The TOMS Level 2 data with reflectivities lower
than 20% (corresponding to clear-sky conditions) and
corrected for aerosol interference and sea-glint errors using
the Pseudo-Version 7.5 TOMS algorithm (provided by J.-F.
Lamarque, by courtesy of the NASA Ozone Processing
Team), have been used for the comparison. The accuracy of
the TOMS total columns has been estimated at 3% by
comparison to ground-based measurements [Krueger and
Jaross, 1999], and it is evaluated at 6% for reflectivities
between 10 and 20% [Lamarque et al., 2002].
[68] A discussion of the algorithm is provided in Turquety

et al. [2002] for a version of the algorithm restricted to
the total column O3 retrieval. Figure 12 presents the
comparison for the current version of the operational
algorithm, providing the total column as well as 3 partial
columns of O3, for data collocated at ±0.5� in longitude and
latitude and measured within a ±2 seconds time interval.
[69] The agreement between the two distributions is very

good, with a correlation coefficient (R) better than 0.9 and a
root-mean-square (RMS) difference lower than 8%. A bias
is however clearly identified with a tendency of IMG to
overestimate the total column O3 with respect to TOMS.

5.4. Partial Columns O3

[70] The interpretation of the distributions of the partial
columns of O3 (Figure 10) is not straightforward since
both tropospheric and stratospheric contributions must be
considered, depending on the altitude of the tropopause.
The thermal tropopause height can be deduced from the
temperature profiles, which will be operationally provided
during the IASI mission. It is located at altitudes near 16 km

Figure 11. Comparison of the CO total columns retrieved
from IMG/ADEOS data (gray diamonds) and the columns
provided by the NDSC (black crosses) for April 1–10,
1997, at the different stations providing measurements
collocated to the IMG data. The errorbars correspond to the
standard deviation of the available data for the period
studied, within a 2.5� � 2.5� area around the measurement
station for the IMG retrievals.

Figure 12. Comparison of the total columns retrieved
from IMG/ADEOS data to the total columns provided by
TOMS/ADEOS for April 1–10, 1997.
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in the tropics, 8–12 km at mid-latitudes, and 6–10 km at
higher latitudes. The column of O3 between the surface and
6 km can therefore be considered to be representative of
tropospheric O3 amounts (lower troposphere at mid- and
tropical latitudes), but the columns surface - 12 km and
surface - 16 km must be studied as a function of the altitude
of the tropopause.
[71] The profiles measured by ozonesondes at the different

stations of the World Meteorological Organization (WMO)
allowed the comparison of the IMG partial columns O3

retrievals with high quality independent observations. The
uncertainty associated with the soundings varies between
5 and 10% [Logan, 1999]. The data provided by the World
Ozone and Ultraviolet Data Center (WOUDC) have been
used, at the different stations providing observations collo-
cated to the IMG measurements within ±2.5� in longitude
and latitude, indicated in Table 8. Here again, the data
have been averaged over the 10 days considered in order
to increase the number of comparison points. Figure 13
represents the comparison between the IMG retrievals and
the collocated integrated ozonesonde measurements for
April 1–10, 1997, for each measurement station studied. It
should here be pointed out that the comparison is not
statistically representative due to the very limited number

of simultaneous collocated observations (less than 4 obser-
vations compared for each station on average).
[72] The two datasets are globally in good agreement,

with IMG retrievals within the variation range of the
ozonesonde measurements. However, the comparison high-
lights a clear tendency of the retrievals to underestimate the
columns with respect to the sonde data, particularly for
the [surface – 6 km] partial column and at the stations
located in the mid-latitudes of the Northern Hemisphere.
This underestimation is mainly explained by the lack of
sensitivity of the IMG instrument to the first layers of the
atmosphere, which has a particularly large impact in the
polluted areas, where the O3 concentrations in the boundary
layer are high. The fact that global model data are used for
the training phase of the NN accentuates this underestima-
tion since the model grid, equal to 2.8� � 2.8�, is too large
to fully represent the high trace gas concentrations detected
by the sondes. In the next version of the algorithm, the
training dataset will be enlarged to include regional model
simulations and ozonesonde data in order to minimize this
effect.

6. Summary and Conclusions

[73] We have developed a fast, neural network based
algorithm for the near real time retrieval of ozone and its
precursors, CH4 and CO, from the IASI IR radiance
measurements. Neural networks are well adapted to the
operational processing of satellite data since, in addition to
being the fastest inversion method currently available, they
are adaptable techniques which can easily integrate new
variables or new conditions. A neural algorithm was used to
model the global, non-linear, transfer function linking the
IASI Level 1 radiances and Level 2 temperatures to
the trace gas concentrations. The retrieved products are
the total columns of O3, CH4, and CO, partial columns of
O3, integrated between the surface and altitudes of 6, 12,
and 16 km to provide information on the O3 vertical
distribution and two test radiances, used to check the
internal consistency of the retrievals. The transfer function
has been calibrated using a set of selected modeled trace gas
profiles (from the MOZART CTM and connected to clima-
tologies and/or standard profiles above the tropopause)
coupled to the LBLRTM high resolution line-by-line radi-
ative transfer code, with the ECMWF surface and atmo-
spheric temperatures. The input selection (radiances and
temperatures) and the trace gas retrieval require less than
0.007 second (on a regular PC).
[74] The statistical inversion error has been evaluated to

be about 28%, 15%, and 9% for the O3 partial columns
between the surface and 6, 12, and 16 km, respectively,
1.5% for the O3 total column, 2% for the CH4 total column,
and 5% for the CO total column, which exceed the IASI
Science Plan requirements [ISSWG, 1998] and is more
adequate in terms of chemical variability of each gas
[Clerbaux et al., 2003]. A parallel module has been devel-
oped for the evaluation of the uncertainty associated to each
retrieval, using the classical error analysis formalism
[Rodgers, 2000]. The error analysis has shown that
the largest inversion error is due to the sensitivity of the
observing system itself (instrument and algorithm). The
uncertainties on the input parameters will also have an

Table 8. WMO Ozonesonde Stations Which Provided Measure-

ments Collocated to the IMG/ADEOS Measurements During

April 1–10, 1997

WMO Code Station Latitude Longitude

323 Neumayer �70.65� �8.26�
101 Syoma �69.39� 58�
233 Marambio �64.233� �56.717�
29 MacQuarie Isl. �54.5� 158.967�
256 Lauder �45.044� 169.684�
254 Laverton �37.867� 144.75�
441 Easter Isl. �27.17� �109.42�
438 Suva �18.13� 178.4�
432 Papeete (Tahiti) �18� �149�
191 Samoa �14.23� �170.56�
175 Nairobi �1.267� 36.8�
205 Thivanorum 8.483� 76.95�
190 Naha 26.2� 127.683�
10 New Dehli 28.65� 77.237�
7 Kagoshima 31.55� 130.55�
14 Tateno 36.05� 140.1�
107 Wallops Isl. 37.933� �75.483�
348 Ankara 39.95� 32.883�
67 Boulder 40.03� �105.25�
12 Sapporo 43.05� 141.333�
156 Payerne 46.49� 6.57�
99 Hohenpeissenberg 47.08� 11.02�
242 Prague 50.02� 14.45�
53 Uccle 50.8� 4.35�
318 Valentia Observatory 51.93� �10.25�
316 DeBilt 52.10� 5.18�
174 Lindenberg 52.21� 14.12�
221 Legionowo 52.4� 20.967�
76 Goose Bay 53.32� �60.3�
21 Edmonton (Stony Pl.) 53.55� �114.1�
77 Churchill 58.75� �94.07�
43 Lerwick 60.13� �1.18�
404 Jokioinen 60.8� 23.5�
262 Sodankyla 67.39� 26.65�
24 Resolute 74.72� �94.98�
89 Ny-Ålesund 78.933� 11.883�
315 Eureka 80.05� �86.42�
18 Alert 82.5� �62.3�
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important impact, which can be accurately estimated using
the error analysis module.
[75] A first version of this algorithm is implemented at

EUMETSAT for an integration to the ground segment of
the EUMETSAT Polar System (EPS). The algorithm
(coded in Fortran) is available upon request through the
team web site (http://www.aero.jussieu.fr/themes/PCT/
NNIASITraceGases/index.html). The NN parameters will
be regularly updated to account for upgraded versions of
the spectroscopic database, of the atmospheric chemistry

model, and of radiative transfer code. An improved ver-
sion of the algorithm is under development to include
several additional parameters (surface emissivity, topogra-
phy) and enlarge the training data sets by including
ozonesonde profiles for ozone, and regional model simu-
lations and artificial extreme situations for the three trace
gases. The possibility of directly retrieving a tropospheric
column of ozone is also explored, but the complication of
a spatially and temporally varying tropopause height has
to be taken into account. The NN algorithm will be

Figure 13. Comparison of the O3 columns retrieved from IMG/ADEOS data (gray diamonds) and the
columns integrated from ozonesonde data (black crosses) for April 1–10, 1997, at the different WMO
stations providing measurements collocated to the IMG data. The errorbars correspond to the standard
deviation of the available data for the period studied and on a 2.5� � 2.5� area around the measurement
station (for IMG retrievals).
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confronted with the different O3 concentration inversion
methods developped in the framework of the IASI
mission, following the preliminary intercomparison under-
taken for the retrieval of the total column of CO by
Clerbaux et al. [2002].
[76] A first validation exercise has been undertaken

using the data provided by the IMG/ADEOS remote
sensor, allowing the restitution of global distributions of
O3, CH4 and CO. Although IMG/ADEOS provides an
important tool for testing the developments, a complete
validation could not be undertaken due to the lack of
available independent measurements and to the short
periods of time considered (which do not allow a com-
parison of the temporal variability represented in the data).
However, this preliminary study has shown that a good
performance can be expected. During the IASI mission, a
very good spatio-temporal coverage will be achieved,
allowing a full validation of the trace gas observation
system (of the ability of the instrument to capture the
temporal variation in particular).
[77] Clerbaux et al. [2001] have used data assimilation

techniques to compare the model surface CO constrained by
the IMG total columns with the surface measurements
provided by the NOAA/CMDL (Climate Monitoring and
Diagnostic Laboratory) [Novelli et al., 1992], showing that
the IMG CO allow a better agreement between the model
and the CMDL data. A systematic assimilation tool is
currently being developed at Service d’Aéronomie for a
coupled integration of O3, CO, and CH4 during the IASI
mission, in order to provide high quality 3D Level 3
distributions and to facilitate the validation and interpreta-
tion of the retrieved columns.
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