THE GREATEST COMMON DIVISOR OF LINEAR RECURRENCES

We survey the existing theory on the greatest common divisor gcd(u n , v n ) of two linear recurrence sequences (u n ) n and (v n ) n , with focus on recent development in the case where one of the two sequences is polynomial. * Except possibly for those n for which v n = 0, but there is a finite number of them-cf. the Skolem-Mahler-Lech theorem.

The problem

A linear recurrence sequence (or just linear recurrence for short) is a sequence (u n ) n∈N specified by giving values u 0 , . . . , u d-1 and the condition that, for n ≥ d,

u n+1 = d ∑ i=1 a i u n+1-i
for fixed a 1 , . . . , a d and a d / = 0; the integer d is taken to be the least one for which a linear relation of this form holds and is called the order of the recurrence. All our recurrences will be assumed for simplicity to have rational integer terms, although the reader should keep in mind that much of what we are going to state holds with little to no change when they are instead defined over the ring of integers of a number field. The characteristic polynomial of the recurrence is P(X) := X d -∑ d i=1 a i X d-i and its discriminant is ∆ u := ∆(P): accordingly, the recurrence is called simple if the distinct roots of P (which are also referred to as the roots of u), say α 1 , . . . , α r ∈ C × , are simple, and non-degenerate if no ratio α i /α j of any two distinct roots of P is a root of unity. Any term of the sequence can be expressed as a generalized power sum

u n = r ∑ i=1 Q i (n)α n i
where the Q i are polynomials over C whose degree is less than the multiplicity of α i . The basic theory of linear recurrences will be assumed throughout, and we shall not develop it here but instead point to a general reference work such as the one of Everest-van der Poorten-Shparlinski-Ward [START_REF] Everest | Recurrence Sequences[END_REF] for further detail.

The problem that we are interested in is as follows. Given are two linear recurrences (u n ) n and (v n ) n ; what can one say about the quantity

g n := gcd(u n , v n )?
This can be thought as measuring the "arithmetical proximity" of u and v, as the G.C.D. puts together, for all non-archimedean places, how much the sequences share 104 E. Tron (termwise) at each place. We will be interested in the distribution of the values of such a sequence, for instance in the counting function G(x, y) := #{n ≤ x : g n ≥ y}; this is slightly more convenient than the version with reversed inequality sign since one expects g n to be often relatively small.

The plan is as follows. In Section 2 we shall see how one can bound large values of g n when u and v are simple, by use of Schmidt's Subspace Theorem, and then interpret those bounds as cases of Vojta's conjecture. In Section 3 we will on the other hand see that if one recurrence is fully non-simple (one root with maximal multiplicity), almost everything concerning large and small values and averages of g n can be determined. In Section 4, we will hint at how to translate the statements when studying other objects, such as elliptic divisibility sequences and meromorphic functions. We shall adopt an expository layout, with a focus on results over proofs.

We shall suppose, in each section, that the recurrence u (or the recurrences u and v) is fixed once and for all, so that all Vinogradov symbols depend on u in addition to other parameters: hence, read O u , o u , 2 u , C u (or O u,v etc.) for O, o, 2, C respectively, which is the same as saying O d,a 1 ,...,a d etc. The same is understood to hold for the objects that are meant to stand in place of linear recurrences in Sections 2 and 4.

The case with both recurrences non-degenerate

Throughout this section, we assume that the recurrences u and v are simple, and that their roots generate together a torsion-free multiplicative group (in particular, u and v are non-degenerate). This assumption is convenient in that it simplifies the statements of the theorems in the next sub-section, and does not entail a loss of generality [13, Sect. 1].

The Subspace Theorem and S-units

We first, and mostly, examine large values of g n . For instance, what can one say on the cases when it is as large as possible, that is equal to min(|u n |, |v n |)? The answer is given by the classical Hadamard Quotient Theorem. THEOREM 1 (Pourchet [60], van der Poorten [START_REF] Van Der | Solution de la conjecture de Pisot sur le quotient de Hadamard de deux fractions rationnelles[END_REF]). Suppose that v n divides u n for all n. * Then (u n /v n ) n is a linear recurrence.

We may also rephrase the conclusion by saying that v has to divide u in the ring of linear recurrences.

Spectacular progress on the problem came next from exploiting the Subspace Theorem of Schmidt (as generalized by Schlickewei, Evertse, . . . ) in an ingenious way; for the theorem itself the reader may see for instance Schmidt [START_REF] Schmidt | Diophantine Approximation[END_REF], or Bilu [START_REF] Bilu | The Many Faces of the Subspace Theorem (after Adamczewski, Bugeaud[END_REF] for applications. The generalization that is used most often in applications involves all places of a number field and is due to Schlickewei. THEOREM 2. Suppose that K is a number field and S a finite set of places containing the Archimedean ones, n ≥ 1 an integer. For each ν ∈ S, let L ν,1 , . . . , L ν,n be linearly independent linear forms in n variables defined over K. Then, for every fixed ε > 0, the nonzero solutions of

∏ ν∈S n ∏ i=1 |L ν,i (x)| ν < H(x) -ε , with x ∈ O n K , lie in a finite union of proper subspaces of K n .
First, a powerful improvement to the Hadamard Quotient Theorem was proved by Corvaja-Zannier [START_REF] Corvaja | Finiteness of integral values for the ratio of two linear recurrences[END_REF]. If we only assume that the divisibility occurs for infinitely many n, then the quotient might not be a linear recurrence anymore, but it is almost so. The result is also remarkable for not requiring the so-called "dominant root condition", which had plagued many applications thus far. THEOREM 3 Th. 1]). Suppose that v n divides u n for infinitely many n. Then there is a polynomial P(X) ∈ C[X] such that both sequences (P(n)u n /v n ) n and (v n /P(n)) n are linear recurrences.

In quantitative form, they also prove that if (u n /v n ) n is not a linear recurrence, then u n /v n can be an integer only for o(x) values of n ≤ x. This was made precise by Sanna [START_REF] Sanna | Distribution of integral values for the ratio of two linear recurrences[END_REF], improving on a remark in Corvaja-Zannier [START_REF] Corvaja | Finiteness of integral values for the ratio of two linear recurrences[END_REF]Cor. 2]. THEOREM 4 (Sanna [63,Th. 1.5], Corvaja-Zannier [START_REF] Corvaja | Finiteness of integral values for the ratio of two linear recurrences[END_REF]Sect. 4]). If (u n /v n ) n is not a linear recurrence, then u n /v n can be an integer only for

x $ log log x log x % C
values of n ≤ x, for some explicit positive integer C. This is best possible up to a power of log log x.

The G.C.D. bounds were made quantitatively explicit in a series of works whose heart were more complex applications of the Subspace Theorem. We now consider sequences of the form a n -1 for simplicity. First, if a = c r and b = c s , then the gcd(a n -1, b n -1) is as large as a power of min(a n -1, b n -1) for trivial reasons; we exclude this case by saying that a and b are multiplicatively independent. Apart from this case, the greatest common divisor is always smaller than any fixed power of the smallest of the two sequences. THEOREM 5 Th. 1]). Let a, b ≥ 2 be multiplicatively independent integers. Then for n > n(ε),

gcd(a n -1, b n -1) < exp(εn).
If b is not a power of a, then gcd(a n -1, b n -1) 2 a n/2 for large n. This is close to best possible. Bugeaud-Corvaja-Zannier [8, Rem. 2] observe, after Adleman-Pomerance-Rumely [START_REF] Adleman | On Distinguishing Prime Numbers from Composite Numbers[END_REF]Prop. 10], that there are infinitely many n's that achieve exp(n c/ log log n ) (though they do not make a conjecture for the true maximal order; for instance, could it be exp(n (1+o(1)) log log log n/ log log n )?).

The start of the proof is as follows. For a positive integer i, write

z i (n) := b in -1 a n -1 = c i,n d n
where c i,n , d n are integers, and d n is taken as the denominator of z 1 (n).

Observe that for a fixed integer m we have the approximation

1 a n -1 = a -n 1 1 -a -n = a -n ∞ ∑ r=0 a -rn = m ∑ r=1 1 a rn + O(a -(m+1)n ).
If we multiply this by b in -1 we get

1 1 1 1 1 z i (n) + m ∑ s=1 1 a sn - m ∑ r=1 $ b i a r % n 1 1 1 1 1 = O(b in a -(m+1)n );
the key idea is to see the left-hand side of this as a linear form in the variables z i (n), b in /a rn , a -sn , for various values of i: if it were the case that d n ≤ a (1-ε)n infinitely often, then such forms would be small too often and contradict Theorem 2.

Corvaja-Rudnick-Zannier [START_REF] Corvaja | A Lower Bound for Periods of Matrices[END_REF] prove a matrix generalization of this in the setting of periods of toral automorphisms. If B is a square matrix over Z, we write gcd(B) for the greatest common divisor of the entries of B. THEOREM 6 (Corvaja-Rudnick-Zannier [START_REF] Corvaja | A Lower Bound for Periods of Matrices[END_REF]Th. 2]). Suppose that ε > 0 is fixed and A is a square matrix of rational integers. Under some conditions on the eigenvalues of A, we have gcd(A n -I) < exp(εn)

for all large n.

The Bugeaud-Corvaja-Zannier bound is recovered as a special case of this, for the diagonal matrix A = $ a 0 0 b % .

Fuchs [START_REF] Fuchs | An upper bound for the G.C.D. of two linear recurring sequences[END_REF], building on the work of Bugeaud-Corvaja-Zannier [START_REF] Bugeaud | An upper bound for the G.C.D. of a n -1 and b n -1[END_REF] and Hernández-Luca [START_REF] Hernández | On the largest prime factor of (ab + 1)(ac + 1)(bc + 1)[END_REF], further generalized the theorem as follows.

THEOREM 7 (Fuchs [22,Thms. 1 and 2]). Suppose that u, v have only positive real roots, and that v does not divide u in the ring of linear recurrences. Then there is an explicit constant C < 1 such that for large n

gcd(u n , v n ) < min(|u n |, |v n |) C .
If moreover all the roots of u, v are integer, u n is of the form ba n + c, and a is coprime to all the roots of v, then for sufficiently large n this can be strengthened to

gcd(u n , v n ) < min(|u n |, |v n |) ε .
A further generalization by Levin [START_REF]Greatest common divisors and Vojta's conjecture for blowups of algebraic tori[END_REF] concerns greatest common divisors of terms with distinct indices; we give a simplified version for the sake of exposition. THEOREM 8 (Levin [43,Th. 1.11]). Suppose that u, v are simple linear recurrences such that for each place ν of Q at least one of the roots α of u or v has |α| ν ≥ 1.

If the inequality gcd(u n , v m ) < exp(ε max(m, n))
has infinitely many solutions (m, n), then all but finitely many of those solutions satisfy one of finitely many linear relations

(m, n) = (a i k + b i , c i k + d i ) (1 ≤ i ≤ t)
, where the linear recurrences (u a i n+b i ) n and (v c i n+d i ) n have a nontrivial common factor in the ring of linear recurrences for all i.

Another direction for generalizations starts from the observation that a n is an S-unit for a finite S, so that theorems on terms of linear recurrences really are at their heart theorems concerning sums of S-units. Hence the following: THEOREM 9 (Corvaja-Zannier [14, Th.], Hernández-Luca [START_REF] Hernández | On the largest prime factor of (ab + 1)(ac + 1)(bc + 1)[END_REF]). Let S ⊇ {∞} be a finite set of rational primes and ε > 0 fixed. Then for all but finitely many multiplicatively independent S-units u, v we have

gcd(u -1, v -1) < max(|u|, |v|) ε .
Corvaja-Zannier also give further generalizations of these to gcd(F(u, v), G(u, v)) [START_REF] Corvaja | A Lower Bound for the Height of a Rational Function at S-unit Points[END_REF] and versions in positive characteristic [START_REF] Corvaja | Greatest common divisors of u -1, v -1 in positive characteristic and rational points on curves over finite fields[END_REF].

Further still, one can obtain bounds where u, v are just assumed to be "near" S-units-for instance, of the form F(n)a n . This is the case in the following. THEOREM 10 (Luca [START_REF] Luca | On the Greatest Common Divisor of u -1 and v -1 with u and v Near S-units[END_REF]Cor. 3.3]). Let a, b be positive integers, and F 1 , F 2 , G 1 , G 2 non-zero polynomials with integer coefficients, ε > 0 fixed. Then for all large m, n we have

gcd(F 1 (n)a n + G 1 (n), F 2 (n)b n + G 2 (n)) < exp(εn).
Grieve-Wang [START_REF] Grieve | Greatest common divisors with moving targets and linear recurrence sequences[END_REF] combine the ideas of Levin and Luca to obtain a very general upper bound in the case of non-simple recurrences, by means of the moving form of the Subspace Theorem.

For more applications of the Subspace Theorem to linear recurrences we refer to Fuchs [START_REF] Fuchs | Diophantine problems with linear recurrences via the Subspace Theorem[END_REF] and Corvaja-Zannier [START_REF] Corvaja | Applications of Diophantine Approximation to Integral Points and Transcendence[END_REF].

More over function fields

The problem of small values of gcd(u n , v n ) is more obscure. Indeed, the following conjecture is open (and probably very difficult).

THEOREM 11 (Ailon-Rudnick [2, Conj. A]). If a and b are multiplicatively independent integers, then there are infinitely many n for which

gcd(a n -1, b n -1) = gcd(a -1, b -1).
Evidence for this was given by Silverman [START_REF] Silverman | The Greatest Common Divisor of a n -1 and b n -1 and the Ailon-Rudnick Conjecture[END_REF]. To avoid the obstacle, people have thus been trying to study what happens when a, b belong to other rings. The outcome can turn out to be far more satisfying.

THEOREM 12 (Ailon-Rudnick [2, Th. 1]). If F, G ∈ C[x] are non-constant mul- tiplicatively independent polynomials, then there is a polynomial H ∈ C[X] such that for any n gcd(F n -1, G n -1) divides H.
In particular, deg gcd(

F n -1, G n -1) ≤ C F,G .
The idea of Ailon and Rudnick is very simple but relies crucially on a deep theorem of Ihara-Serre-Tate, which states that an irreducible curve in C × × C × can only contain finitely many points both of whose coordinates are roots of unity, unless it is defined by an equation of the form X m Y nζ = 0 or X m -ζY n = 0 with ζ a root of unity [START_REF] Zannier | Some Problems of Unlikely Intersections in Arithmetic and Geometry[END_REF]Ch. 1.1]. Applying this to the curve {(F(t), G(t)) : t ∈ C} we find that F(z) and G(z) are simultaneously roots of unity for finitely many z ∈ C. Now, for any root t of gcd(F n -1, G n -1), both F(t) and G(t) must simultaneously be roots of unity, so there are only finitely many possible roots t for gcd(F n -1, G n -1). Moreover, since

F n -1 = ∏ n-1 i=1 (F -ζ i n )
and the factors on the right-hand side are pairwise coprime, any Xt can divide at most one of them with multiplicity at most deg F, and the same for G. Hence, we may take

H(X) = ∏(X -t) min(deg F,deg G) . THEOREM 13 (Silverman [70, Th. 4]). If P, Q ∈ F q [x] are non-constant monic, then deg gcd(P n -1, Q n -1) ≥ C P,Q n.
for infinitely many n. † Denis [START_REF] Denis | Facteurs communs et torsion en caractéristique non nulle[END_REF]Th. 1.1] gives lower bounds for the number of integers n for which deg gcd(P n -1, Q n -1) is on the other hand bounded, and studies the analogous problem on Drinfeld modules. Cohen-Sonn generalize Silverman's theorem to the quantity gcd

(Φ m (a n ), Φ m (b n )) with (Φ m ) m the classical cyclotomic polynomials [10, Th. 2.1].
Corvaja-Zannier [START_REF] Corvaja | Greatest common divisors of u -1, v -1 in positive characteristic and rational points on curves over finite fields[END_REF] give more generally estimates on the gcd(u -1, v -1) when u, v belong to a function field of positive characteristic, and derive a bound of Weil type from this.

For more applications, and an extensive development of such concepts in the area of unlikely intersections, see Zannier [START_REF] Zannier | Some Problems of Unlikely Intersections in Arithmetic and Geometry[END_REF]Ch. 2]. We just mention in passing a nice application of these bounds due to Luca-Shparlinski [START_REF] Luca | On the exponent of the group of points on elliptic curves in extension fields[END_REF], who exploit them to show that the groups E(F q n ) (E/F q an ordinary elliptic curve) have a large cyclic factor; and a follow-up by Magagna [START_REF] Magagna | A lower bound for the r-order of a matrix modulo N[END_REF]Th. 5] 7 are ordinary and non-isogenous.

proving gcd(#E 1 (F q n ), #E 2 (F q n )) < exp(εn) if E, E

The geometric approach and Vojta's conjecture

We come back to the results of Section 2 to put them in a different light. The connection between G.C.D. bounds and Vojta's conjecture that we are going to see was first noticed by Silverman [START_REF] Silverman | Generalized greatest common divisors, divisibility sequences, and Vojta's conjecture for blowups[END_REF]. We recall here the statement of the conjecture in a form that suits applications; here we take the ambient variety X as fixed and fix a choice of height functions as well. CONJECTURE 2 (Vojta). Let X/k be a smooth projective variety over a number field k and S a finite set of places of k, K X a canonical divisor, A an ample divisor, D a divisor with normal crossings. Then for any ε > 0 there is a proper Zariski closed subset Z of X and a constant C such that, for all P ∈ X(k) \ Z, it holds that ∑ ν∈S λ D,ν (P) + h K X (P) ≤ εh A (P) +C.

This conjecture is very general and encompasses many open problems in Diophantine geometry. For our needs, the point is that G.C.D. bounds and are essentially equivalent to cases of Vojta's conjecture. We immediately state an instance of this. THEOREM 14 (Silverman [72,Th. 1]). We let |x| 7 S be the prime-to-S part of x, i.e. the largest divisor of x that is not divisible by any prime in S. Let S be a finite set of places, F 1 , . . . , F t ∈ Z[X 1 , . . . , X n ] homogeneous polynomials such that their zero set V is a smooth variety in P n which does not intersect any hyperplane {X i = 0}; let r := n -dimV . Assume Vojta's conjecture for P n blown up along V and fix ε > 0. Then there is a homogeneous G ∈ Z[X 1 , . . . , X n ] and a constant δ > 0 such that for any n + 1-tuple of coprime integers x 0 , . . . ,

x n ∈ Z either G(x 0 , . . . , x n ) = 0 or gcd(F 1 (x 0 , . . . , x n ), . . . , F t (x 0 , . . . , x n )) ≤ max(|x 0 |, . . . , |x n |) ε (|x 0 • • • x n | 7 S ) 1/(r-1+δε) .
If we apply for instance this with n = 2, F 1 = X 1 -X 0 , F 2 = X 2 -X 0 , this theorem says that outside a one-dimensional set we have

gcd(x 1 -x 0 , x 2 -x 0 ) ≤ max(|x 0 |, |x 1 |, |x 2 |) ε (|x 0 x 1 x 2 | 7
S ) 1/(1+δε) . If we specialize further to x 0 = 1 and x 1 , x 2 S-units, this becomes

gcd(x 1 -1, x 2 -1) ≤ max(|x 1 |, |x 2 |) ε
and we recover Theorem 9 (up to the exceptional set, which is however not hard to determine). As for the proof of Theorem 14 itself, it involves Vojta's conjecture with

X = P n , A = {X 0 = 0}, D = -π * K X = -π * ∑ n i=0 {X i = 0} and π the blow-up of X along {F 1 = • • • = F t = 0}.
Instead of explaining the general proof, let us just see where the analogy starts from [72, Sect. To bring heights into play, we note that ν + is the local height function on P 1 (k) with respect to the divisor (0). We would like a similar height-theoretic interpretation for the function min(ν + (•), ν + (•)), but here (0, 0) is not a divisor on (P 1 (k)) 2 . To try and make things work we then blow up the plane at this point, and it turns out that the height with respect to the exceptional divisor on this blow-up is in fact the logarithmic G.C.D. In general, the G.C.D. is to be interpreted as a height function with respect to a closed subscheme, following the definitions laid out by Silverman [START_REF] Silverman | Arithmetic distance functions and height functions in Diophantine geometry[END_REF]. Again, the analogy is rich and complex and we will not illustrate it, but point to the ultimate reference for this-the landmark article by Silverman [START_REF] Silverman | Generalized greatest common divisors, divisibility sequences, and Vojta's conjecture for blowups[END_REF].

This important analogy has thence been used to prove various cases of Vojta's conjecture for blow-ups by mutuating the techniques that successfully apply for G.C.D. problems, namely the Subspace Theorem. Levin [START_REF]Greatest common divisors and Vojta's conjecture for blowups of algebraic tori[END_REF] proves some cases on toric varieties; Wang-Yasufuki [START_REF] Wang | Greatest common divisors of integral points of numerically equivalent divisors[END_REF] on Cohen-Macaulay varieties; Yasufuki [START_REF] Yasufuki | Vojtas conjecture on blowups of P n , greatest common divisors, and the abc conjecture[END_REF] on P n , and links it with the abc conjecture; Yasufuki again [START_REF] Yasufuki | Integral points and Vojta's conjecture on rational surfaces[END_REF] on rational surfaces; Grieve [START_REF] Grieve | Generalized GCD for toric Fano varieties[END_REF] on Fano toric varieties.

The case with one recurrence fully non-simple

It has been realized in recent times [START_REF] González | On numbers n dividing the nth term of a linear recurrence[END_REF] that the case where one of the sequences is instead fully degenerate, and in particular a polynomial sequence, the distribution problem for g n = gcd(P(n), u n ) offers a more approachable toy version of the general problem. For the time being, we shall take one of the sequences to be the identity sequence and the other one to be a simple ‡ linear recurrence, and study g n = gcd(n, u n ); the stronger results will then follow from the fact that here we have complete control over the places that divide one of the two recurrences.

Firstly, the case of u a first-order recurrence is easily settled. For instance, large and small values are immediate to estimate [3, Sect.1], and the observation that gcd(n, p n ) = p v p (n) implies the following asymptotic for the moments. ‡ There is no loss of generality in assuming the simplicity of u

[3, Sect. 1]. THEOREM 15. As x → ∞, ∑ n≤x (log gcd(n, p n )) k = x $ 1 - 1 p % (log p) k ∞ ∑ m=0 m k p m + O ( $ log x log p % k+1 )
.

Moreover, if k ≥ 1, ∑ n≤x gcd(n, p n ) k = x k(1+o p (1)) as x → ∞. §
The expression with u n = a n for composite a is, however, not nearly as nice. At any rate, we shall henceforth assume that the order of the recurrence u is greater than 1.

Large values of gcd(n, u n )

We first look at large values of gcd(n, u n ). Remember that u is always a simple linear recurrence of order at least 2, and that it is fixed once and for all without further mention of it in all Vinogradov symbols.

Studies on this quantity mostly involved the naïve formulation "when does n divide u n "-in our perspective, this is asking for which n's the gcd(n, u n ) equals n, i.e. is as large as it can possibly get. The early works were partial characterizations, usually in terms of a (more or less explicit) recursive tree structure which is however unsuited to quantitative estimates. Credit for this is to be given here to Jarden [START_REF] Jarden | Divisibility of terms by subscripts in Fibonaccis sequence and associate sequence[END_REF], Hoggatt-Bergum [START_REF] Hoggatt | Divisibility and Congruence Relations[END_REF], André-Jeannin [START_REF]Divisibility of generalized Fibonacci and Lucas numbers by their subscripts[END_REF], Somer [START_REF]Divisibility of terms in Lucas sequences by their subscripts[END_REF], Smyth [START_REF] Smyth | The terms in Lucas sequences divisible by their indices[END_REF], and Győry-Smyth [START_REF] Gy | The divisibility of a nb n by powers of n[END_REF].

The first major work was that of Alba González-Luca-Pomerance-Shparlinski [START_REF] González | On numbers n dividing the nth term of a linear recurrence[END_REF], where they obtained good bounds for various cases according to how nice the recurrence is.

THEOREM 16 (Alba González-Luca-Pomerance-Shparlinski [3, Th. 1.1]). If u is non-degenerate, then as x → ∞ #{n ≤ x : n divides u n } 2 x log x .
An ingredient of the proof is again the Subspace Theorem 2, or rather a consequence of it due to Schlickewei, to bound the number of zeros of the recurrence modulo p, hence number of solutions modulo p of an exponential equation [START_REF] Schlickewei | The Number of Solutions of Polynomial-Exponential Equations[END_REF]. This is essentially best possible: if we consider for instance the recurrence u n = 2 n -2, then p always divides u p , and the composite n's for which n divides u n are pseudoprimes and hence [58, Th. 2] much fewer than odd primes, so that in this case #{n ≤ x : gcd(n, u n ) = n} = (1 + o(1))x/ log x. § In fact the sum admits an asymptotic of the form & x/p ψ p,k (log x/ log p) ' k , where ψ is a bounded periodic function with an explicit description as well; but we are not concerned here with such higher order terms. If a 2 = ±1 then as x → ∞

(2) #{n ≤ x : n divides u n } ≥ x 1/4+o (1) .

If a 2 / = ±1 but ∆ u / = ±1 then, as x → ∞ #{n ≤ x : n divides u n } ≥ exp " C(log log x) 2 # .
In fact, to show (2) they use an explicit construction of integers of the form 2s ∏ p≤x p with s as follows: every one if its prime factors q is greater than x and such that q 2 -1 is x-friable (has only prime factors smaller than x). If the factorization of integers of the form q 2 -1 is statistically the same as a typical integer of their size, a lower bound x 1+o(1) in (2) holds.

The next step was that of Luca and the author [START_REF] Luca | The Distribution of Self-Fibonacci Divisors[END_REF], who showed that the upper bound (1) can be vastly improved, and gave an explicit structure theorem for such integers. Their result was for Fibonacci numbers and was generalized by Sanna [START_REF] Sanna | On numbers n dividing the nth term of a Lucas sequence[END_REF] to any Lucas sequence, using the appropriate formulae for the p-adic valuation of Lucas sequences [START_REF] Sanna | The p-adic valuation of Lucas sequences[END_REF]. From now on Lucas sequences will be understood to be non-degenerate as degenerate ones pose no problem [62, Sect. It should be noted that numerical evidence supporting this conjecture is relatively poor [58, Sect. 5], but there is a very precise and interesting reason why [START_REF] Pomerance | Two contradictory conjectures concerning Carmichael numbers[END_REF].

The "workhorse" here is a structure theorem for such integers n which reads as follows. We let z u (n) to be the least positive integer m for which n divides a term u m of the sequence, whenever it is defined. 

R k := {n ∈ N : n/z u (n) = k}. If n is in R k , then it is of the form γ(k)m
, where m is a positive integer all of whose prime factors divide 6∆ u k, and γ(k) an integer depending only on k.

In other words, if the ratio n/z u (n) is prescribed, every integer n is the product of a fixed integer times an S-integer with controlled S. This can be proved using explicit formulas for the p-adic valuation of u n [61] and then, taking any n that belongs to R k , inspect for which n 7 the integer nn 7 also belongs to R k . This is of course no use without being able to estimate γ(k), and the little miracle here is the existence of a very neat expression for it. One can indeed see that this is well defined; once we know this expression we can notice that indeed γ(k) ∈ R k almost by construction. This kind of expression might be telling for someone working in dynamical systems, but a satisfying dynamical interpretation is still lacking.

The work of Luca-Tron and Sanna does in fact prove an upper bound for the counting function when one instead asks for gcd(n, u n ) ≥ αn with 0 ≤ α ≤ 1 fixed (and thus a bound on G(x, y) in the range y G x). With some more work, the methods would imply the following uniform bound.

CONJECTURE 4. If 0 ≤ α ≤ 1 is fixed, then #{n ≤ x : gcd(n, u n ) ≥ αn} ≤ x exp $ - $ 1 2 + o α (1) % log x log log log x log log x % .
The conjecture for the correct order of magnitude is still the same, that the 1/2 + o(1) on the right-hand side is actually an 1 + o(1). The key here is that Lemma 1, as well as its proof, adapts almost word by word when instead of n = bz(n), b ∈ N a fixed integer, one asks for n = βz(n), β ∈ Q a fixed rational number.

We end the section by considering the more general case when one of the recurrences is fully non-simple but of possibly higher order, i.e. the G.C.D. has the form gcd(F(n), u n ) with F a non-constant polynomial with integer coefficients. In this case, using sieve methods Alba González-Luca-Pomerance-Shparlinski prove a sligthly worse upper bound. THEOREM 20 (Alba González-Luca-Pomerance-Shparlinski [START_REF] González | On numbers n dividing the nth term of a linear recurrence[END_REF]Sect. 7]). If the recurrence u has order d ≥ 2 and F is as above, as x → ∞ it holds that

#{n ≤ x : F(n) divides u n } 2 F
x log log x log x .

Small values of gcd(n, u n )

After studying when n divides u n , next is the "dual" problem of when n is coprime to u n . We retain the notation and hypotheses of the previous section.

The first basic theorem is due to Sanna [START_REF] Sanna | On Numbers n Relatively Prime to the nth Term of a Linear Recurrence[END_REF] and proves, under very general assumptions, that those n have an asymptotic density. THEOREM 21 (Sanna [65,Th. 1.1]). If u is non-degenerate, the set of integers n such that gcd(n, u n ) = 1 has an asymptotic density. Such a density is positive, unless (u n /n) n is also a linear recurrence, in which case this set is in fact finite.

Next came the work of Sanna and the author [START_REF] Sanna | The density of numbers n having a prescribed G.C.D. with the nth Fibonacci number[END_REF], where it was shown that not only this generalizes to any fixed value of the G.C.D., but also that another little miracle occurs: there is a very explicit expression for the asymptotic density. For notational convenience set ! u (m) := lcm(m, z u (m)).

THEOREM 22 Thms. 1.3 and 1.4]). Let u be a nondegenerate Lucas sequence with characteristic polynomial X 2 -a 1 Xa 2 . For any k ∈ N, let A k be the set of integers n such that gcd(n, u n ) = k. Then A k has an asymptotic density which is given by the absolutely convergent series

∑ gcd(d,a 2 )=1 µ(d) ! u (dk)
.

Such a density is positive if and only if A k is not empty if and only if gcd(k, a 2 ) = 1 and

k = gcd(! u (k), u ! u (k) ).
The last part vindicates a conjecture made in another setting by Silverman [73, Q. 1]. The statement is moderately far-reaching: for instance, the integers n such that gcd(n, 2 n -1) = k have an asymptotic density given by ∑ n odd 1/lcm(kn, ord kn (2)). However, a way of proving a priori the criterion for such a sum to be zero or not, or even just showing its non-negativity, directly without going through the related arithmetical problem, is not known to exist.

The heart of the proof is also the apparently least interesting part, to show that the expression is well defined. We record it separately to emphasize it. LEMMA 3. The series

∑ gcd(d,a 2 )=1 1 ! u (d) converges absolutely. If in place of ! u (d) = lcm(d, z u (d))
we just had d z u (d) things would be much easier: the convergence of the sum ∑ d 1/dz u (d) has been known at least since the work of Romanoff in the '30s [START_REF] Murty | Variations on a theme of Romanoff[END_REF].

Once we know this, the expression for the density in Theorem 22 is straightforward to derive; let us do the case k = 1 and a 2 = 1, so that z u is defined on all integers. If we set ρ(n, d) to be the indicator function of "d|u n " then

#A 1 (x) = ∑ n≤x ∏ p|n (1 -ρ(n, p)) = ∑ n≤x ∑ d|n µ(d)ρ(n, d) = ∑ d≤x µ(d) ∑ m≤x/d ρ(dm, d); now, ρ(dm, d) = 1 is equivalent to m being divisible by ! u (d)/d, so the latter quantity is ∑ d≤x µ(d) ∑ m≤x/d 1 = ∑ d≤x µ(d) I x ! (d) J = x ( ∑ d≤x µ(d) !(d) ) -∑ d≤x µ(d) 9 x !(d) 
S .

All we need to do now is to use that ∑ d>x µ(d)

!(d)
is the tail of a convergent series, and split the latter sum into large and small d (say, at a cutoff of x 1/2 ) to recover Theorem 22. REMARK 1. In light of Theorem 22, the set of numbers k for which A k is empty (or not) is itself of interest. Leonetti-Sanna [START_REF] Leonetti | On the greatest common divisor of n and the nth Fibonacci number[END_REF] prove that there are at least Cx/ log x and at most o(x) integers k up to x for which A k is not empty. Given that they only consider prime numbers in the lower bound, the true order of magnitude should be somewhat larger; are there, say, at least x log log x/ log x such integers up to x? Parallel to the previous sections, the problem with gcd(F(n), u n ) a fixed integer, where F is a polynomial with integer coefficients, has also been studied. THEOREM 23 Th. 1.4]). Suppose that F splits over Q, and let k be a fixed integer. Then the set of integers n such that gcd(F(n), u n ) = k has an asymptotic density. If moreover u is non-degenerate and F does not have fixed divisors, then the set set of integers n such that gcd(F(n), u n ) = 1 has zero asymptotic density if and only if it is finite.

However, no nice expression for the density is presently known in cases other than F(n) = n.

Averages of gcd(n, u n )

The previous sections give quite satisfying answers to the problem of determining extreme values of gcd(n, u n ). If we inquire, however, about its average size, much less is known-let alone the distribution function G(x, y) in general. We summarize here partial progress towards the solution.

If we allow for some more regular version of the G.C.D., say its logarithm log gcd(n, u n ), the situation is already quite different.

THEOREM 24 (Sanna [64,Th. 1.1]). Let u be a non-degenerate Lucas sequence. Then for any fixed positive integer k, as x → ∞,

∑ n≤x (log gcd(n, u n )) k = M k x + O k (x 1-1/(3k+3) ).
Moreover, the constant M k is given explicitly by an absolutely convergent series

M k = ∑ gcd(d,a 2 )=1 ρ k (d) ! u (d) and ρ k is a certain, explicitly defined, arithmetical function such that ρ k (m) ≤ (k log m) k .
This implies directly a bound for the counting function. 

∑ gcd(m,a 2 )=1 ρ 1 (m) I x ! u (m) J = ( ∑ gcd(m,a 2 )=1 ρ 1 (m) ! u (m) ) x - ∑ gcd(m,a 2 )=1 ρ 1 (m) 9 x ! u (m) S ,
then argue as in Section 3.2; for larger k there is more combinatorial work involved, but again convergence of the relevant sum is the bulk of the proof. Inspired by this work, Mastrostefano set out to find more on the moments themselves. Here is the upper bound that he obtained. THEOREM 25 (Mastrostefano [51,Th. 1.3]). Let u be a non-degenerate Lucas sequence. Then for any fixed positive integer k, as x → ∞,

∑ n≤x gcd(n, u n ) k ≤ x k+1-(1+o k (1))
√ log log x/ log x .

The key to improving these estimates is the study of the tail of a series

∑ d>x gcd(d,a 2 )=1 1 ! u (d) : Mastrostefano bounds it by exp & -(1/ √ 6 -ε + o ε (1)) √ log x log log x '
. We also get the following for the counting function. √ log log x/ log x /y.

The determination of the moments can be a subtle problem [START_REF] Mastrostefano | An upper bound for the moments of a GCD related to Lucas sequences[END_REF]Sect. 6]. However, it is not difficult to conjure up a simple heuristic: if we come back to numbers n such that gcd(n, u n ) = n, there are conjecturally x 1-(1+o(1)) log log log x/ log log x of them up to x. If they were evenly spaced (which they are not, but they are at least well distributed) they would contribute at least ∑ n≤x/x (1+o(1)) log log log x/ log log x & nx (1+o(1)) log log log x/ log log x ' k = x k+1-(1+o(1)) log log log x/ log log x to the k-th moment. If we compound this with the ansatz that "most" of the mass of the moments comes from those n with large gcd(n, u n )-e.g. larger than βn, cf. Conjecture 4-we end up with the following conjecture. As Mastrostefano kindly pointed out to me, this very argument, coupled with the input from Alba González-Luca-Pomerance-Shparlinski (cf. Theorem 18), immediately provides the following. (1) .

THEOREM 26. If a 2 = ±1 then as x → ∞ ∑ n≤x gcd(n, u n ) k ≥ x k+1/4+o k
It is maybe worth to point out the formal resemblance of Theorems 24 and 15 with work of Th. 2]. They study sums of the form ∑ n≤x f (u n ) k , where f is any arithmetic function satisfying certain stringent growth conditions, and they prove an estimate M f ,k x + O f ,k (x(log log x) k / log x).

The problem in other settings

Elliptic divisibility sequences

The most straightforward adaptation of statements from Part 3 is in the setting of elliptic divisibility sequences-which by the way is an indicator that some properties have more to do with u n being a divisibility sequence rather than a linear recurrence. We recall that an elliptic divisibility sequence, call it u n still, is defined by taking a nontorsion point P ∈ E(Q) of an elliptic curve E/Q defined by a Weierstrass equation and then the reduced x-coordinates of its orbit x [n]P = v n /u 2 n . The recursive structure theorems mentioned at the start of Section 3.1 have an elliptic version by Silverman-Stange [START_REF] Silverman | Terms in elliptic divisibility sequences divisible by their indices[END_REF]; the theorems for the distribution of gcd(n, u n ) = n are due to Gottschlich [START_REF] Gottschlich | On positive integers n dividing the nth term of an elliptic divisibility sequence[END_REF].

THEOREM 27 (Gottschlich [28,Th. 1.1]). As x → ∞, we have

#{n ≤ x : n divides u n } 2 E,P x
(log log x) 5/3 (log log log x) 1/3 (log x) 4/3 .

When E has complex multiplication, and for any E under the Lang-Trotter conjecture, he also obtains an upper bound

x exp & -(1 + o E,P (1)) • * log x log log x/8 ' .
On the other hand, the analogy is even closer for the problem of gcd(n, u n ) = k constant. In this case, Kim [START_REF]The density of the terms in an elliptic divisibility sequence having a fixed G.C.D. with their indices[END_REF] proved that a theorem formally analogous to Theorem 22 holds. Again, the delicate point is the convergence of the sum [40, App. A], while the proof itself is otherwise formally the same.

As an aside, we comment that the setting of elliptic curves gives a more transparent geometric interpretation which otherwise, in the case of linear recurrences, is to be found in the work of Cubre-Rouse [START_REF] Cubre | Divisibility properties of the Fibonacci entry point[END_REF] (after Lagarias [START_REF] Lagarias | The set of primes dividing the Lucas numbers has density 2/3[END_REF]), solving a conjecture of Bruckman-Anderson [START_REF] Bruckman | Conjectures on the Z-densities of the Fibonacci sequence[END_REF] by means of the "torus trick" of Hasse-Ballot [START_REF] Ballot | Density of Prime Divisors of Linear Recurrences[END_REF]. For a slightly different take on this, also see Silverman [START_REF] Silverman | Generalized greatest common divisors, divisibility sequences, and Vojta's conjecture for blowups[END_REF].

Finally, the Ailon-Rudnick theorem 12 as well is proved by Silverman for elliptic divisibility sequences over function fields (i.e. obtained from a curve E/k(T )) in case the j-invariant of the curve is k-rational [START_REF] Silverman | Common divisors of elliptic divisibility sequences over function fields[END_REF]Th. 3]. Ghioca-Hsia-Tucker give a variant over any field of positive characteristic [START_REF] Ghioca | On a variant of the AilonRudnick theorem in finite characteristic[END_REF], Ostafe [START_REF] Ostafe | On some extensions of the AilonRudnick theorem[END_REF] for multivariate polynomials, Ghioca-Hsia-Tucker again [START_REF] Ghioca | A variant of a theorem by AilonRudnick for elliptic curves[END_REF] over elliptic curves, Ulmer-Urzúa [START_REF] Ulmer | Transversality of sections on elliptic surfaces with applications to elliptic divisibility sequences and geography of surfaces[END_REF] a result of similar flavor on unlikely intersections. Silverman [START_REF] Silverman | Generalized greatest common divisors, divisibility sequences, and Vojta's conjecture for blowups[END_REF] has a theorem analogous to Theorem 14 where a bound in the same form as Theorem 9 but for elliptic divisibility sequences is shown to be another consequence of Vojta's conjecture.

Nevanlinna theory

An extremely fruitful development in analogy with the greatest common divisors of recurrences is in Nevanlinna theory, where the quantities are replaced by their cousins in the setting of entire functions in the spirit of Vojta's celebrated dictionary between Nevanlinna theory and diophantine approximation [START_REF] Vojta | Diophantine approximation and Nevanlinna theory[END_REF]. Without developing the basics of Nevanlinna theory, we shall limit ourselves to mentioning the most relevant results.

The basic ideas involved in the correct analogy where introduced in the landmark work of Noguchi-Winkelmann-Yamanoi [START_REF] Noguchi | The second main theorem for holomorphic curves into semi-Abelian varieties[END_REF]. The article of Pastén-Wang [START_REF] Pasten | GCD Bounds for Analytic Functions[END_REF] is the most complete source of meromorphic counterparts to the arithmetic G.C.D. bounds, and we now introduce some of them.

For f a meromorphic function on C and z ∈ C, we set ν + z ( f ) := max(0, ord z ( f )) and ν - z ( f ) := -min(0, ord z ( f )). We then define the characteristic function

T ( f , r) := 1 2π ! 2π 0 max(0, log | f (re iθ )|)dθ + ∑ 0<|z|≤r ν - z ( f ) log |r/z| + ν - 0 ( f ) log r.
The analogue for the G.C.D. is defined as follows: if

n( f , g, r) := ∑ |z|≤r min(ν + z ( f ), ν + z (g)),
then the relevant counting function is

N( f , g, r) := ! r 0 n( f , g,t) -n( f , g, 0) t dt + n( f , g, 0) log r.
A sample of the many G.C.D. bounds that Pastén-Wang obtain in this setting are the following.

THEOREM 28 (Pastén-Wang [57, Th. 1.3]). Let f , g be algebraically independent meromorphic functions and ε > 0. Then N( f n -1, g n -1, r) < ε max(nT ( f , r), nT (g, r)) for all r in a set of infinite Lebesgue measure.

THEOREM 29 (Pastén-Wang [57, Th. 1.5]). Let f , g be multiplicatively independent entire functions without zeros, both of finite order, and ε > 0. Then for all large n, as r → ∞ we have

N( f n -1, g n -1, r) < ε min(T ( f n , r), T (g n , r)) + O(log r).
They give many more theorems under various different hypotheses on the growth of the functions, and even general results for meromorphic functions over any complete algebraically closed field, so the reader is advised to read their introduction. For more on the general technical background, see .

This line of work spawned the following developments.

THEOREM 30 Th. 1.1]). Let f , g be algebraically independent meromorphic functions and ε > 0. Then for all large n, and for all r outside a set of finite Lebesgue measure, N( f n -1, g n -1, r) < (1/2 + ε) max(T ( f n , r), T (g n , r)).

THEOREM 31 (Levin-Wang [START_REF] Wang | Greatest common divisors of analytic functions and Nevanlinna theory on algebraic tori[END_REF]Cor. 1.6]). Let f , g be multiplicatively independent meromorphic functions, and ε > 0. Then for all large n, as r → ∞ (outside a set of finite Lebesgue measure), we have N( f n -1, g n -1, r) < ε max(T ( f n , r), T (g n , r)).

The Corvaja-Zannier version of the Hadamard Quotient Theorem has an analog for entire functions as well, due to Guo [START_REF] Guo | The Quotient Problem for Entire Functions[END_REF].

THEOREM 32 (Guo [34,Th. 1.2]). Let f 1 , . . . , f k , g 1 , . . . , g m be nonconstant entire functions such that max i T ( f i , r) H max j T (g j , r) as r → ∞. Set F(n) := a 0 + a 1 f n

1 + • • • + a k f n k , G(n) := b 0 + b 1 g n 1 + • • • + b k g n k
where the a i and b j are nonzero complex numbers. If F(n)/G(n) is an entire function for infinitely many n, then the f i , g j are multiplicatively dependent (there is a product f r

1 1 • • • f r k k g s 1 1 • • • g s k
k which is a nonzero constant).

For more work on G.C.D. bounds in Nevanlinna theory in the setting of holomorphic maps to semi-abelian varieties also see Liu-Yu [START_REF] Liu | Upper Bounds of GCD Counting Function for Holomorphic Maps[END_REF]. Corvaja-Noguchi [START_REF] Corvaja | A new unicity theorem and Erdős problem for polarized semi-abelian varieties[END_REF] prove another counterpart to the Corvaja-Zannier theorem [START_REF] Corvaja | Finiteness of integral values for the ratio of two linear recurrences[END_REF].

Rational dynamical systems

Another domain of research which is rich in analogies with the problems that we have studied is that of rational dynamical systems [START_REF] Silverman | The Arithmetic of Dynamical Systems[END_REF], i.e. the study of the behavior of iterates of rational maps (which is itself linked to the domain of unlikely intersections [START_REF] Zannier | Some Problems of Unlikely Intersections in Arithmetic and Geometry[END_REF]Ch. 3.4.7]). The links usually exploit Silverman's ideas in some way or another, and the powers of integers are replaced by n-fold iterates of polynomials.

Chen-Gassert-Stange [START_REF] Chen | Index divisibility in dynamical sequences and cyclic orbits modulo p[END_REF] prove analogues of the structure theorems mentioned at the beginning of Section 3.1 and Gassert-Urbanski [START_REF] Gassert | Index divisibility in the orbit of 0 for integral polynomials[END_REF] study the divisibility by n of F •n (0), F a polynomial.

More interestingly, Hsia-Tucker [START_REF] Hsia | Greatest common divisors of iterates of polynomials[END_REF] prove a "compositional" cousin to the Ailon-Rudnick theorem. THEOREM 33 Th. 4]). Let F, G ∈ C[X] be compositionally independent polynomials, of degree greater than 1, and C ∈ C[X] another polynomial satisfying some extra conditions. Then there is a polynomial H ∈ C[X] such that, for all m, n, gcd(F •m -C, G •n -C) divides H.

A compositional analogue of the Bugeaud-Corvaja-Zannier bound is known as well; here, however, the substantial recourse to Silverman's method requires Vojta's conjecture in a form not yet proved in such generality. Assuming thus Vojta's conjecture, the theorem reads as follows. In fact he proves more general versions for rational maps and also gives more in-depth characterizations in case the genericity assumption is not satisfied.

  2]. One writes for a, b ∈ Q log gcd(a, b) = ∑ p min(ν p (a), ν p (b)) log p = ∑ ν∈M 0 Q min(ν(a), ν(b)); for general a, b in a number field we then define log gcd(a, b) := ∑ ν∈M k min(ν + (a), ν + (b)).

$ 1 2 + o( 1 ) % log x log log log x log log x % . The 1 / 2 + o( 1 )

 11121 2].THEOREM 19(Sanna [62, Th. 1.2], Th. 1]). If the recurrence u is a Lucas sequence, then#{n ≤ x : n divides u n } ≤ x exp $ factor isjust an artifact of the methods [27, Th. 3]. In fact, based on this and on analogies [58, Sect. 4] with Carmichael numbers via Korselt's criterion, Luca-Tron conjecture the following. CONJECTURE 3 (Luca-Tron [49, Sect. 1]). If the recurrence u is a Lucas sequence, then #{n ≤ x : n divides u n } = x exp $ -(1 + o(1)) log x log log log x log log x % .

LEMMA 1 (

 1  Th. 2], Sanna[START_REF] Sanna | On numbers n dividing the nth term of a Lucas sequence[END_REF] Lemma 3.3]). For any fixed k let

LEMMA 2 (

 2 Luca-Tron [49, Th. 2], Sanna [62, Lemma 3.3], Leonetti). For any k, γ(k) is the least element in R k and we have γ(k) = k lcm m≥1 z •m (k).

COROLLARY 1 (

 1 Sanna [64, Cor. 1.3]).G(x, y) 2 u,k x (log y) k .The argument itself is not too different to what we have seen already in the previous section. Suppose for instance that k = 1: we can write∑ n≤x log gcd(n, u n ) = ∑ n≤x ∑ ! u (p e )|n log p = ∑

COROLLARY 2 (

 2 Mastrostefano [51, Cor. 1.5]). As x → ∞, G(x, y) ≤ x 2-(1+o(1))

CONJECTURE 5 .

 5 If the recurrence u is a non-degenerate Lucas sequence, then as x → ∞ ∑ n≤x gcd(n, u n ) k = x k+1-(1+o k (1)) log log log x/ log log x .

THEOREM 34 (

 34 Huang [38, Th. A]). Let F, G ∈ Z[X] be polynomials of the same degree d = deg F = deg G ≥ 2, and a, b, α, β ∈ Z integers. Under some genericity assumption, there is a constant C > 0 such that for all n gcd(F •n (a) -α, G •n (b) -β) ≤ C exp(εd n ).

  Suppose that u is a non-degenerate Lucas sequence with characteristic polynomial X 2 -a 1 Xa 2 .

	THEOREM 17 (Alba González-Luca-Pomerance-Shparlinski [3, Th. 1.2]). If the recurrence u is a non-degenerate Lucas sequence then as x → ∞ (1) #{n ≤ x : n divides u n } ≤ x exp & -(1 + o(1)) ' * log x log log x .
	THEOREM Thms. 1.3 and 1.4]). 18	(Alba	González-Luca-Pomerance-Shparlinski	[3,

† Notice thus the trichotomy Z-C[X]-F q [X] in the results, with profoundly different kinds of bounds in each case.
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