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E. Tron

THE GREATEST COMMON DIVISOR
OF LINEAR RECURRENCES

Abstract. We survey the existing theory on the greatest common divisor gcd(un,vn) of two
linear recurrence sequences (un)n and (vn)n, with focus on recent development in the case
where one of the two sequences is polynomial.

1. The problem

A linear recurrence sequence (or just linear recurrence for short) is a sequence (un)n∈N
specified by giving values u0, . . . ,ud−1 and the condition that, for n ≥ d,

un+1 =
d

∑
i=1

aiun+1−i

for fixed a1, . . . ,ad and ad /= 0; the integer d is taken to be the least one for which
a linear relation of this form holds and is called the order of the recurrence. All our
recurrences will be assumed for simplicity to have rational integer terms, although the
reader should keep in mind that much of what we are going to state holds with little
to no change when they are instead defined over the ring of integers of a number field.
The characteristic polynomial of the recurrence is P(X) := Xd −∑d

i=1 aiXd−i and its
discriminant is ∆u := ∆(P): accordingly, the recurrence is called simple if the distinct
roots of P (which are also referred to as the roots of u), say α1, . . . ,αr ∈C×, are simple,
and non-degenerate if no ratio αi/α j of any two distinct roots of P is a root of unity.
Any term of the sequence can be expressed as a generalized power sum

un =
r

∑
i=1

Qi(n)αn
i

where the Qi are polynomials over C whose degree is less than the multiplicity of
αi. The basic theory of linear recurrences will be assumed throughout, and we shall
not develop it here but instead point to a general reference work such as the one of
Everest–van der Poorten–Shparlinski–Ward [21] for further detail.

The problem that we are interested in is as follows. Given are two linear recur-
rences (un)n and (vn)n; what can one say about the quantity

gn := gcd(un,vn)?

This can be thought as measuring the “arithmetical proximity” of u and v, as the
G.C.D. puts together, for all non-archimedean places, how much the sequences share

103



104 E. Tron

(termwise) at each place. We will be interested in the distribution of the values of such
a sequence, for instance in the counting function

G(x,y) := #{n ≤ x : gn ≥ y};

this is slightly more convenient than the version with reversed inequality sign since one
expects gn to be often relatively small.

The plan is as follows. In Section 2 we shall see how one can bound large
values of gn when u and v are simple, by use of Schmidt’s Subspace Theorem, and
then interpret those bounds as cases of Vojta’s conjecture. In Section 3 we will on
the other hand see that if one recurrence is fully non-simple (one root with maximal
multiplicity), almost everything concerning large and small values and averages of
gn can be determined. In Section 4, we will hint at how to translate the statements
when studying other objects, such as elliptic divisibility sequences and meromorphic
functions. We shall adopt an expository layout, with a focus on results over proofs.

We shall suppose, in each section, that the recurrence u (or the recurrences u and
v) is fixed once and for all, so that all Vinogradov symbols depend on u in addition to
other parameters: hence, read Ou, ou, 2u, Cu (or Ou,v etc.) for O, o, 2, C respectively,
which is the same as saying Od,a1,...,ad etc. The same is understood to hold for the
objects that are meant to stand in place of linear recurrences in Sections 2 and 4.

2. The case with both recurrences non-degenerate

Throughout this section, we assume that the recurrences u and v are simple, and that
their roots generate together a torsion-free multiplicative group (in particular, u and v
are non-degenerate). This assumption is convenient in that it simplifies the statements
of the theorems in the next sub-section, and does not entail a loss of generality [13,
Sect. 1].

2.1. The Subspace Theorem and S-units

We first, and mostly, examine large values of gn. For instance, what can one say on
the cases when it is as large as possible, that is equal to min(|un|, |vn|)? The answer is
given by the classical Hadamard Quotient Theorem.

THEOREM 1 (Pourchet [60], van der Poorten [59]). Suppose that vn divides un
for all n.∗ Then (un/vn)n is a linear recurrence.

We may also rephrase the conclusion by saying that v has to divide u in the ring
of linear recurrences.

Spectacular progress on the problem came next from exploiting the Subspace
Theorem of Schmidt (as generalized by Schlickewei, Evertse, . . . ) in an ingenious

∗Except possibly for those n for which vn = 0, but there is a finite number of them—cf. the Skolem–
Mahler–Lech theorem.
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way; for the theorem itself the reader may see for instance Schmidt [68], or Bilu [6]
for applications. The generalization that is used most often in applications involves all
places of a number field and is due to Schlickewei.

THEOREM 2. Suppose that K is a number field and S a finite set of places
containing the Archimedean ones, n ≥ 1 an integer. For each ν ∈ S, let Lν,1, . . . ,Lν,n be
linearly independent linear forms in n variables defined over K. Then, for every fixed
ε > 0, the nonzero solutions of

∏
ν∈S

n

∏
i=1

|Lν,i(x)|ν < H(x)−ε,

with x ∈ On
K, lie in a finite union of proper subspaces of Kn.

First, a powerful improvement to the Hadamard Quotient Theorem was proved
by Corvaja–Zannier [13]. If we only assume that the divisibility occurs for infinitely
many n, then the quotient might not be a linear recurrence anymore, but it is almost so.
The result is also remarkable for not requiring the so-called “dominant root condition”,
which had plagued many applications thus far.

THEOREM 3 (Corvaja–Zannier [13, Th. 1]). Suppose that vn divides un for in-
finitely many n. Then there is a polynomial P(X) ∈ C[X ] such that both sequences
(P(n)un/vn)n and (vn/P(n))n are linear recurrences.

In quantitative form, they also prove that if (un/vn)n is not a linear recurrence,
then un/vn can be an integer only for o(x) values of n ≤ x. This was made precise by
Sanna [63], improving on a remark in Corvaja–Zannier [13, Cor. 2].

THEOREM 4 (Sanna [63, Th. 1.5], Corvaja–Zannier [13, Sect. 4]). If (un/vn)n
is not a linear recurrence, then un/vn can be an integer only for

x
$

log logx
logx

%C

values of n ≤ x, for some explicit positive integer C. This is best possible up to a power
of log logx.

The G.C.D. bounds were made quantitatively explicit in a series of works whose
heart were more complex applications of the Subspace Theorem. We now consider
sequences of the form an−1 for simplicity. First, if a = cr and b = cs, then the gcd(an−
1,bn − 1) is as large as a power of min(an − 1,bn − 1) for trivial reasons; we exclude
this case by saying that a and b are multiplicatively independent. Apart from this case,
the greatest common divisor is always smaller than any fixed power of the smallest of
the two sequences.
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THEOREM 5 (Bugeaud–Corvaja–Zannier [8, Th. 1]). Let a,b≥ 2 be multiplica-
tively independent integers. Then for n > n(ε),

gcd(an −1,bn −1) < exp(εn).

If b is not a power of a, then gcd(an −1,bn −1) 2 an/2 for large n.

This is close to best possible. Bugeaud–Corvaja–Zannier [8, Rem. 2] observe,
after Adleman–Pomerance-Rumely [1, Prop. 10], that there are infinitely many n’s that
achieve exp(nc/ log logn) (though they do not make a conjecture for the true maximal
order; for instance, could it be exp(n(1+o(1)) log loglogn/ log logn)?).

The start of the proof is as follows. For a positive integer i, write

zi(n) :=
bin −1
an −1

=
ci,n

dn

where ci,n, dn are integers, and dn is taken as the denominator of z1(n).
Observe that for a fixed integer m we have the approximation

1
an −1

= a−n 1
1−a−n = a−n

∞

∑
r=0

a−rn =
m

∑
r=1

1
arn +O(a−(m+1)n).

If we multiply this by bin −1 we get
11111zi(n)+

m

∑
s=1

1
asn −

m

∑
r=1

$
bi

ar

%n
11111 = O(bina−(m+1)n);

the key idea is to see the left-hand side of this as a linear form in the variables zi(n),
bin/arn, a−sn, for various values of i: if it were the case that dn ≤ a(1−ε)n infinitely
often, then such forms would be small too often and contradict Theorem 2.

Corvaja–Rudnick–Zannier [12] prove a matrix generalization of this in the set-
ting of periods of toral automorphisms. If B is a square matrix over Z, we write gcd(B)
for the greatest common divisor of the entries of B.

THEOREM 6 (Corvaja–Rudnick–Zannier [12, Th. 2]). Suppose that ε > 0 is
fixed and A is a square matrix of rational integers. Under some conditions on the
eigenvalues of A, we have

gcd(An − I) < exp(εn)

for all large n.

The Bugeaud–Corvaja–Zannier bound is recovered as a special case of this, for

the diagonal matrix A =
$

a 0
0 b

%
.

Fuchs [22], building on the work of Bugeaud–Corvaja–Zannier [8] and Hernán-
dez–Luca [35], further generalized the theorem as follows.
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THEOREM 7 (Fuchs [22, Thms. 1 and 2]). Suppose that u, v have only positive
real roots, and that v does not divide u in the ring of linear recurrences. Then there is
an explicit constant C < 1 such that for large n

gcd(un,vn) < min(|un|, |vn|)C.

If moreover all the roots of u,v are integer, un is of the form ban + c, and a is coprime
to all the roots of v, then for sufficiently large n this can be strengthened to

gcd(un,vn) < min(|un|, |vn|)ε.

A further generalization by Levin [43] concerns greatest common divisors of
terms with distinct indices; we give a simplified version for the sake of exposition.

THEOREM 8 (Levin [43, Th. 1.11]). Suppose that u, v are simple linear recur-
rences such that for each place ν of Q at least one of the roots α of u or v has |α|ν ≥ 1.
If the inequality

gcd(un,vm) < exp(εmax(m,n))
has infinitely many solutions (m,n), then all but finitely many of those solutions satisfy
one of finitely many linear relations (m,n) = (aik + bi,cik + di) (1 ≤ i ≤ t), where the
linear recurrences (uain+bi)n and (vcin+di)n have a nontrivial common factor in the ring
of linear recurrences for all i.

Another direction for generalizations starts from the observation that an is an
S-unit for a finite S, so that theorems on terms of linear recurrences really are at their
heart theorems concerning sums of S-units. Hence the following:

THEOREM 9 (Corvaja–Zannier [14, Th.], Hernández–Luca [35]). Let S ⊇ {∞}
be a finite set of rational primes and ε > 0 fixed. Then for all but finitely many multi-
plicatively independent S-units u,v we have

gcd(u−1,v−1) < max(|u|, |v|)ε.

Corvaja–Zannier also give further generalizations of these to
gcd(F(u,v),G(u,v)) [15] and versions in positive characteristic [17].

Further still, one can obtain bounds where u, v are just assumed to be “near”
S-units–for instance, of the form F(n)an. This is the case in the following.

THEOREM 10 (Luca [46, Cor. 3.3]). Let a, b be positive integers, and F1, F2,
G1, G2 non-zero polynomials with integer coefficients, ε > 0 fixed. Then for all large
m, n we have

gcd(F1(n)an +G1(n),F2(n)bn +G2(n)) < exp(εn).

Grieve–Wang [31] combine the ideas of Levin and Luca to obtain a very general
upper bound in the case of non-simple recurrences, by means of the moving form of
the Subspace Theorem.

For more applications of the Subspace Theorem to linear recurrences we refer
to Fuchs [23] and Corvaja–Zannier [18].
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2.2. More over function fields

The problem of small values of gcd(un,vn) is more obscure. Indeed, the following
conjecture is open (and probably very difficult).

THEOREM 11 (Ailon–Rudnick [2, Conj. A]). If a and b are multiplicatively
independent integers, then there are infinitely many n for which

gcd(an −1,bn −1) = gcd(a−1,b−1).

Evidence for this was given by Silverman [75].
To avoid the obstacle, people have thus been trying to study what happens when

a, b belong to other rings. The outcome can turn out to be far more satisfying.

THEOREM 12 (Ailon–Rudnick [2, Th. 1]). If F,G ∈C[x] are non-constant mul-
tiplicatively independent polynomials, then there is a polynomial H ∈ C[X ] such that
for any n

gcd(Fn −1,Gn −1) divides H.

In particular, deggcd(Fn −1,Gn −1) ≤CF,G.

The idea of Ailon and Rudnick is very simple but relies crucially on a deep
theorem of Ihara–Serre–Tate, which states that an irreducible curve in C× ×C× can
only contain finitely many points both of whose coordinates are roots of unity, unless
it is defined by an equation of the form XmY n −ζ = 0 or Xm −ζY n = 0 with ζ a root of
unity [84, Ch. 1.1]. Applying this to the curve {(F(t),G(t)) : t ∈ C} we find that F(z)
and G(z) are simultaneously roots of unity for finitely many z ∈ C.

Now, for any root t of gcd(Fn − 1,Gn − 1), both F(t) and G(t) must si-
multaneously be roots of unity, so there are only finitely many possible roots t for
gcd(Fn − 1,Gn − 1). Moreover, since Fn − 1 = ∏n−1

i=1 (F − ζi
n) and the factors on

the right-hand side are pairwise coprime, any X − t can divide at most one of them
with multiplicity at most degF , and the same for G. Hence, we may take H(X) =
∏(X − t)min(degF,degG).

THEOREM 13 (Silverman [70, Th. 4]). If P,Q ∈ Fq[x] are non-constant monic,
then

deggcd(Pn −1,Qn −1) ≥CP,Qn.

for infinitely many n.†

Denis [20, Th. 1.1] gives lower bounds for the number of integers n for which
deggcd(Pn −1,Qn −1) is on the other hand bounded, and studies the analogous prob-
lem on Drinfeld modules. Cohen–Sonn generalize Silverman’s theorem to the quantity
gcd(Φm(an),Φm(bn)) with (Φm)m the classical cyclotomic polynomials [10, Th. 2.1].

†Notice thus the trichotomy Z–C[X ]–Fq[X ] in the results, with profoundly different kinds of bounds in
each case.
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Corvaja–Zannier [17] give more generally estimates on the gcd(u−1,v−1) when u,v
belong to a function field of positive characteristic, and derive a bound of Weil type
from this.

For more applications, and an extensive development of such concepts in the
area of unlikely intersections, see Zannier [84, Ch. 2]. We just mention in passing
a nice application of these bounds due to Luca–Shparlinski [47], who exploit them to
show that the groups E(Fqn) (E/Fq an ordinary elliptic curve) have a large cyclic factor;
and a follow-up by Magagna [50, Th. 5] proving gcd(#E1(Fqn),#E2(Fqn)) < exp(εn)
if E,E 7 are ordinary and non-isogenous.

2.3. The geometric approach and Vojta’s conjecture

We come back to the results of Section 2 to put them in a different light. The connection
between G.C.D. bounds and Vojta’s conjecture that we are going to see was first noticed
by Silverman [72]. We recall here the statement of the conjecture in a form that suits
applications; here we take the ambient variety X as fixed and fix a choice of height
functions as well.

CONJECTURE 2 (Vojta). Let X/k be a smooth projective variety over a number
field k and S a finite set of places of k, KX a canonical divisor, A an ample divisor, D
a divisor with normal crossings. Then for any ε > 0 there is a proper Zariski closed
subset Z of X and a constant C such that, for all P ∈ X(k)\Z, it holds that

∑
ν∈S

λD,ν(P)+hKX (P) ≤ εhA(P)+C.

This conjecture is very general and encompasses many open problems in Dio-
phantine geometry. For our needs, the point is that G.C.D. bounds and are essentially
equivalent to cases of Vojta’s conjecture. We immediately state an instance of this.

THEOREM 14 (Silverman [72, Th. 1]). We let |x|7S be the prime-to-S part of x,
i.e. the largest divisor of x that is not divisible by any prime in S. Let S be a finite
set of places, F1, . . . ,Ft ∈ Z[X1, . . . ,Xn] homogeneous polynomials such that their zero
set V is a smooth variety in Pn which does not intersect any hyperplane {Xi = 0}; let
r := n− dimV . Assume Vojta’s conjecture for Pn blown up along V and fix ε > 0.
Then there is a homogeneous G ∈ Z[X1, . . . ,Xn] and a constant δ > 0 such that for any
n+1-tuple of coprime integers x0, . . . ,xn ∈ Z either G(x0, . . . ,xn) = 0 or

gcd(F1(x0, . . . ,xn), . . . ,Ft(x0, . . . ,xn)) ≤ max(|x0|, . . . , |xn|)ε(|x0 · · ·xn|7S)1/(r−1+δε).

If we apply for instance this with n = 2, F1 = X1−X0, F2 = X2−X0, this theorem
says that outside a one-dimensional set we have

gcd(x1 − x0,x2 − x0) ≤ max(|x0|, |x1|, |x2|)ε(|x0x1x2|7S)1/(1+δε).

If we specialize further to x0 = 1 and x1, x2 S-units, this becomes

gcd(x1 −1,x2 −1) ≤ max(|x1|, |x2|)ε



110 E. Tron

and we recover Theorem 9 (up to the exceptional set, which is however not hard to
determine). As for the proof of Theorem 14 itself, it involves Vojta’s conjecture with
X = Pn, A = {X0 = 0}, D =−π∗KX =−π∗ ∑n

i=0{Xi = 0} and π the blow-up of X along
{F1 = · · · = Ft = 0}.

Instead of explaining the general proof, let us just see where the analogy starts
from [72, Sect. 2]. One writes for a,b ∈ Q

loggcd(a,b) = ∑
p

min(νp(a),νp(b)) log p = ∑
ν∈M0

Q

min(ν(a),ν(b));

for general a, b in a number field we then define

loggcd(a,b) := ∑
ν∈Mk

min(ν+(a),ν+(b)).

To bring heights into play, we note that ν+ is the local height function on P1(k) with
respect to the divisor (0). We would like a similar height-theoretic interpretation for
the function min(ν+(·),ν+(·)), but here (0,0) is not a divisor on (P1(k))2. To try and
make things work we then blow up the plane at this point, and it turns out that the height
with respect to the exceptional divisor on this blow-up is in fact the logarithmic G.C.D.
In general, the G.C.D. is to be interpreted as a height function with respect to a closed
subscheme, following the definitions laid out by Silverman [69]. Again, the analogy
is rich and complex and we will not illustrate it, but point to the ultimate reference for
this—the landmark article by Silverman [72].

This important analogy has thence been used to prove various cases of Vojta’s
conjecture for blow-ups by mutuating the techniques that successfully apply for G.C.D.
problems, namely the Subspace Theorem. Levin [43] proves some cases on toric va-
rieties; Wang–Yasufuki [81] on Cohen-Macaulay varieties; Yasufuki [82] on Pn, and
links it with the abc conjecture; Yasufuki again [83] on rational surfaces; Grieve [30]
on Fano toric varieties.

3. The case with one recurrence fully non-simple

It has been realized in recent times [3] that the case where one of the sequences is in-
stead fully degenerate, and in particular a polynomial sequence, the distribution prob-
lem for gn = gcd(P(n),un) offers a more approachable toy version of the general prob-
lem. For the time being, we shall take one of the sequences to be the identity sequence
and the other one to be a simple‡ linear recurrence, and study gn = gcd(n,un); the
stronger results will then follow from the fact that here we have complete control over
the places that divide one of the two recurrences.

Firstly, the case of u a first-order recurrence is easily settled. For instance,
large and small values are immediate to estimate [3, Sect.1], and the observation that
gcd(n, pn) = pvp(n) implies the following asymptotic for the moments.

‡There is no loss of generality in assuming the simplicity of u [3, Sect. 1].
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THEOREM 15. As x → ∞,

∑
n≤x

(loggcd(n, pn))k = x
$

1− 1
p

%
(log p)k

∞

∑
m=0

mk

pm +O

($
logx
log p

%k+1
)

.

Moreover, if k ≥ 1,
∑
n≤x

gcd(n, pn)k = xk(1+op(1))

as x → ∞.§

The expression with un = an for composite a is, however, not nearly as nice. At
any rate, we shall henceforth assume that the order of the recurrence u is greater than
1.

3.1. Large values of gcd(n,un)

We first look at large values of gcd(n,un). Remember that u is always a simple linear
recurrence of order at least 2, and that it is fixed once and for all without further mention
of it in all Vinogradov symbols.

Studies on this quantity mostly involved the naïve formulation “when does n
divide un”—in our perspective, this is asking for which n’s the gcd(n,un) equals n,
i.e. is as large as it can possibly get. The early works were partial characterizations,
usually in terms of a (more or less explicit) recursive tree structure which is however
unsuited to quantitative estimates. Credit for this is to be given here to Jarden [39],
Hoggatt–Bergum [36], André-Jeannin [4], Somer [78], Smyth [77], and Győry–Smyth
[33].

The first major work was that of Alba González–Luca–Pomerance–Shparlinski
[3], where they obtained good bounds for various cases according to how nice the
recurrence is.

THEOREM 16 (Alba González–Luca–Pomerance–Shparlinski [3, Th. 1.1]). If
u is non-degenerate, then as x → ∞

#{n ≤ x : n divides un}2
x

logx
.

An ingredient of the proof is again the Subspace Theorem 2, or rather a conse-
quence of it due to Schlickewei, to bound the number of zeros of the recurrence modulo
p, hence number of solutions modulo p of an exponential equation [67].

This is essentially best possible: if we consider for instance the recurrence un =
2n − 2, then p always divides up, and the composite n’s for which n divides un are
pseudoprimes and hence [58, Th. 2] much fewer than odd primes, so that in this case
#{n ≤ x : gcd(n,un) = n} = (1+o(1))x/ logx.

§ In fact the sum admits an asymptotic of the form
&

x/pψp,k(logx/ log p)
'k

, where ψ is a bounded periodic
function with an explicit description as well; but we are not concerned here with such higher order terms.
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THEOREM 17 (Alba González–Luca–Pomerance–Shparlinski [3, Th. 1.2]). If
the recurrence u is a non-degenerate Lucas sequence then as x → ∞

(1) #{n ≤ x : n divides un}≤ x exp
&
−(1+o(1))

*
logx log logx

'
.

THEOREM 18 (Alba González–Luca–Pomerance–Shparlinski [3,
Thms. 1.3 and 1.4]). Suppose that u is a non-degenerate Lucas sequence with
characteristic polynomial X2 −a1X −a2.

If a2 = ±1 then as x → ∞

(2) #{n ≤ x : n divides un}≥ x1/4+o(1).

If a2 /= ±1 but ∆u /= ±1 then, as x → ∞

#{n ≤ x : n divides un}≥ exp
"
C(log logx)2# .

In fact, to show (2) they use an explicit construction of integers of the form
2s∏p≤x p with s as follows: every one if its prime factors q is greater than x and such
that q2 − 1 is x-friable (has only prime factors smaller than x). If the factorization of
integers of the form q2 − 1 is statistically the same as a typical integer of their size, a
lower bound x1+o(1) in (2) holds.

The next step was that of Luca and the author [49], who showed that the upper
bound (1) can be vastly improved, and gave an explicit structure theorem for such
integers. Their result was for Fibonacci numbers and was generalized by Sanna [62] to
any Lucas sequence, using the appropriate formulae for the p-adic valuation of Lucas
sequences [61]. From now on Lucas sequences will be understood to be non-degenerate
as degenerate ones pose no problem [62, Sect. 2].

THEOREM 19 (Sanna [62, Th. 1.2], Luca–Tron [49, Th. 1]). If the recurrence u
is a Lucas sequence, then

#{n ≤ x : n divides un}≤ x exp
$
−

$
1
2

+o(1)
%

logx log loglogx
log logx

%
.

The 1/2+o(1) factor is just an artifact of the methods [27, Th. 3]. In fact, based
on this and on analogies [58, Sect. 4] with Carmichael numbers via Korselt’s criterion,
Luca–Tron conjecture the following.

CONJECTURE 3 (Luca–Tron [49, Sect. 1]). If the recurrence u is a Lucas se-
quence, then

#{n ≤ x : n divides un} = x exp
$
−(1+o(1))

logx log loglogx
log logx

%
.

It should be noted that numerical evidence supporting this conjecture is rela-
tively poor [58, Sect. 5], but there is a very precise and interesting reason why [29].
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The “workhorse” here is a structure theorem for such integers n which reads as
follows. We let zu(n) to be the least positive integer m for which n divides a term um of
the sequence, whenever it is defined.

LEMMA 1 (Luca–Tron [49, Th. 2], Sanna [62, Lemma 3.3]). For any fixed k let
Rk := {n ∈ N : n/zu(n) = k}. If n is in Rk, then it is of the form γ(k)m, where m is a
positive integer all of whose prime factors divide 6∆uk, and γ(k) an integer depending
only on k.

In other words, if the ratio n/zu(n) is prescribed, every integer n is the product
of a fixed integer times an S-integer with controlled S. This can be proved using explicit
formulas for the p-adic valuation of un [61] and then, taking any n that belongs to Rk,
inspect for which n7 the integer nn7 also belongs to Rk. This is of course no use without
being able to estimate γ(k), and the little miracle here is the existence of a very neat
expression for it.

LEMMA 2 (Luca–Tron [49, Th. 2], Sanna [62, Lemma 3.3], Leonetti). For any
k, γ(k) is the least element in Rk and we have

γ(k) = k lcm
m≥1

z◦m(k).

One can indeed see that this is well defined; once we know this expression
we can notice that indeed γ(k) ∈ Rk almost by construction. This kind of expression
might be telling for someone working in dynamical systems, but a satisfying dynamical
interpretation is still lacking.

The work of Luca–Tron and Sanna does in fact prove an upper bound for the
counting function when one instead asks for gcd(n,un)≥ αn with 0 ≤ α ≤ 1 fixed (and
thus a bound on G(x,y) in the range y G x). With some more work, the methods would
imply the following uniform bound.

CONJECTURE 4. If 0 ≤ α ≤ 1 is fixed, then

#{n ≤ x : gcd(n,un) ≥ αn}≤ x exp
$
−

$
1
2

+oα(1)
%

logx log loglogx
log logx

%
.

The conjecture for the correct order of magnitude is still the same, that the
1/2 +o(1) on the right-hand side is actually an 1 +o(1). The key here is that Lemma
1, as well as its proof, adapts almost word by word when instead of n = bz(n), b ∈ N a
fixed integer, one asks for n = βz(n), β ∈ Q a fixed rational number.

We end the section by considering the more general case when one of the re-
currences is fully non-simple but of possibly higher order, i.e. the G.C.D. has the
form gcd(F(n),un) with F a non-constant polynomial with integer coefficients. In
this case, using sieve methods Alba González–Luca–Pomerance–Shparlinski prove a
sligthly worse upper bound.

THEOREM 20 (Alba González–Luca–Pomerance–Shparlinski [3, Sect. 7]). If
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the recurrence u has order d ≥ 2 and F is as above, as x → ∞ it holds that

#{n ≤ x : F(n) divides un}2F
x log logx

logx
.

3.2. Small values of gcd(n,un)

After studying when n divides un, next is the “dual” problem of when n is coprime to
un. We retain the notation and hypotheses of the previous section.

The first basic theorem is due to Sanna [65] and proves, under very general
assumptions, that those n have an asymptotic density.

THEOREM 21 (Sanna [65, Th. 1.1]). If u is non-degenerate, the set of integers
n such that gcd(n,un) = 1 has an asymptotic density. Such a density is positive, unless
(un/n)n is also a linear recurrence, in which case this set is in fact finite.

Next came the work of Sanna and the author [66], where it was shown that not
only this generalizes to any fixed value of the G.C.D., but also that another little miracle
occurs: there is a very explicit expression for the asymptotic density. For notational
convenience set !u(m) := lcm(m,zu(m)).

THEOREM 22 (Sanna–Tron [66, Thms. 1.3 and 1.4]). Let u be a non-
degenerate Lucas sequence with characteristic polynomial X2 − a1X − a2. For any
k∈N, let Ak be the set of integers n such that gcd(n,un) = k. Then Ak has an asymptotic
density which is given by the absolutely convergent series

∑
gcd(d,a2)=1

µ(d)
!u(dk)

.

Such a density is positive if and only if Ak is not empty if and only if gcd(k,a2) = 1 and
k = gcd(!u(k),u!u(k)).

The last part vindicates a conjecture made in another setting by Silverman [73,
Q. 1]. The statement is moderately far-reaching: for instance, the integers n such
that gcd(n,2n −1) = k have an asymptotic density given by ∑nodd 1/lcm(kn,ordkn(2)).
However, a way of proving a priori the criterion for such a sum to be zero or not, or
even just showing its non-negativity, directly without going through the related arith-
metical problem, is not known to exist.

The heart of the proof is also the apparently least interesting part, to show that
the expression is well defined. We record it separately to emphasize it.

LEMMA 3. The series

∑
gcd(d,a2)=1

1
!u(d)

converges absolutely.
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If in place of !u(d) = lcm(d,zu(d)) we just had d zu(d) things would be much
easier: the convergence of the sum ∑d 1/dzu(d) has been known at least since the work
of Romanoff in the ‘30s [53].

Once we know this, the expression for the density in Theorem 22 is straightfor-
ward to derive; let us do the case k = 1 and a2 = 1, so that zu is defined on all integers.
If we set ρ(n,d) to be the indicator function of “d|un” then

#A1(x) = ∑
n≤x

∏
p|n

(1−ρ(n, p)) = ∑
n≤x

∑
d|n

µ(d)ρ(n,d) = ∑
d≤x

µ(d) ∑
m≤x/d

ρ(dm,d);

now, ρ(dm,d) = 1 is equivalent to m being divisible by !u(d)/d, so the latter quantity
is

∑
d≤x

µ(d) ∑
m≤x/d

1 = ∑
d≤x

µ(d)
I

x
!(d)

J
= x

(
∑
d≤x

µ(d)
!(d)

)
− ∑

d≤x
µ(d)

9
x

!(d)

S
.

All we need to do now is to use that ∑d>x
µ(d)
!(d) is the tail of a convergent series,

and split the latter sum into large and small d (say, at a cutoff of x1/2) to recover
Theorem 22.

REMARK 1. In light of Theorem 22, the set of numbers k for which Ak is empty
(or not) is itself of interest. Leonetti–Sanna [42] prove that there are at least Cx/ logx
and at most o(x) integers k up to x for which Ak is not empty. Given that they only
consider prime numbers in the lower bound, the true order of magnitude should be
somewhat larger; are there, say, at least x log logx/ logx such integers up to x?

Parallel to the previous sections, the problem with gcd(F(n),un) a fixed integer,
where F is a polynomial with integer coefficients, has also been studied.

THEOREM 23 (Mastrostefano–Sanna [52, Th. 1.4]). Suppose that F splits over
Q, and let k be a fixed integer. Then the set of integers n such that gcd(F(n),un) = k
has an asymptotic density. If moreover u is non-degenerate and F does not have fixed
divisors, then the set set of integers n such that gcd(F(n),un) = 1 has zero asymptotic
density if and only if it is finite.

However, no nice expression for the density is presently known in cases other
than F(n) = n.

3.3. Averages of gcd(n,un)

The previous sections give quite satisfying answers to the problem of determining ex-
treme values of gcd(n,un). If we inquire, however, about its average size, much less
is known–let alone the distribution function G(x,y) in general. We summarize here
partial progress towards the solution.
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If we allow for some more regular version of the G.C.D., say its logarithm
loggcd(n,un), the situation is already quite different.

THEOREM 24 (Sanna [64, Th. 1.1]). Let u be a non-degenerate Lucas sequence.
Then for any fixed positive integer k, as x → ∞,

∑
n≤x

(loggcd(n,un))k = Mkx+Ok(x1−1/(3k+3)).

Moreover, the constant Mk is given explicitly by an absolutely convergent series

Mk = ∑
gcd(d,a2)=1

ρk(d)
!u(d)

and ρk is a certain, explicitly defined, arithmetical function such that ρk(m) ≤
(k logm)k.

This implies directly a bound for the counting function.

COROLLARY 1 (Sanna [64, Cor. 1.3]).

G(x,y) 2u,k
x

(logy)k .

The argument itself is not too different to what we have seen already in the
previous section. Suppose for instance that k = 1: we can write

∑
n≤x

loggcd(n,un) = ∑
n≤x

∑
!u(pe)|n

log p = ∑
pe

log p ∑
n≤x

!u(pe)|n

1 = ∑
pe

log p
I

x
!u(pe)

J

=: ∑
gcd(m,a2)=1

ρ1(m)
I

x
!u(m)

J
=

(
∑

gcd(m,a2)=1

ρ1(m)
!u(m)

)
x− ∑

gcd(m,a2)=1
ρ1(m)

9
x

!u(m)

S
,

then argue as in Section 3.2; for larger k there is more combinatorial work involved,
but again convergence of the relevant sum is the bulk of the proof.

Inspired by this work, Mastrostefano set out to find more on the moments them-
selves. Here is the upper bound that he obtained.

THEOREM 25 (Mastrostefano [51, Th. 1.3]). Let u be a non-degenerate Lucas
sequence. Then for any fixed positive integer k, as x → ∞,

∑
n≤x

gcd(n,un)k ≤ xk+1−(1+ok(1))
√

log logx/ logx.

The key to improving these estimates is the study of the tail of a series

∑
d>x

gcd(d,a2)=1

1
!u(d)

:
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Mastrostefano bounds it by exp
&
−(1/

√
6− ε+oε(1))

√
logx log logx

'
. We also get

the following for the counting function.

COROLLARY 2 (Mastrostefano [51, Cor. 1.5]). As x → ∞,

G(x,y) ≤ x2−(1+o(1))
√

log logx/ logx/y.

The determination of the moments can be a subtle problem [51, Sect. 6]. How-
ever, it is not difficult to conjure up a simple heuristic: if we come back to numbers
n such that gcd(n,un) = n, there are conjecturally x1−(1+o(1)) log loglogx/ log logx of them
up to x. If they were evenly spaced (which they are not, but they are at least well
distributed) they would contribute at least

∑
n≤x/x(1+o(1)) log loglogx/ log logx

&
nx(1+o(1)) log loglogx/ log logx

'k
= xk+1−(1+o(1)) log log logx/ log logx

to the k-th moment. If we compound this with the ansatz that “most” of the mass of the
moments comes from those n with large gcd(n,un)—e.g. larger than βn, cf. Conjecture
4—we end up with the following conjecture.

CONJECTURE 5. If the recurrence u is a non-degenerate Lucas sequence, then
as x → ∞

∑
n≤x

gcd(n,un)k = xk+1−(1+ok(1)) log loglogx/ log logx.

As Mastrostefano kindly pointed out to me, this very argument, coupled with
the input from Alba González–Luca–Pomerance–Shparlinski (cf. Theorem 18), imme-
diately provides the following.

THEOREM 26. If a2 = ±1 then as x → ∞

∑
n≤x

gcd(n,un)k ≥ xk+1/4+ok(1).

It is maybe worth to point out the formal resemblance of Theorems 24 and 15
with work of Luca–Shparlinski [48, Th. 2]. They study sums of the form ∑n≤x f (un)k,
where f is any arithmetic function satisfying certain stringent growth conditions, and
they prove an estimate M f ,k x+O f ,k(x(log logx)k/ logx).

4. The problem in other settings

4.1. Elliptic divisibility sequences

The most straightforward adaptation of statements from Part 3 is in the setting of ellip-
tic divisibility sequences—which by the way is an indicator that some properties have
more to do with un being a divisibility sequence rather than a linear recurrence. We



118 E. Tron

recall that an elliptic divisibility sequence, call it un still, is defined by taking a non-
torsion point P ∈ E(Q) of an elliptic curve E/Q defined by a Weierstrass equation and
then the reduced x-coordinates of its orbit x[n]P = vn/u2

n.
The recursive structure theorems mentioned at the start of Section 3.1 have

an elliptic version by Silverman–Stange [76]; the theorems for the distribution of
gcd(n,un) = n are due to Gottschlich [28].

THEOREM 27 (Gottschlich [28, Th. 1.1]). As x → ∞, we have

#{n ≤ x : n divides un}2E,P x
(log logx)5/3(log loglogx)1/3

(logx)4/3 .

When E has complex multiplication, and for any E under the Lang–Trotter
conjecture, he also obtains an upper bound

x exp
&
−(1+oE,P(1)) ·

*
logx log logx/8

'
.

On the other hand, the analogy is even closer for the problem of gcd(n,un) = k
constant. In this case, Kim [40] proved that a theorem formally analogous to Theorem
22 holds. Again, the delicate point is the convergence of the sum [40, App. A], while
the proof itself is otherwise formally the same.

As an aside, we comment that the setting of elliptic curves gives a more trans-
parent geometric interpretation which otherwise, in the case of linear recurrences, is to
be found in the work of Cubre–Rouse [19] (after Lagarias [41]), solving a conjecture
of Bruckman–Anderson [7] by means of the “torus trick” of Hasse–Ballot [5]. For a
slightly different take on this, also see Silverman [72].

Finally, the Ailon–Rudnick theorem 12 as well is proved by Silverman for el-
liptic divisibility sequences over function fields (i.e. obtained from a curve E/k(T )) in
case the j-invariant of the curve is k-rational [71, Th. 3]. Ghioca–Hsia–Tucker give a
variant over any field of positive characteristic [25], Ostafe [56] for multivariate poly-
nomials, Ghioca–Hsia–Tucker again [26] over elliptic curves, Ulmer–Urzúa [79] a re-
sult of similar flavor on unlikely intersections. Silverman [72] has a theorem analogous
to Theorem 14 where a bound in the same form as Theorem 9 but for elliptic divisibility
sequences is shown to be another consequence of Vojta’s conjecture.

4.2. Nevanlinna theory

An extremely fruitful development in analogy with the greatest common divisors of
recurrences is in Nevanlinna theory, where the quantities are replaced by their cousins
in the setting of entire functions in the spirit of Vojta’s celebrated dictionary between
Nevanlinna theory and diophantine approximation [80]. Without developing the basics
of Nevanlinna theory, we shall limit ourselves to mentioning the most relevant results.

The basic ideas involved in the correct analogy where introduced in the land-
mark work of Noguchi–Winkelmann–Yamanoi [55]. The article of Pastén–Wang [57]
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is the most complete source of meromorphic counterparts to the arithmetic G.C.D.
bounds, and we now introduce some of them.

For f a meromorphic function on C and z ∈C, we set ν+
z ( f ) := max(0,ordz( f ))

and ν−z ( f ) := −min(0,ordz( f )). We then define the characteristic function

T ( f ,r) :=
1

2π

! 2π

0
max(0, log | f (reiθ)|)dθ+ ∑

0<|z|≤r
ν−z ( f ) log |r/z|+ν−

0 ( f ) logr.

The analogue for the G.C.D. is defined as follows: if

n( f ,g,r) := ∑
|z|≤r

min(ν+
z ( f ),ν+

z (g)),

then the relevant counting function is

N( f ,g,r) :=
! r

0

n( f ,g, t)−n( f ,g,0)
t

dt +n( f ,g,0) logr.

A sample of the many G.C.D. bounds that Pastén–Wang obtain in this setting are the
following.

THEOREM 28 (Pastén–Wang [57, Th. 1.3]). Let f , g be algebraically indepen-
dent meromorphic functions and ε > 0. Then

N( f n −1,gn −1,r) < εmax(nT ( f ,r),nT (g,r))

for all r in a set of infinite Lebesgue measure.

THEOREM 29 (Pastén–Wang [57, Th. 1.5]). Let f , g be multiplicatively inde-
pendent entire functions without zeros, both of finite order, and ε > 0. Then for all large
n, as r → ∞ we have

N( f n −1,gn −1,r) < εmin(T ( f n,r),T (gn,r))+O(logr).

They give many more theorems under various different hypotheses on the
growth of the functions, and even general results for meromorphic functions over any
complete algebraically closed field, so the reader is advised to read their introduction.
For more on the general technical background, see Noguchi–Winkelmann [54].

This line of work spawned the following developments.

THEOREM 30 (Guo–Wang [32, Th. 1.1]). Let f , g be algebraically independent
meromorphic functions and ε > 0. Then for all large n, and for all r outside a set of
finite Lebesgue measure,

N( f n −1,gn −1,r) < (1/2+ ε)max(T ( f n,r),T (gn,r)).

THEOREM 31 (Levin–Wang [44, Cor. 1.6]). Let f , g be multiplicatively inde-
pendent meromorphic functions, and ε > 0. Then for all large n, as r → ∞ (outside a
set of finite Lebesgue measure), we have

N( f n −1,gn −1,r) < εmax(T ( f n,r),T (gn,r)).
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The Corvaja–Zannier version of the Hadamard Quotient Theorem has an analog
for entire functions as well, due to Guo [34].

THEOREM 32 (Guo [34, Th. 1.2]). Let f1, . . . , fk,g1, . . . ,gm be nonconstant
entire functions such that maxi T ( fi,r) H max j T (g j,r) as r → ∞. Set F(n) := a0 +
a1 f n

1 + · · ·+ ak f n
k , G(n) := b0 + b1gn

1 + · · ·+ bkgn
k where the ai and b j are nonzero

complex numbers. If F(n)/G(n) is an entire function for infinitely many n, then the
fi,g j are multiplicatively dependent (there is a product f r1

1 · · · f rk
k gs1

1 · · ·gsk
k which is a

nonzero constant).

For more work on G.C.D. bounds in Nevanlinna theory in the setting of holo-
morphic maps to semi-abelian varieties also see Liu–Yu [45]. Corvaja–Noguchi [11]
prove another counterpart to the Corvaja–Zannier theorem [13].

4.3. Rational dynamical systems

Another domain of research which is rich in analogies with the problems that we have
studied is that of rational dynamical systems [74], i.e. the study of the behavior of
iterates of rational maps (which is itself linked to the domain of unlikely intersections
[84, Ch. 3.4.7]). The links usually exploit Silverman’s ideas in some way or another,
and the powers of integers are replaced by n-fold iterates of polynomials.

Chen–Gassert–Stange [9] prove analogues of the structure theorems mentioned
at the beginning of Section 3.1 and Gassert–Urbanski [24] study the divisibility by n of
F◦n(0), F a polynomial.

More interestingly, Hsia–Tucker [37] prove a “compositional” cousin to the
Ailon–Rudnick theorem.

THEOREM 33 (Hsia–Tucker [37, Th. 4]). Let F,G ∈ C[X ] be compositionally
independent polynomials, of degree greater than 1, and C ∈ C[X ] another polynomial
satisfying some extra conditions. Then there is a polynomial H ∈ C[X ] such that, for
all m,n,

gcd(F◦m −C,G◦n −C) divides H.

A compositional analogue of the Bugeaud–Corvaja–Zannier bound is known as
well; here, however, the substantial recourse to Silverman’s method requires Vojta’s
conjecture in a form not yet proved in such generality. Assuming thus Vojta’s conjec-
ture, the theorem reads as follows.

THEOREM 34 (Huang [38, Th. A]). Let F,G ∈Z[X ] be polynomials of the same
degree d = degF = degG ≥ 2, and a,b,α,β ∈ Z integers. Under some genericity
assumption, there is a constant C > 0 such that for all n

gcd(F◦n(a)−α,G◦n(b)−β) ≤C exp(εdn).

In fact he proves more general versions for rational maps and also gives more
in-depth characterizations in case the genericity assumption is not satisfied.



The G.C.D. of linear recurrences 121

Acknowledgements

I am thankful to Yuri Bilu, Francesco Campagna, Pietro Corvaja, Luca Ghidelli, Paolo
Leonetti, Daniele Mastrostefano, Carlo Sanna, Joe Silverman, Umberto Zannier, and
the anonymous referee, for useful discussion and comments before and during the
preparation of this work. I also thank the organizers of the 2nd Number Theory Meet-
ing, where my lecture constituted the early core of this survey.

References

[1] ADLEMAN L.M., POMERANCE C., AND RUMELY S., On Distinguishing Prime Numbers from Com-
posite Numbers, Annals of Math. 117 1 (1983), 173–206.

[2] AILON N. AND RUDNICK Z., Torsion points on curves and common divisors of ak − 1 and bk − 1,
Acta Arith. 113 (2004), 31–38.

[3] ALBA GONZÁLEZ J.J., LUCA F., POMERANCE C., AND SHPARLINSKI I.E., On numbers n dividing
the nth term of a linear recurrence, Proc. Edinb. Math. Soc. 55 2 (2012), 271–289.

[4] ANDRÉ-JEANNIN R., Divisibility of generalized Fibonacci and Lucas numbers by their subscripts,
Fibonacci Q. 29 4 (1991), 364–366.

[5] BALLOT C., Density of Prime Divisors of Linear Recurrences, Mem. Am. Math. Soc. 551, AMS,
Providence 2005.

[6] BILU YU., The Many Faces of the Subspace Theorem (after Adamczewski, Bugeaud, Corvaja, Zan-
nier...), Séminaire Bourbaki n˚ 967, Astérisque 317 (2008), 1–38.

[7] BRUCKMAN P.S. AND ANDERSON P.G., Conjectures on the Z-densities of the Fibonacci sequence,
Fibonacci Q. 36 3 (1998), 263–271.

[8] BUGEAUD Y., CORVAJA P., AND ZANNIER U., An upper bound for the G.C.D. of an −1 and bn −1,
Math. Z. 243 (2003), 79–84.

[9] CHEN A.S., GASSERT T.A., AND STANGE K.E., Index divisibility in dynamical sequences and cyclic
orbits modulo p, New York J. Math. 23 (2017), 1045–1063.

[10] COHEN J. AND SONN J., A cyclotomic generalization of the sequence gcd(an − 1,bn − 1), J. Théor.
Nombres Bordx. 27 1 (2015), 53–65.

[11] CORVAJA P. AND NOGUCHI J., A new unicity theorem and Erdős problem for polarized semi-abelian
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