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Abstract 

Monitoring schemes are typically designed under the assumption of perfect measurements. However, in 

real-life applications, data tend to be subjected to measurement errors, i.e., a difference between the real 

quantities and the measured ones mostly exist even with highly sophisticated advanced measuring 

instruments. Thus, in this paper, the negative effect of measurement errors on the performance of the 

homogenously weighted moving average (HWMA) scheme is studied using the linear covariate error 

model for constant and linearly increasing variance. Monte Carlo simulations are used to evaluate the 

performance of the proposed HWMA scheme in terms of the run-length characteristics. It is observed that 

as the smoothing parameter increases, measurement errors have a higher negative effect on the 

performance of the HWMA  ̅ scheme. More importantly, it is shown that the negative effect of 

measurement errors is reduced by using multiple measurements and / or by increasing the slope 

coefficient of the covariate error model. Moreover, the performance of the HWMA  ̅ scheme is compared 

with the corresponding exponentially weighted moving average (EWMA) and Cumulative Sum 

(CUSUM)  ̅ schemes. An illustrative example is provided to help in implementing this monitoring 

scheme in a real-life situation. 
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Introduction 

In statistical process monitoring (SPM), control charts are used to identify the causes of variation in the 

process. Two sources of variation can be distinguished in SPM, namely the common (or chance) causes 

and the assignable (or special) causes of variation. Common causes cannot be avoided, while assignable 

causes of variation need to be reduced as much as possible. When the process runs in the presence of 

common causes only, the process is considered to be in-control (IC). Otherwise, the process is said to be 

out-of-control (OOC). When practitioners are interested in monitoring small-to-moderate shifts in the 

process parameters, popular memory-type monitoring schemes such as the Cumulative Sum (CUSUM) 

and exponentially weighted moving average (EWMA) schemes are mostly recommended; see for 

example, Roberts (1959), Page (1961) and Montgomery (2013). Many authors devoted their valuable 

time in improving the sensitivity of the CUSUM and EWMA schemes using various techniques. These 

enhanced schemes include the double CUSUM (DCUSUM), hybrid EWMA (HEWMA), double EWMA 

(DEWMA), Synthetic CUSUM, Synthetic EWMA, etc. For more details on the enhancement of memory-

type schemes, readers are referred to Waldmann (1996), Capizzi and Masarotto (2010), Abbas et al. 

(2013), Haq et al. (2013), Ali and Haq (2017), Adeoti (2020), Malela-Majika (2020); just to cite a few. 

For other alternative approaches of control charts, such as the use of divergence functions (e.g. parametric 

and nonparametric Kullback-Leibler Divergence), see for instance Bakdi and Kouadri (2018), Bakdi et al. 

(2019) and Bounoua et al. (2020). 

More recently, Abbas (2018) developed a new memory-type scheme that allocates a specific weight to the 

current sample and the remaining weight is distributed equally among the previous samples; this scheme 
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is known as homogeneously weighted moving average (HWMA) monitoring scheme. The HWMA 

scheme is in its nature a memory-type scheme used to effectively monitor small-to-moderate shifts (see 

for example the following articles on the HWMA-type monitoring schemes: Abbas (2018), Adegoke et al. 

(2019a, b), Raza et al. (2020), Abid et al. (2020), Abbas et al. (2020) and Adeoti and Koleoso (2020)). To 

provide an efficient and unbiased estimate of the process mean, Adegoke et al. (2019a) developed a 

HWMA scheme to monitor the process mean that uses the auxiliary variable in the form of a bivariate 

regression estimator. Next, Adegoke et al. (2019b) proposed a multivariate HWMA scheme for 

monitoring the process mean vector when the underlying distribution parameters are known; more 

recently though, Abbas et al. (2020) studied the same scheme when the underlying distribution 

parameters are assumed unknown and they compared its performance against numerous well-known 

multivariate schemes. Raza et al. (2020) proposed a distribution-free HWMA scheme based on the sign 

and signed-rank statistics to monitor skewed and symmetric distributions observations. More recently, 

Abid et al. (2020) proposed the double HWMA scheme for monitoring small shifts in the process mean 

and they also investigated the effect of non-normality and parameter estimation on the performance of the 

double HWMA scheme. Finally, Adeoti and Koleoso (2020) proposed a hybrid HWMA schemes for 

monitoring the process mean and they also investigated the effect of non-normality. Note that the double 

(hybrid) design of the HWMA scheme entails applying the same (different) smoothing parameter twice, 

respectively. The key difference between the HWMA scheme proposed in this paper and the 

abovementioned HWMA schemes is that it is not assumed that the observations have perfect or exact 

measurements. That is, in this paper, the assumption given in the review paper by Maleki et al. (2017) is 

followed: ‘… exact measurements in real-life applications are a rare phenomenon, even with highly 

sophisticated advanced measuring instruments; hence, measurement errors tend to exist in any 

manufacturing and service environment’. Therefore, this paper contributes to the SPM literature by 
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introducing an HWMA scheme that accounts for measurement errors in the process being monitored for a 

univariate process mean. 

A detailed early account of 60 articles on monitoring schemes with measurements errors are documented 

in Maleki et al. (2017). To discuss a few, Linna and Woodall (2001) studied the effect of measurement 

errors on Shewhart monitoring scheme and they reported that under measurement errors a monitoring 

scheme is exposed to lose power in detecting parameters shifts. Next, Maravelakis et al. (2004) and 

Maravelakis (2012) investigated the effect of measurement errors on the EWMA and CUSUM schemes, 

respectively; with the effect of a two-component measurement error on the EWMA scheme investigated 

in Abbasi (2016). For some recent discussions on measurement errors published after the review paper of 

Maleki et al. (2017), see for instance: Yeong et al. (2017), Cheng and Wang (2018), Salmasnia et al. 

(2018), Tang et al. (2019), Riaz et al. (2019), Tran et al. (2019a, b, c, 2020), Nguyen et al. (2019), Zaidi et 

al. (2019, 2020), Sabahno et al. (2019, 2020), Shongwe et al. (2020a, b, c), Asif et al. (2020), Noor-ul-

Amin et al. (2020). 

A number of methods used as remedial approaches are outlined in the review article on measurement 

errors by Maleki et al. (2017) – for other remedial sampling strategies, see for instance the book by Aslam 

and Ali (2019). The most used methodology to reduce measurement inaccuracy is by taking multiple 

measurements of each item, which was first proposed by Linna and Woodall (2001). The multiple 

measurements strategy reduces the effect of measurement errors on the performance of monitoring 

schemes. That is, taking at least two measurements for each sampled unit effectively reduces the effect of 

the measurement errors. The level of precision improves by taking and averaging several measurements. 

Although it is preferable to maintain a larger number of multiple measurements for better results, one 

needs to be mindful of additional implications such as costs and time to collect these observations. This is 

so because, without measurement error, multiple measurements will become redundant in the monitoring 

scheme methodology by only adding costs for measuring extra and useless observations.  
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Therefore, in this paper, the performance of the HWMA scheme for monitoring the process mean 

(denoted as HWMA  ̅ scheme) is investigated under the effect of measurement errors. The measurement 

errors are modelled by a linear covariate error model. The negative effect of the measurement errors on 

the proposed HWMA  ̅ scheme is reduced by using a multiple measurements strategy and / or by 

increasing the slope coefficient of the linear covariate error model.  

The rest of this paper is organised as follows: in the second section, the basic properties of the HWMA  ̅ 

scheme without measurement errors are provided. Third section provides properties of the HWMA  ̅ 

scheme with measurement errors using a covariate error model with a constant and a linearly increasing 

variance. The performance of the HWMA  ̅ scheme with a constant and a linearly increasing variance is 

studied in terms of the average run-length (ARL), standard deviation of the run-length (SDRL) and 

expected ARL (EARL) values in the fourth section. Moreover, in the fourth section, the HWMA  ̅ scheme 

is compared with the corresponding CUSUM and EWMA  ̅ schemes. Two illustrative examples using 

real-life data are given in the fifth section. Some concluding remarks are presented in the sixth section 

and the simulation algorithm is provided in the Appendix.  

 

Design of the HWMA  ̅ scheme 

Let         1, 2, …, and    1, 2, …,    be a set of samples of independent normal random variables, i.e. 

    follows a             , where    is the in-control mean value,    is the in-control standard 

deviation and   is the magnitude of the shift in standard deviation units. When    0, the process is 

considered to be IC, which implies     follows a         . However, when    0 the process is OOC.  

Let  ̅    ∑     ⁄ 
     be the sample mean of the    sample. The plotting statistic of the HWMA  ̅ 

scheme (denoted as   ) is defined by 

     ̅         ̿     (1) 
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with  

 ̿    
∑  ̅ 

   
   

   
  

 

where   (0     1) is the smoothing constant and  ̿    is the mean of the previous     sample means. 

The initial value of   ̿    (i.e.  ̿ ) is typically set to be equal to the target mean   . 

Abbas (2018) showed that Equation (1) can also be written as 
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From Equation (2), it can be seen that the HWMA  ̅ statistic assigns weight   to the current sample and a 

weight       is equally distributed to the previous samples. It can be shown that the mean and variance 

of the plotting statistic in Equation (1) or (2) is given by 
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HWMA  ̅ monitoring scheme are defined by 
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respectively; where   is the control limits constant that is set to have a pre-specified false alarm rate or in-

control     (    ). Thus, the HWMA  ̅ scheme gives a signal if the plotting statistic in Equation (1) 

plots beyond the control limits defined in Equation (4); that is, if         or        . In case the 

process has been running for a long time (i.e.    ), the term 
      

   
  . Therefore, the control limits in 

Equation (4) reduce to the following asymptotic ones 
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and (5) 
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and, in this case, the process is OOC if        or       . 

 

The HWMA scheme with measurement errors 

Covariate error model with a constant variance 

Assume that the true value of the quality characteristic      defined in the second section is only observed 

through a value {      
   i = 1,2,…;  j = 1,2,…, n; k = 1,…, r} described by the expression       

    

            , where A and B are two constants depending on the measurement system location error (A 

and B are also known as the intercept and slope coefficients of the covariate error model, respectively). 

Also,   denotes the number of measurements taken in each sampled subgroup unit and              
   is 

a random error due to the measurement error that is distributed independently of     ; where   
  is the 
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variance of the measurement system. Based on the discussion in Linna and Woodall (2001) and 

Maravelakis et al. (2004), it is apparent that       
           

   
    

  . Assuming that n 

observations from the sequence       
  at each sampling point have been collected, the mean 

 ̅ 
  

 

  
∑∑      

 

 

   

 

   

 
 

  
∑∑                

 

   

 

   

    
 

 
∑    

 

   

 
 

  
∑∑      

 

   

 

   

 

need to be calculated. Thus, the plotting statistic of the HWMA  ̅  scheme is defined by  

  
    ̅ 

         ̿   
    (6) 

where  ̿   
  is the mean of the previous     sample means and similarly as in Equation (2), Equation (6) 

can be written as 
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  ]  

The initial value of   ̿   
  (i.e.  ̿ 

 ) is typically set to be equal to the target mean   . Thus, the expected 

value and variance of the plotting statistic   
  defined in Equation (6) are  

    
          

and (7) 
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Let   
  

  
 represents the standardized ratio of the measurement system variability to the process 

variability. When  ̅  is from a perfect measurement system, then    = 0, so that     0; otherwise,    0. 

The time-varying control limits of the HWMA  ̅  scheme with  -measurements are defined by: 
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 where    is control limit width parameter of the HWMA  ̅  scheme with  -measurements. 

Since the term 
      

   
   when the process has been running for a while, the asymptotic control limits of 

the HWMA  ̅  scheme with  -measurements are defined by 

            √
     

 

 
(
      

 
) 

 

and (9) 

            √
     

 

 
(
      

 
)  

 

The value of   is equal to 1 when a standard single measurement is used per sampling unit. However, as   

increases, the variance in the measurement error component decreases. Hence, it is obvious that when the 

number of multiple components tends to infinity, the variance in the measurement component tends to 

zero. However, the number of sets of measurements needs to be determined such that the maximum 

reduction in the variance of the measurement system is reached and, at the same time, minimizes the cost 

of using multiple measurements. This is addressed in the fourth section.  
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Covariate error model with a linearly increasing variance  

In some situations, the measurement error    should no longer be considered as being a constant but it 

should be considered as an increasing function of the mean of the variable     , i.e.   
        and 

thus,       
           

   
        . Then the time-varying control limits of the HWMA  ̅  

scheme with  -measurements are defined by:  
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where   and   are constants. Next, the asymptotic control limits of the HWMA  ̅  scheme with  -

measurements are defined by:    

            √  (
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and (11) 
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To conserve space, in this paper, the focus is on the time-varying case. 
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Performance of the HWMA  ̅  scheme with measurement errors 

One of the most popular measures used to evaluate the performance of a monitoring scheme is the    . 

The     is the mean of the run-length (RL) distribution representing the average number of rational 

subgroups plotted on a control chart before it gives a signal for the first time. This metric reveals the 

degree of the sensitivity of a monitoring scheme towards specific shifts. Depending on the type of 

monitoring scheme, the ARL metric can be computed using Markov chain, Monte Carlo simulation or 

integral or exact formulas. Among these techniques, Monte Carlo simulation is the most used because of 

its simplicity in computing the characteristics of the run-length distribution even for complicated and 

complex monitoring designs. In this paper, Monte Carlo simulation is used to compute the ARL, SDRL 

and EARL profiles of the HWMA  ̅  scheme in SAS® v9.4, see the Appendix for an outline of the 

simulation algorithm. Note that the EARL metric is used to investigate the performance of a scheme for a 

range of shifts. The EARL is mathematically defined by (see for example Umar et al. (2019), Shongwe et 

al. (2020a)) 

     
 

 
∑        

    

      

  (12) 

where      and      are the lower and upper bound of the shift ( ) parameter, respectively,        is 

the ARL value for a specific shift   and   represents the number of increments between      and     .  

Sensitivity analysis 

In this section, the effect of measurement errors and multiple measurements on the performance of the 

HWMA  ̅  scheme is investigated in terms of the ARL and SDRL profiles for specific shifts and EARL 

profile for different ranges of shifts. Thus, the      values denoted by      ,       ,     ,      , 

      and       are used to investigate the performance of the HWMA  ̅  scheme for small (    

 ), moderate (     ), large (     ), small-to-moderate (     ), moderate-to-large (  
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   ) and small-to-large (     ) shifts, respectively. Tables 1 presents the ARL and EARL profiles 

of the HWMA  ̅  scheme when    0.1, 0.5, 0.9 ,    0, 0.2, 0.5, 0.9  and    1 on the first row (with 

   4 in parenthesis on the second row) for a nominal      value of 500; while, Table 2 displays the 

corresponding SDRL profiles. Note that the manner in which the smoothing parameter ( ) is chosen 

depends on the size of the shifts that a practitioner prioritizes; see Abbas (2018). For instance,   = 0.1 is 

recommended for a quick detection of small shifts,   = 0.5 for moderate and large shifts and   = 0.9 for a 

quick detection of very large shifts. Next, the level of measurements errors ( ) indicates the level of 

severity of the measurement error, where   = 0 implies perfect measurements (i.e. no measurement error), 

  = 0.2 indicates lower level of measurement error,   = 0.5 indicates moderate level of measurement 

errors and   = 0.9 indicates higher level of measurement error. From Tables 1 and 2 as well as Figures 1 

and 2, the following is observed for any value of   and  =1: 

 The design parameter    (shown at the bottom of Tables 1 and 2) increases as   increases; which 

means, the larger the smoothing parameter, the wider are the control limits. Note that the control 

limits do not depend on the degree of measurement errors (i.e.,   value) nor on the number of 

measurements (i.e.,   value). 

 Measurement errors have a negative effect on the sensitivity of the HWMA  ̅  monitoring 

scheme, which means the higher the value of  , the higher are the values of the      profile. For 

instance, when    0.1 and    1, for a small shift of size  =0.25, if    0.5 and 0.9, the 

HWMA  ̅  scheme is expected to give a signal on the 95
th

 and 123
rd

 subgroups, respectively. 

 When   is kept fixed, the HWMA  ̅  scheme is more sensitive to small values of   for small and 

moderate shifts in the process mean. However, for large shifts, the sensitivity of the HWMA  ̅  

scheme increases in the interval 0     0.5 and decreases in the interval 0.5     1. In terms 

of both EARL and      values, from small-to-moderate, moderate-to-large as well as from 

small-to-large shifts, the HWMA  ̅  scheme performs better for small shifts. For instance, when 
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   0.2, with    1 and    0.75, the HWMA  ̅  scheme is expected to give the first signal on 

the 15
th

 (      15.27), 29
th

 (      29.14) and 88
th

 (      88.55) subgroups when    0.1, 

0.5 and 0.9, respectively – see Table 1. This pattern holds for the EARLs which show that as   

increase, the performance of the HWMA  ̅  scheme deteriorates.  

 Stated differently, the cluster of line graphs in Figures 1(a) and (b) with smaller ARLs 

corresponds to   = 0.1, while those with larger ARLs corresponds to   = 0.9. Moreover, for each 

cluster of line graphs in Figures 1(a) and (b), the smaller the value of  , the lower are the ARL 

profiles as compared to those with higher values of  . In summary, the smaller the values of   

and  , the better is the performance of the HWMA  ̅  scheme. 

 As   increases, the IC SDRL values increase towards the nominal      value. The sensitivity 

pattern of the OOC SDRL (     ) profile in Table 2 is similar to the one of the      profile 

with respect to   and  , where it is shown that whenever   increases, the       increase and 

when   increases, the       is reduced. Hence, moving forth, the focus will mainly be on the 

ARL profiles. 

 Multiple measurements have a positive impact on the sensitivity of the HWMA  ̅  scheme. For 

instance, for ( ,  ) = (0.9, 0.9) and    0.25, the      is equal to 416.4 and 378.8 when    1 

and 4, respectively. This indicates that a multiple measurements strategy reduces the effect of 

measurement errors. 

 Keeping in mind that the EARL is a weighted sum of the ARL (see Equation (12)), hence, as   

increases, the ARLs decrease and thus, EARL also decreases; see Figure 2. Note that the EARL 

values shown at the bottom of Table 1 when   = 1 and 4 are those depicted in Figure 2. Hence, 

for instance, for the      , it is observed that there is a slightly larger drop in the value of 

EARL when   increases from 1 to 2; however, increasing   further yields lower reductions in the 

EARL values as compared to   increasing from 1 to 2. 
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Table 1: The     and      profiles for    1 (with    4 in parentheses) of the HWMA  ̅  scheme 

when    1,    0.1, 0.5, 0.9  and    0, 0.2, 0.5, 0.9  

 
   = 0.1   = 0.5   = 0.9 

Shift   = 0   = 0.2   = 0.5   = 0.9   = 0   = 0.2   = 0.5   = 0.9  =0  =0.2  =0.5  =0.9 

0.00 499.3 
497.8 

(502.0) 

500.0 

(503.6) 

498.5 

(501.3) 
500.7 

498.7 

(502.5) 

499.1 

(501.8) 

500.1 

(501.8) 
502.0 

506.7 

(508.3) 

508.2 

(511.7) 

508.2 

(512.4) 

0.25 81.19 
83.65 

(82.57) 

95.07 

(85.55) 

123.1 

(93.04) 
218.8 

224.1 

(218.8) 

249.3 

(226.3) 

293.9 

(242.2) 
357.7 

363.8 

(358.1) 

379.3 

(362.6) 

416.4 

(378.9) 

0.5 28.41 
29.59 

(28.85) 

34.15 

(29.98) 

45.18 

(33.10) 
68.88 

71.52 

(69.17) 

86.16 

(73.21) 

121.9 

(82.61) 
177.5 

182.4 

(178.0) 

207.1 

(185.5) 

259.1 

(202.3) 

0.75 14.90 
15.27 

(15.00) 

17.89 

(15.60) 

24.11 

(17.28) 
27.89 

29.14 

(28.15) 

36.22 

(29.93) 

54.92 

(34.48) 
85.05 

88.55 

(86.23) 

107.3 

(91.2) 

147.7 

(102.6) 

1.00 9.34 
9.65 

(9.39) 
11.21 
(9.81) 

15.11 
(10.83) 

14.16 
14.68 

(14.32) 
18.18 

(15.12) 
28.38 

(17.49) 
43.13 

45.55 
(43.84) 

57.01 
(46.72) 

87.31 
(54.30) 

1.25 6.54 
6.76 

(6.60) 

7.77 

(6.87) 

10.54 

(7.57) 
8.44 

8.79 

(8.49) 

10.83 

(9.00) 

16.79 

(10.42) 
23.58 

24.98 

(23.97) 

32.12 

(25.72) 

52.28 

(30.54) 

1.5 5.00 
5.09 

(5.01) 

5.87 

(5.19) 

7.82 

(5.69) 
5.65 

5.86 

(5.71) 

7.17 

(6.05) 

10.89 

(6.89) 
13.74 

14.62 

(14.05) 

19.39 

(15.13) 

32.56 

(18.26) 

1.75 4.00 
4.10 

(4.00) 

4.67 

(4.14) 

6.15 

(4.54) 
4.11 

4.29 

(4.17) 

5.16 

(4.38) 

7.65 

(4.98) 
8.64 

9.19 

(8.74) 

12.05 

(9.47) 

21.00 

(11.49) 

2.00 3.33 
3.41 

(3.34) 

3.87 

(3.46) 

5.05 

(3.77) 
3.20 

3.31 

(3.23) 

3.95 

(3.37) 

5.74 

(3.81) 
5.77 

6.10 

(5.88) 

8.17 

(6.31) 

14.17 

(7.69) 

2.25 2.83 
2.90 

(2.85) 

3.29 

(2.96) 

4.25 

(3.20) 
2.61 

2.70 

(2.63) 

3.16 

(2.73) 

4.51 

(3.05) 
4.11 

4.33 

(4.16) 

5.69 

(4.45) 

9.91 

(5.34) 

2.5 2.45 
2.53 

(2.47) 

2.86 

(2.56) 

3.66 

(2.78) 
2.20 

2.26 

(2.21) 

2.64 

(2.30) 

3.68 

(2.55) 
3.07 

3.25 

(3.09) 

4.16 

(3.31) 

7.21 

(3.94) 

2.75 2.14 
2.20 

(2.15) 
2.50 

(2.22) 
3.23 

(2.44) 
1.90 

1.96 
(1.92) 

2.23 
(1.98) 

3.09 
(2.19) 

2.40 
2.53 

(2.45) 
3.20 

(2.61) 
5.41 

(3.05) 

3.00 1.88 
1.93 

(1.89) 

2.22 

(1.96) 

2.87 

(2.15) 
1.68 

1.72 

(1.69) 

1.97 

(1.76) 

2.64 

(1.91) 
1.98 

2.05 

(1.99) 

2.56 

(2.11) 

4.22 

(2.45) 

      33.46 
34.54 

(33.95) 

39.58 

(35.24) 

51.89 

(38.56) 
82.42 

84.87 

(82.60) 

97.46 

(86.13) 

124.8 

(94.18) 
165.9 

170.1 

(166.5) 

187.7 

(171.5) 

227.6 

(184.5) 

      4.72 
4.84 

(4.74) 

5.55 

(4.91) 

7.39 

(5.39) 
5.35 

5.56 

(5.40) 

6.78 

(5.70) 

10.27 

(6.52) 
12.93 

13.72 

(13.16) 

17.93 

(14.16) 

30.00 

(17.00) 

      2.33 
2.39 

(2.34) 

2.72 

(2.42) 

3.50 

(2.64) 
2.10 

2.16 

(2.11) 

2.50 

(2.19) 

3.48 

(2.43) 
2.89 

3.04 

(2.92) 

3.90 

(3.12) 

6.69 

(3.69) 

      19.09 
19.69 

(19.34) 
22.56 

(20.07) 
29.64 

(21.98) 
43.89 

45.22 
(44.00) 

52.12 
(45.92) 

67.52 
(50.35) 

89.39 
91.90 

(89.85) 
102.8 

(92.82) 
128.8 

(100.8) 

      3.52 
3.62             

(3.54) 

4.13            

(3.67) 

5.45                   

(4.02) 
3.72 

3.86                        

(3.76) 

4.64                            

(3.95) 

6.87                       

(4.48) 
7.91 

8.38                     

(8.04) 

10.92                             

(8.64) 

18.35                    

(10.35) 

      13.5 
13.92 

(13.68) 

15.95 

(14.19) 

20.93 

(15.53) 
29.96 

30.86 

(30.04) 

35.58 

(31.34) 

46.17 

(34.38) 
60.56 

62.28 

(60.87) 

69.83 

(62.92) 

88.10 

(68.41) 

Design 

parameters 
    2.938     3.089     3.092 

 

Table 2: The      profiles for    1 (with    4 in parentheses) of the HWMA  ̅  scheme when    0, 

   1,    0.1, 0.5, 0.9  and    0, 0.2, 0.5, 0.9   

 
   = 0.1   = 0.5   = 0.9 

Shift  =0  =0.2  =0.5   =0.9  =0  =0.2  =0.5   =0.9  =0  =0.2  =0.5   =0.9 

0.00 407.9 
406.2 

(408.0) 

409.0 

(407.4) 

407.1 

(407.1) 
496.1 

496.0 

(496.5) 

500.7 

(500.7) 

496.6 

(497.2) 
504.8 

503.6 

(502.4) 

502.0 

(501.2) 

504.8 

(503.2) 

0.25 56.65 
58.89 

(57.62) 

68.20 

(59.71) 

89.08 

(66.17) 
214.9 

220.7 

(215.4) 

245.6 

(221.5) 

291.8 

(239.7) 
357.4 

363.6 

(360.5) 

381.5 

(361.2) 

416.3 

(378.0) 
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0.5 17.66 
18.38 

(18.00) 

21.74 

(18.70) 

29.39 

(20.76) 
65.73 

67.56 

(64.96) 

82.55 

(69.64) 

117.7 

(78.40) 
176.3 

181.5 

(176.5) 

205.5 

(184.7) 

259.0 

(201.2) 

0.75 8.69 
9.01 

(8.79) 

10.67 

(9.14) 

14.57 

(10.30) 
24.61 

25.72 

(24.95) 

32.81 

(26.43) 

51.15 

(31.03) 
83.95 

87.46 

(85.37) 

103.5 

(90.29) 

147.7 

(102.6) 

1.00 5.18 
5.37 

(5.15) 

6.27           

(5.51) 

8.80 

(6.10) 
11.57 

11.93 

(11.57) 

15.31 

(12.38) 

24.99 

(14.60) 
42.41 

45.04 

(43.13) 

55.98 

(46.36) 

86.38 

(53.60) 

1.25 3.42 
3.53 

(3.44) 
4.17                

(3.61) 
5.91 

(4.06) 
6.30 

6.58 
(6.31) 

8.40 
(6.86) 

13.96 
(8.04) 

22.84 
24.26 

(23.20) 
31.33 

(24.94) 
51.20 

(29.60) 

1.5 2.44 
2.51 

(2.46) 

3.01     

(2.57) 

4.23 

(2.89) 
3.78 

4.00 

(3.86) 

5.13 

(4.20) 

8.52 

(4.89) 
12.96 

13.82 

(13.21) 

18.67 

(14.32) 

31.90 

(17.39) 

1.75 1.86 
1.92 

(1.87) 

2.25 

(1.96) 

3.18 

(2.19) 
2.53 

2.70 

(2.60) 

3.39 

(2.76) 

5.55 

(3.25) 
7.85 

8.40 

(8.02) 

11.20 

(8.70) 

20.21 

(10.74) 

2.00 1.52 
1.57 

(1.54) 

1.80 

(1.59) 

2.48 

(1.73) 
1.83 

1.91 

(1.83) 

2.41 

(1.95) 

3.90 

(2.29) 
5.01 

5.35 

(5.13) 

7.38 

(5.60) 

13.42 

(6.92) 

2.25 1.32 
1.35 

(1.33) 

1.51 

(1.37) 

2.01 

(1.47) 
1.37 

1.44 

(1.39) 

1.78 

(1.47) 

2.88 

(1.71) 
3.38 

3.57 

(3.40) 

4.93 

(3.71) 

9.11 

(4.56) 

2.5 1.20 
1.22 

(1.20) 
1.33 

(1.23) 
1.71 

(1.31) 
1.08 

1.13 
(1.10) 

1.39 
(1.16) 

2.20 
(1.32) 

2.34 
2.50 

(2.35) 
3.42 

(2.59) 
6.45 

(3.21) 

2.75 1.10 
1.12 

(1.11) 

1.22 

(1.12) 

1.49 

(1.19) 
0.88 

0.92 

(0.90) 

1.12 

(0.95) 

1.72 

(1.07) 
1.69 

1.80 

(1.73) 

2.46 

(1.89) 

4.65 

(2.32) 

3.00 1.00 
1.02 

(1.01) 

1.11 

(1.04) 

1.33 

(1.10) 
0.74 

0.78 

(0.75) 

0.92 

(0.79) 

1.40 

(0.90) 
1.26 

1.34 

(1.28) 

1.85 

(1.41) 

3.47 

(1.72) 

Design 

parameters 
   2.938    3.089    3.092  

 

  
(a)      profile when    0.1 & 0.9 and    1 (b)      profile when    0.1 & 0.9 and    4 

Figure 1: The      profiles for    1 & 4 of the HWMA  ̅  scheme when   {0, 0.2, 0.5, 0.9} and 

  {0.1, 0.9} 
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Figure 2: The EARL profiles of the HWMA  ̅  scheme for   {1, 2, 3, 4, 5} when    0.5,    5,    

0.1 and   =2.9380 

 
It is worth mentioning that varying   yields no effect on the ARL and SDRL profiles of the HWMA  ̅  

scheme and that   is equal to 1 in Tables 1 and 2 as well as in Figures 1 and 2. Next, in Table 3, the effect 

of varying   is illustrated. Firstly, when  =0, the ARL profiles are the same for any integer value of   

(i.e.   ). Secondly, for    0, it is shown in Table 3 that for    0, the ARL and EARL decrease as   

increases. That is, as   increases, there is a reduction in the negative effect of measurement errors. 

Thirdly, it is also shown in Table 3 that the ARLs and EARLs are lower when  =4 than those when  =1, 

indicating a reduction in the negative effect of measurement errors as   increases. Finally, although Table 

3 is illustrated for  =0.1 and  =5 only, this pattern holds for other values of   and  , whenever    0 and 

   0. Note that a significant reduction is observed for large values of  , e.g. for    0.9 with    0.25 

and    1, the      is equal to 122.2, 93.34 and 86.58 when   is equal to 1, 2 and 3, respectively. A 

similar pattern is observed for EARLs.              
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Table 3.The effect of   on the ARL and EARL for  =1 (with  =4 in parentheses) of the HWMA  ̅  scheme when 

  {1, 2, 3},  =0.1,   =2.9380,   {0, 0.2, 0.5, 0.9}, n = 5, a nominal      value of 500  

 
   0    0.2    0.5    0.9 

Shift       1    2    3    1    2    3    1    2    3 

0.00 500.7 
501.9 

(502.3) 

498.6 

(501.6) 

501.3 

(503.2) 

 502.0 

(502.8)  

 498.4 

(499.6)  

 499.2 

(501.6)  

 500.6 

(502.5)  

 501.6 

(500.1)  

 502.2 

(499.0)  

0.25 81.87 
83.77 

(82.24) 
82.21 

(81.97) 
82.09 

(81.59) 
 95.69 
(85.40)  

 85.33 
(82.83)  

 83.45 
(81.90)  

122.2 
(93.36)  

 93.34 
(83.88)  

 86.58 
(82.94)  

0.50 28.76 
29.43 

(28.77) 

28.79 

(28.73) 

28.52 

(28.51) 

 33.85 

(29.95)  

 30.03 

(28.98)  

 29.17 

(28.78)  

 45.41 

(32.90)  

 33.04 

(29.75)  

 30.50 

(29.12)  

0.75 14.93 
15.34 

(15.01) 
14.94 

(14.95) 
14.90 

(14.93) 
 17.87 
(15.60)  

 15.61 
(15.09)  

 15.20 
(14.94)  

 24.01 
(17.26)  

 17.37 
(15.49)  

 15.93 
(15.17)  

1.00 9.29 
9.63 

(9.43) 

9.42 

(9.35) 

9.38 

(9.30) 

 11.14 

(9.76)  

 9.79 

(9.46)  

 9.58 

(9.38)  

 15.13 

(10.82)  

 10.83 

(9.74)  

 10.03 

(9.48)  

1.25 6.56 
6.71 

(6.60) 
6.59 

(6.56) 
6.58 

(6.56) 
 7.81 
(6.88)  

 6.86 
(6.61)  

 6.66 
(6.58)  

 10.49 
(7.55)  

 7.56 
(6.80)  

 7.01 
(6.63)  

1.50 4.96 
5.12 

(5.01) 

5.01 

(5.00) 

5.00 

(4.97) 

 5.85 

(5.19)  

 5.19 

(5.02)  

 5.09 

(5.00)  

 7.84 

(5.72)  

 5.70 

(5.16)  

 5.29 

(5.07)  

1.75 3.98 
4.10 

(4.02) 
4.01 

(3.99) 
3.99 

(3.99) 
 4.69 
(4.15)  

 4.17 
(4.02)  

 4.07 
(4.00)  

 6.14 
(4.54)  

 4.55 
(4.12)  

 4.24 
(4.04)  

2.00 3.32 
3.42 

(3.34) 

3.35 

(3.32) 

3.32 

(3.33) 

 3.86 

(3.45)  

 3.46 

(3.35)  

 3.38 

(3.33)  

 5.03 

(3.77)  

 3.77 

(3.44)  

 3.52 

(3.37)  

2.25 2.82 
2.91 

(2.85) 
2.86 

(2.83) 
2.85 

(2.83) 
 3.29 
(2.95)  

 2.95 
(2.86)  

 2.88 
(2.84)  

 4.23 
(3.20)  

 3.21 
(2.92)  

 3.00 
(2.88)  

2.50 2.45 
2.52 

(2.48) 

2.46 

(2.45) 

2.46 

(2.45) 

 2.86 

(2.55)  

 2.56 

(2.48)  

 2.48 

(2.47)  

 3.67 

(2.78)  

 2.78 

(2.53)  

 2.59 

(2.48)  

2.75 2.13 
2.21 

(2.16) 
2.15 

(2.14) 
2.15 

(2.14) 
 2.51 
(2.24)  

 2.24 
(2.16)  

 2.18 
(2.15)  

 3.21 
(2.44)  

 2.43 
(2.21)  

 2.27 
(2.18)  

3.00 1.88 
1.94 

(1.88) 

1.88 

(1.88) 

1.88 

(1.87) 

 2.22 

(1.96)  

 1.96 

(1.89)  

 1.91 

(1.88)  

 2.87 

(2.16)  

 2.15 

(1.96)  

 2.00 

(1.90)  

      33.71 
34.54 

(33.86) 

33.83 

(33.75) 

33.73 

(33.58) 

 39.64 

(35.18)  

 35.19 

(34.09)  

 34.35 

(33.75)  

 51.69 

(38.59)  

 38.65 

(34.72)  

 35.76 

(34.18)  

      4.71 
4.84 

(4.74) 

4.74 

(4.72) 

4.72 

(4.71) 

 5.55 

(4.92)  

 4.92 

(4.75)  

 4.80 

(4.72)  

 7.38 

(5.40)  

 5.40 

(4.88)  

 5.02 

(4.78)  

      2.32 
2.40 

(2.34) 

2.34 

(2.33) 

2.34 

(2.32) 

 2.72 

(2.43)  

 2.43 

(2.35)  

 2.36 

(2.34)  

 3.50 

(2.65)  

 2.64 

(2.41)  

 2.47 

(2.36)  

      19.21 
19.69 

(19.30) 

19.29 

(19.23) 

19.23 

(19.15) 

 22.60 

(20.05)  

 20.06 

(19.42)  

 19.58 

(19.24)  

 29.53 

(21.99)  

 22.02 

(19.80)  

 20.39 

(19.48)  

      4.15 
4.28 

(4.20) 

4.19 

(4.17) 

4.18 

(4.16) 

 4.91 

(4.35)  

 4.35 

(4.21)  

 4.25 

(4.18)  

 6.51 

(4.78)  

 4.78 

(4.32)  

 4.44 

(4.23)  

      13.58 
13.93 

(13.65) 

13.64 

(13.60) 

13.60 

(13.54) 

 15.97 

(14.17)  

 14.18 

(13.73)  

 13.84 

(13.60)  

 20.85 

(15.54)  

15.56 

(14.00)  

 14.41 

(13.77)  

 

With regard to the linearly increase in the variance, the effect of varying  ,   and   is investigated in 

Table 4. Note that for  =2, only  =0 is shown to preserve writing space. Firstly, for  =1,  =1 and 

 =0.25, the      is equal to 131.2, 169.7 and 200.4 when   is equal to 0, 1 and 2, respectively. A similar 

pattern is observed for the corresponding EARLs. This shows that when   increases there is deterioration 

in the performance of the HWMA  ̅  scheme. Secondly, for  =1,  =0 and  =0.25, the      is equal to 
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131.2, 169.8 and 200.3 when   is equal to 1, 2 and 3, respectively. A similar pattern is observed for the 

corresponding EARLs. This shows that when   increases there is a deterioration in the performance of the 

HWMA  ̅  scheme. Thirdly, for  =0,  =1 and  =0.25, the      is equal to 131.2 when  =1; however, 

it is equal to 95.2 when  =2. Similarly, the EARLs also decreases when   increases. This shows that for a 

fixed   and  , increasing   yields an improved performance for the HWMA  ̅  scheme, which implies 

that there is a reduction in the negative effect of measurement errors. Finally, it is shown in Table 4 that 

the ARLs and EARLs are lower when  =4 than those when  =1 indicating a reduction in the negative 

effect of measurement errors as   increases. 

 

 

 

 

 

Table 4: The     and      profiles for    1 (with    4 in parentheses) of the HWMA  ̅  scheme 

when    {1, 2},    {0, 1, 2},    {1, 2, 3} and    0.1, 0.5, 0.9   
       = 1        = 2  

    = 0     = 1     = 2     = 0  

Shift   = 1   = 2   = 3    = 1   = 2   = 3    = 1   = 2   = 3    = 1   = 2   = 3  

0.00 500.8 

(501.0) 

501.4 

(504.1) 

502.9 

(501.1) 

497.5 

(500.9) 

502.5 

(501.9) 

498.6 

(500.1) 

502.7 

(502.8) 

500.2 

(499.7) 

502.5 

(498.3) 

500.3 

(504.7) 

497.5 

(501.6) 

498.4 

(499.5) 

0.25 131.2 
(95.63) 

169.8 
(108.5) 

200.3 
(119.8) 

169.7 
(108.4) 

200.2 
(120.0) 

224.3 
(130.9) 

200.4 
(120.0) 

224.6 
(131.2) 

245.8 
(142.0) 

95.3 
(85.4) 

108.6 
(88.6) 

119.6 
(92.6) 

0.5 48.77 

(34.03) 

66.21 

(39.16) 

81.54 

(44.25) 

66.22 

(39.27) 

81.77 

(44.29) 

95.47 

(48.88) 

81.61 

(44.20) 

96.33 

(48.83) 

107.9 

(53.51) 

33.96 

(30.10) 

39.24 

(31.46) 

43.91 

(32.58) 

0.75 26.10 

(17.83) 

35.88 

(20.68) 

44.64 

(23.41) 

35.73 

(20.77) 

44.64 

(23.42) 

52.78 

(25.94) 

44.57 

(23.33) 

52.80 

(26.05) 

60.82 

(28.57) 

17.84 

(15.69) 

20.74 

(16.41) 

23.37 

(17.06) 

1.00 16.37 

(11.17) 

22.74 

(12.97) 

28.48 

(14.71) 

22.76 

(12.97) 

28.58 

(14.77) 

34.04 

(16.39) 

28.46 

(14.68) 

33.91 

(16.38) 

39.30 

(18.06) 

11.17 

(9.80) 

12.93 

(10.23) 

14.71 

(10.74) 

1.25 11.38 

(7.81) 

15.86 

(8.99) 

19.94 

(10.23) 

15.88 

(9.03) 

20.00 

(10.20) 

23.86 

(11.36) 

19.99 

(10.23) 

23.85 

(11.39) 

27.83 

(12.58) 

7.78 

(6.89) 

8.98 

(7.20) 

10.24 

(7.53) 

1.5 8.50 

(5.86) 

11.73 

(6.75) 

14.83 

(7.62) 

11.71 

(6.75) 

14.79 

(7.64) 

17.86 

(8.50) 

14.90 

(7.61) 

17.86 

(8.50) 

20.64 

(9.33) 

5.84 

(5.20) 

6.77 

(5.42) 

7.65 

(5.67) 

1.75 6.67 

(4.67) 

9.18 

(5.34) 

11.58 

(5.99) 

9.16 

(5.32) 

11.59 

(5.97) 

13.92 

(6.65) 

11.56 

(5.98) 

13.93 

(6.63) 

16.13 

(7.28) 

4.67 

(4.16) 

5.35 

(4.33) 

6.00 

(4.51) 

2.00 5.41 
(3.87) 

7.41 
(4.39) 

9.31 
(4.89) 

7.41 
(4.38) 

9.27 
(4.92) 

11.20 
(5.41) 

9.35 
(4.92) 

11.14 
(5.41) 

12.95 
(5.93) 

3.86 
(3.45) 

4.40 
(3.59) 

4.92 
(3.74) 

2.25 4.57 

(3.30) 

6.16 

(3.72) 

7.76 

(4.15) 

6.16 

(3.72) 

7.73 

(4.15) 

9.23 

(4.56) 

7.73 

(4.16) 

9.18 

(4.56) 

10.76 

(4.98) 

3.29 

(2.95) 

3.73 

(3.06) 

4.13 

(3.18) 
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2.5 3.93 

(2.87) 

5.26 

(3.23) 

6.55 

(3.57) 

5.26 

(3.22) 

6.55 

(3.58) 

7.79 

(3.93) 

6.51 

(3.59) 

7.79 

(3.92) 

9.05 

(4.25) 

2.86 

(2.55) 

3.23 

(2.66) 
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Figure 3 displays the percentage decrease (%Decrease) in the performance of the HWMA  ̅  scheme 

with respect to   for different values of  ; while Figure 4 displays the %Increase in the      profile of 

the HWMA  ̅  scheme from using one set of measurements (i.e.,    1) to multiple sets of measurements 

(i.e.,    1). Moreover, Figure 5 displays the expected %Decrease in the performance of the HWMA  ̅  

scheme for different   values. The %Decrease and the expected %Decrease in the performance are 

computed using the following formula:  

             
            

    

    
    

     (13) 

and  

                   
 

 
∑             

    

      

  (14) 
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where     ( ) is the OOC ARL value of the HWMA  ̅  scheme for a specific shift ( ) when    0 and 

    
  ( ) is the OOC ARL value for a specific shift when    0. 

From Figures 3 (a)-(c), it can be seen that the %Decrease in the performance of the HWMA  ̅  scheme is 

larger (smaller) for large (small) values of  . Moreover, the %Decrease in the performance is larger for 

very small shifts when   is small; however, it is smaller for moderate and large values of   when   is 

small and the converse is true for large values of  . The %Decrease in the performance of the HWMA  ̅  

scheme reaches its maximum point when    1 for moderate values of   and  =1.75 for large values of 

 . However, the minimum point is attained for very small shift values. Note that for small values of  , the 

%Decrease in the performance of the HWMA  ̅  scheme reaches its maximum point in the interval 0 

    0.25.  
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(a)    0.1 (b)    0.5 (c)    0.9 
Figure 3: The %Decrease in the      profile of the HWMA  ̅  scheme with a constant variance for different values of   and   
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The %Increase and the expected %Increase in the performance can also be computed in a similar way 

using the following formula:  

             |
            

    

    
     

|      (15) 

and  

                   
 

 
∑             

    

      

  (16) 

where     ( ) is the OOC ARL value of the HWMA  ̅  scheme for a specific shift ( ) when    1 and 

    
  ( ) is the OOC ARL value for a specific shift when    1. 

Figure 4 shows that for small-to-large shifts, the %Increase in the performance or sensitivity of the 

HWMA  ̅  scheme increases as   increases. For instance, a small shift of size 0.25 with    0.5 and    

0.1, there is a %Increase of 6.68%, 9.17% and 10.01% when    2, 3 and 4, respectively. The larger the 

value of  , the higher the %Increase in the sensitivity of the HWMA  ̅  scheme. It can also be observed 

that for small values of   there are random patterns in the %Increase ARL function.  
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(a)    0.2 and    0.1 (b)    0.5 and    0.1 (c)    0.9 and    0.1 

 
 

 
(d)    0.2 and    0.5 (e)    0.5 and    0.5 (f)    0.9 and    0.5 

   
(g)    0.2 and    0.9 (h)    0.5 and    0.9 (i)    0.9 and    0.9 

Figure 4: The %Increase in the      profile of the HWMA  ̅  scheme with a constant variance for different values of   and    0.1 
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Figures 5(a)-(l) show that when   = 0.1 (i.e. small) and    1, then for small shifts in the process mean, 

the expected %Decrease in the sensitivity of the HWMA  ̅  scheme is 3.25%, 19.35% and 58.57% when 

   0.2, 0.5 and 0.9, respectively. For moderate values of   = 0.5, when    0.2, 0.5 and 0.9, the 

expected %Decrease in the performance of the HWMA  ̅  scheme is 3.61%, 24.32% and 77.16%, 

respectively. However, for large value of   = 0.9, when    0.2, 0.5 and 0.9, the expected %Decrease in 

the performance of the HWMA  ̅  scheme is 3.55%, 19.43% and 47.68%, respectively. These results 

show that when    0.2, 0.5 and 0.9 the expected %Decrease in the sensitivity varies between 3.25 to 

3.61%, 19.35 to 24.32% and 47.68 to 77.16%, respectively. Thus, when    2, for    0.2, 0.5 and 0.9, 

the expected %Decrease in the sensitivity of the HWMA  ̅  scheme varies between 1.80 to 2.01%, 9.72 

to 11.97% and 27.82 to 34.92%, respectively. That is, a higher value of   yields lower expected 

%Decrease in the sensitivity of the HWMA  ̅  scheme as compared to a lower one. 

Figures 6 (a)-(k) display the expected %Increase in the sensitivity of the HWMA  ̅  scheme for different 

values of   and  . It is observed that regardless of the size of the mean shift, there is a large increase in 

the sensitivity of the scheme when   is small and the expected %Increase is higher for large values of  . 

Moreover, Figure 6 shows that the larger the value of   the more sensitive is the HWMA  ̅  scheme, 

except for small shifts in the process mean.  
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(a)    0.1 (b)    0.5 (c)    0.9 

Panel 1: Small shifts 

   
(d)    0.1 (e)    0.5 (f)    0.9 

Panel 2: Moderate shifts 

   
(g)    0.1 (h)    0.5 (i)    0.9 

Panel 3: Large shifts 

   
(j)    0.1 (k)    0.5 (l)    0.9 

Panel 4: Small to large shifts 
Figure 5: The Expected %Decrease in the      value of the HWMA  ̅  scheme with a constant variance
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(a)    0.1 (b)    0.5 (c)    0.9 

Panel 1: Small shifts 

 
 

 
(d)    0.1 (e)    0.5 (f)    0.9 

Panel 2: Moderate shifts 
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Panel 3: Large shifts 
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Panel 4: Small to large shifts 
Figure 6: The Expected %Increase in the      value of the HWMA  ̅  scheme with a constant variance 
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In the design of statistical monitoring schemes with measurement errors, it is very important to 

investigate the number of measurements per sampling time necessary to compensate for the negative 

effect of measurement errors. In most of the cases, the elimination of the effect of measurement errors is 

almost impossible because in some situations, measurement costs need to be minimized and the use of 

large sample sizes must be avoided. Figure 7 presents the marginal %Increase in the sensitivity of the 

HWMA  ̅  scheme when using  -measurements with    0.1. In this paper, the marginal %Increase in 

the performance or sensitivity is defined as a percentage drop in the      value for one unit increase in 

the value of  . From Figure 7, it is observed that the marginal %Increase decreases as the number of 

measurement increases. Therefore, for small level of measurement errors, it is advised to use 3 sets of 

measurements of size 5 because when     the marginal %increase in the sensitivity is around 1% 

which is insignificant. For moderate values of  , it is advised to use 3 or 4 sets of measurements and for 

large values of  , the use of no more than 4 or 5 sets of measurements is suggested. These 

recommendations apply to all values of  . 

 

   
(a)    0.2 (b)    0.5 (c)    0.9 

Figure 7: Marginal %Increases of the HWMA  ̅  scheme with a constant variance when    0.1  

Note that Figures 3 to 7 were constructed for any   value and  =1. For other values of  ,   and  , a 

similar conclusion is observed for different values of  ,   and  .  
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In this section, the HWMA  ̅  scheme is compared to the CUSUM and EWMA  ̅  schemes. The 

implementation of the CUSUM  ̅  scheme requires two important parameters known as the reference and 

control limits parameters denoted by    and   , respectively. However, the EWMA  ̅  scheme also 

requires two parameters known as the smoothing and control limits parameter denoted by    and   , 

respectively. For a nominal      value of 500 and     0.1, it is observed that (  ,   ) = (0.125, 5.887) 

and     2.824 are such that the CUSUM and EWMA  ̅  schemes yield an attained IC     as close as 

possible to 500. Table 5 displays the ARL and EARL profiles of the HWMA, CUSUM and EWMA  ̅  

schemes for different values of   and  . From this table, at each shift value or range of shift values, the 

best performing scheme is boldfaced. It is observed that, regardless of the level of measurement error and 

the number of measurements, the HWMA scheme outperforms the CUSUM and EWMA schemes under 

small mean shifts. The CUSUM scheme outperforms the EWMA scheme for very small shifts (i.e., 0 

    0.25) and the converse is true for shifts of size 0.25     1. For small and moderate shifts, the 

EWMA scheme performs better than the CUSUM and HWMA schemes and the latter outperforms the 

CUSUM scheme. For small-to-moderate shifts as well as for small-to-large shifts in the process mean, the 

HWMA scheme is superior to the CUSUM and EWMA schemes. However, for moderate-to-large shifts, 

the EWMA scheme performs better than CUSUM and HWMA schemes and the latter is superior to the 

CUSUM scheme. 

 

Table 5: Performance comparison of the ARL and EARL values for  =1 (with  =4 in parentheses) of the 

HWMA, EWMA and CUSUM  ̅  schemes when     0.1,    {0, 0.2, 0.5, 0.9} for a nominal      

value of 500 

Shift 

CUSUM  ̅  scheme EWMA  ̅  scheme HWMA  ̅  scheme  

    0.125 and     5.887     2.824 and   = 0.1     2.938 and   = 0.1 

  = 0   = 0.2   = 0.5    = 0.9   = 0   = 0.2   = 0.5    = 0.9   = 0   = 0.2   = 0.5    = 0.9 

0.00 500.60 
 501.02 

(502.13)  

 500.51 

(502.70)  

 500.93 

(503.58)  
500.72 

 499.06 

(500.55)  

 502.63 

(501.54)  

 500.92 

(499.52)  
499.32 

497.82 

(501.99) 

499.97 

(503.58 

498.50 

(501.33) 

0.25 84.00 
 85.65 
(84.22)  

 97.14 
(87.22)  

 123.9 
(94.43)  

102.69 
 106.50 
(105.14)  

 124.17 
(109.61)  

 164.75 
(119.82)  

81.19 
83.65 

(82.57) 

95.07 

(85.55) 

123.14 

(93.04) 

0.50 34.66 
 35.43 

(34.89)  

 39.60 

(35.99)  

 49.68 

(38.76)  
28.75 

 29.70 

(29.04)  

 35.60 

(30.34)  

 50.99 

(34.40)  
28.41 

29.59 

(28.85) 

34.15 

(29.98) 

45.18 

(33.10) 

0.75 21.71 
 22.24 

(21.83)  

 24.62 

(22.40)  

 30.61 

(24.11)  
13.61 

 14.08 

(13.71)  

 16.64 

(14.36)  

 23.52 

(16.13)  
14.90 

15.27 

(15.00) 

17.89 

(15.60) 

24.11 

(17.28) 
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1.00 15.77 
 16.12 

(15.86)  

 17.85 

(16.33)  

 21.93 

(17.45)  
8.21 

 8.53 

(8.26)  

 9.92 

(8.70)  

 13.76 

(9.67)  
9.34 

9.65 

(9.39) 

11.21 

(9.81) 

15.11 

(10.83) 

1.25 12.43 
 12.69 
(12.5)  

 14.00 
(12.83)  

 17.09 
(13.71)  

5.61 
 5.85 

(5.66)  

 6.78 

(5.94)  

 9.36 

(6.58)  
6.54 

6.76 
(6.60) 

7.77 
(6.87) 

10.54 
(7.57) 

1.50 10.28 
 10.48 

(10.31)  

 11.53 

(10.59)  

 14.05 

(11.33)  
4.17 

 4.32 

(4.22)  

 4.99 

(4.38)  

 6.82 

(4.84)  
5.00 

5.09 

(5.01) 

5.87 

(5.19) 

7.82 

(5.69) 

1.75 8.75 
 8.94 

(8.81)  

 9.83 

(9.03)  

 11.90 

(9.63)  
3.26 

 3.37 

(3.30)  

 3.88 

(3.43)  

 5.29 

(3.77)  
4.00 

4.10 

(4.00) 

4.67 

(4.14) 

6.15 

(4.54) 

2.00 7.64 
 7.80 
(7.69)  

 8.57 
(7.89)  

 10.37 
(8.41)  

2.67 
 2.74 

(2.68)  

 3.16 

(2.78)  

 4.21 

(3.07)  
3.33 

3.41 
(3.34) 

3.87 
(3.46) 

5.05 
(3.77) 

2.25 6.79 
 6.93 

(6.84)  

 7.61 

(7.00)  

 9.16 

(7.45)  
2.23 

 2.29 

(2.22)  

 2.63 

(2.33)  

 3.50 

(2.56)  
2.83 

2.90 

(2.85) 

3.29 

(2.96) 

4.25 

(3.20) 

2.50 6.13 
 6.24 
(6.16)  

 6.84 
(6.31)  

 8.24 
(6.72)  

1.92 
 1.98 

(1.93)  

 2.26 

(2.00)  

 2.97 

(2.19)  
2.45 

2.53 
(2.47) 

2.86 
(2.56) 

3.66 
(2.78) 

2.75 5.59 
 5.69 

(5.62)  

 6.22 

(5.75)  

 7.49 

(6.10)  
1.69 

 1.74 

(1.70)  

 1.97 

(1.76)  

 2.58 

(1.91)  
2.14 

2.20 

(2.15) 

2.50 

(2.22) 

3.23 

(2.44) 

3.00 5.14 
 5.23 

(5.16)  

 5.72 

(5.29)  

 6.86 

(5.61)  
1.51 

 1.55 

(1.52)  

 1.74 

(157)  

 2.26 

(1.70)  
1.88 

1.93 

(1.89) 

2.22 

(1.96) 

2.87 

(2.15) 

      39.04 
 39.86 

(39.2)  

 44.80 

(40.49)  

 56.53 

(43.69)  
38.32 

 39.70 

(39.04)  

 46.58 

(40.75)  

 63.26 

(45.01)  
33.46 

34.54 

(33.95) 

39.58 

(35.24) 

51.89 

(38.56) 

      9.78 
 9.98      

(9.83)  

 10.98 

(10.09)  

 13.35 

(10.77)  
3.93 

 4.07       

(3.97)  

 4.70           

(4.13)  

 6.42           

(4.57)  
4.72 

4.84 

(4.74) 

5.55 

(4.91) 

7.39 

(5.39) 

      5.91 
 6.02     
(5.95)  

 6.60 
(6.09)  

 7.94 
(6.47)  

1.84 
 1.89          

(1.84)  

 2.15           

(1.92)  

 2.83            

(2.09)  
2.33 

2.39 
(2.34) 

2.72 
(2.42) 

3.50 
(2.64) 

      24.41 
 24.92 

(24.51)  

 27.89 

(25.29)  

 34.94 

(27.23)  
21.12 

 21.89        

(21.50)  

 25.64 

(22.44)  

 34.84                   

(24.79)  
19.09 

19.69 

(19.35) 

22.56 

(20.07) 

29.64 

(21.98) 

      7.84 
 8.00 
(7.89)  

 8.79 
(8.09)  

 10.65 
(8.62)  

2.88 
 2.98               

(2.90)  

 3.43 

(3.02)  

 4.62           

(3.33)  
3.52 

3.62                       
(3.54) 

4.13                                
(3.67) 

5.45                        
(4.02) 

      18.24 
 18.62 

(18.32)  

 20.79 

(18.89)  

 25.94 

(20.31)  
14.69 

 15.22               

(14.94)  

 17.81 

(15.60)  

 24.17            

(17.22)  
13.5 

13.92 

(13.68) 

15.95 

(14.19) 

20.93 

(15.53) 

 

Illustrative examples 

Example 1: Yogurt cup filling process 

In order to illustrate the implementation of the HWMA  ̅  scheme with measurement errors, the data 

from Costa and Castagliola (2011) shown in Table 6 is used, assuming that  =0 and  =1 and that the data 

is subjected to a constant variance in the measurement system. The data is based on a yogurt cup filling 

process where the quality characteristic       
  is the weight of each yogurt cup. In this example, it is 

assumed that the IC mean and the IC standard deviation are given by     124.90  and    = 0.76 , 

respectively. An independent R&R study estimated the measurement standard deviation    = 0.24, 

yielding   = 0.24/0.76 = 0.316. The quality practitioner in charge of this process decided to take, every 

hour, two sets of measurements, each of size n = 5 (i.e. r = 2 and n = 5). For a nominal      value of 500 
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and    0.1, it is found that     2.938 that yields an attained      of 499.49. Thus, when   = 2, the 

lower and upper control limits of the HWMA  ̅  scheme when    1 and 2 are calculated using Equation 

(8) as follows: 
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For    , the rest of the time-varying control limits can also be calculated in a similar way as shown in 

Equations (17b) and (18b), respectively. For illustration purpose, the first three plotting statistics are 

calculated as follows:  
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so that, 
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    ̅ 
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The rest of the plotting statistics of the HWMA  ̅  scheme with 2-measurements are empirically shown in 

Table 6 and graphically in Figure 8. It is observed that the HWMA  ̅  scheme give an OOC signal for the 

first time on the 13
th

 subgroup.
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Table 6: Illustration of the implementation of the HWMA  ̅  scheme using the yogurt cup filling data 

        
        

        
        

        
        

        
        

        
        

   ̅ 
   ̿   

    
            Signal 

1 124.9 124.8 125.9 125.9 125.2 124.8 124.6 124.1 124.8 124.4 124.94 124.90 124.90 124.80 125.00 No 

2 124.9 125.2 125.5 125.0 124.1 123.9 125.2 125.2 125.0 125.6 124.96 124.94 124.94 123.97 125.83 No 

3 125.1 125.1 125.2 124.8 125.4 125.3 122.9 122.4 125.4 125.4 124.70 124.95 124.93 124.24 125.56 No 

4 126.1 125.9 124.6 124.8 125.7 125.5 126.4 126.5 124.9 125.7 125.61 124.87 124.94 124.36 125.44 No 

5 125.8 125.7 122.6 122.6 124.1 123.5 126.1 126.3 124.9 125.0 124.66 125.05 125.01 124.43 125.37 No 

6 125.0 125.2 125.5 124.8 124.8 125.0 124.9 124.8 124.8 124.2 124.90 124.97 124.97 124.48 125.32 No 

7 124.2 124.6 125.8 125.3 125.4 125.5 126.4 126.2 125.1 125.2 125.37 124.96 125.00 124.51 125.29 No 

8 124.9 124.9 123.8 123.2 125.1 125.3 124.0 124.5 124.4 124.2 124.43 125.02 124.96 124.54 125.26 No 

9 125.9 125.8 124.4 124.8 126.3 125.7 124.9 125.2 125.2 125.1 125.33 124.95 124.98 124.56 125.24 No 

10 124.2 124.3 126.2 125.5 125.6 125.0 124.4 124.4 124.1 124.3 124.80 124.99 124.97 124.58 125.22 No 

11 123.7 123.6 123.4 123.3 124.7 124.8 123.1 123.1 123.1 122.8 123.56 124.97 124.83 124.59 125.21 No 

12 124.0 124.1 122.6 122.4 123.6 123.6 124.4 124.5 123.6 123.1 123.59 124.84 124.72 124.60 125.20 No 

13 122.0 122.5 123.9 124.0 123.7 124.1 124.3 124.4 121.9 122.9 123.37 124.74 124.60 124.62 125.18 Yes 

14 122.4 123.0 122.8 123.1 123.7 124.2 123.7 124.1 122.8 123.1 123.29 124.63 124.50 124.62 125.18 Yes 
15 123.9 123.6 124.1 124.5 123.4 122.9 123.1 123.1 124.5 125.1 123.82 124.54 124.46 124.63 125.17 Yes 
16 121.9 122.3 123.4 123.3 123.5 123.3 125.3 125.5 123.3 123.6 123.54 124.49 124.39 124.64 125.16 Yes 
17 123.3 122.9 123.6 123.5 124.2 123.8 123.4 123.6 123.5 123.4 123.52 124.43 124.34 124.65 125.15 Yes 
18 122.0 122.2 123.6 123.4 124.7 125.0 122.6 122.5 124.5 123.9 123.44 124.38 124.28 124.65 125.15 Yes 
19 124.0 123.9 123.1 123.4 123.9 124.5 122.6 122.8 124.2 123.5 123.59 124.32 124.25 124.66 125.14 Yes 
20 125.5 124.9 122.2 122.3 123.2 123.2 123.2 123.3 123.2 123.2 123.42 124.29 124.20 124.67 125.13 Yes 
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Figure 8: Illustrative example of the HWMA  ̅  scheme using the yogurt cup filling data 

 

Example 2: Piston rings measurements 

To illustrate the negative effect of increasing measurement errors from  =0 to  =0.9 without the use of 

multiple measurements, consider the dataset from Montgomery (2013) on the inside diameters in 

millimeter (mm) of piston rings manufactured by a forging process. This dataset contains 15 samples each 

of   = 5 observations. From the historical data, it is shown in Chapter 6 of Montgomery (2013) that the 

IC mean and the IC standard deviation are given by     74.0011mm and    = 0.0094mm, respectively. 

Assuming that  =0,  =1, and a nominal      value of 500, taking    0.1 and     2.938 then the 

corresponding plotting statistics of the HWMA  ̅  scheme are given in Table 7. For  =0 and 0.9, the 

corresponding time-varying control limits are as shown in Table 7 and Figure 9. It is observed that, for 

the same dataset, when  =0 and 0.9, the HWMA  ̅  scheme gives the first OOC signal at the sample 

number 12 and 13, respectively. That is, HWMA  ̅  scheme in Figure 9 shows that the control limits for 

 =0.9 are wider than those of  =0. Thus, when the measurement error is relatively large, there is a delay 

in the signaling event of the HWMA  ̅  scheme when compared to a process with no measurement errors.   
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Table 7: Illustration of the implementation of the HWMA  ̅  scheme using the piston rings data 

          =0.0  =0.9 

        
        

        
        

        
   ̅ 

   ̿   
    

                      

1 74.012 74.015 74.030 73.986 74.000 74.009 74.001 74.002 74.000 74.002 74.000 74.003 

2 73.995 74.010 73.990 74.015 74.001 74.002 74.009 74.008 73.990 74.012 73.988 74.015 

3 73.987 73.999 73.985 74.000 73.990 73.992 74.005 74.004 73.993 74.009 73.991 74.011 

4 74.008 74.010 74.003 73.991 74.006 74.004 74.001 74.001 73.995 74.008 73.993 74.009 

5 74.003 74.000 74.001 73.986 73.997 73.997 74.002 74.001 73.996 74.007 73.994 74.008 

6 73.994 74.003 74.015 74.020 74.004 74.007 74.001 74.001 73.996 74.006 73.995 74.007 

7 74.008 74.002 74.018 73.995 74.005 74.006 74.002 74.002 73.996 74.006 73.995 74.007 

8 74.001 74.004 73.990 73.996 73.998 73.998 74.002 74.002 73.997 74.006 73.996 74.007 

9 74.015 74.000 74.016 74.025 74.000 74.011 74.002 74.003 73.997 74.005 73.996 74.006 

10 74.030 74.005 74.000 74.016 74.012 74.013 74.003 74.004 73.997 74.005 73.996 74.006 

11 74.001 73.990 73.995 74.010 74.024 74.004 74.004 74.004 73.997 74.005 73.997 74.006 

12 74.015 74.020 74.024 74.005 74.019 74.017 74.004 74.005 73.998 74.005 73.997 74.006 

13 74.035 74.010 74.012 74.015 74.026 74.020 74.005 74.006 73.998 74.005 73.997 74.005 

14 74.017 74.013 74.036 74.025 74.026 74.023 74.006 74.008 73.998 74.005 73.997 74.005 

15 74.010 74.005 74.029 74.000 74.020 74.013 74.007 74.008 73.998 74.004 73.997 74.005 

 

 
Figure 9: Illustrative example of the HWMA  ̅  scheme using the piston ring data 
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Conclusion 

Most of the SPM schemes are based on the assumption of known process parameters under perfect 

measurements. This paper contributes to the SPM literature with an extensive investigation of the 

performance (or sensitivity) of the HWMA  ̅  scheme to monitor the process mean under the assumption 

of imperfect measurements using a constant and linearly increasing variance error model in the 

measurement system. A remedial approach that involves multiple measurements is implemented in the 

HWMA  ̅  scheme and it shows that it has a positive outcome in reducing the negative effect of 

measurement errors. Since multiple measurements increase cost and time in process monitoring, the 

negative effect of measurement errors can also be reduced by increasing the value of   in the covariate 

error model. Based on the sensitivity analysis, practitioners are not advised to use more than four 

measurements in the design of the HWMA  ̅  scheme regardless of the level of measurement error. 

Compared to the CUSUM scheme, the HWMA scheme is found to be superior regardless of the size of 

the mean shift. However, the HWMA scheme is superior to the EWMA scheme under small shifts only. 

In terms of the overall performance measure, the HWMA scheme outperforms the EWMA scheme for 

small, small-to-moderate and small-to-large shifts in the process mean. However, the latter performs 

better than the HWMA scheme under moderate, large and moderate-to-large shifts in the process mean. 

Note that the HWMA  ̅  scheme is designed under the assumption of normally distributed data; however, 

when this assumption is violated, the properties of the HWMA  ̅  scheme need to be reinvestigated. 

Moreover, researchers can also investigate the sensitivity of the HWMA scheme to monitor 

autocorrelated observations with and without measurement errors. 

 

Appendix: Simulation Algorithm 

The computation of the IC and OOC run-length (RL) properties for the HWMA  ̅ scheme in the case of a 

standard normal distribution using   simulation runs are described below. The computation is done in 
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two stages; i.e. on the first stage, a search for the design parameter(s) that gives an attained IC ARL as 

close as possible to the nominal      is conducted and if such design parameters exist, they are called 

the optimal design parameters; and on the second stage, these optimal design parameters are used to 

compute OOC ARL values.  

First stage - Search of the optimal design parameter   : 

Step 1. Specify the nominal     ,  ,  ,  ,  ,  ,  , n,  ,   and the IC process parameters    and   .  

Step 2. (a) Fix a first value of    and calculate the control limits and go to Step 3. 

(b) If required, increase (or decrease)    and recalculate the control limits so that the attained IC ARL get 

closer to the nominal     . 

Step 3. Randomly generate a sample from the          
   

         distribution. Calculate the 

charting statistic and compare it to the control limits found in Step 2. If the charting statistic plots 

between the control limits, then collect the next subgroup and calculate its charting statistic and 

compare it to the control limits. Continue this process until a sample point plots beyond the control 

limits. Then, record the number of samples plotted until an OOC signal occurs, this represents one 

value of the IC RL (   ) distribution. Repeat Step 3 a total of   times to find the           

vector. 

Step 4. Once the     vector is obtained, calculate the attained IC ARL ( 
 

 
∑     

 
   ). If the attained 

IC ARL is equal or much closer to the nominal     , go to Step 5. Otherwise, go back to Step 2(b) 

(i.e., since the attained IC     is considerably greater (smaller) than the nominal value, then update 

the control limit(s) narrower (wider) and repeat again Steps 3 and 4). 

Step 5. The design parameter    found in Step 4 is called the optimal design parameter. Record the 

optimal    and its corresponding control limits. Thus, the search of the optimal    is completed.  

Second stage - Computation of the characteristics of the OOC RL (   ): 
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Step 6. For a specific shift   (   0) and  , randomly generate a test sample from the          

      
   

         distribution. Calculate the charting statistic(s) and compare to the control 

limit(s) found in Step 5. If the charting statistic plots between the control limits, then collect the next 

sample and calculate its charting statistic and compare it to the control limits. Continue this process 

until a sample point plots beyond the control limits. Then, record the number of subgroups plotted 

until an OOC signal occurs. This number represents one value of the     distribution. Repeat Step 6 

a total of   times to find the           vector. 

Step 7. Once the     vector is obtained, calculate the OOC ARL value ( 
 

 
∑     

 
   ).  

Step 8. The computation of the characteristics of the     is completed. 

Note that in Steps 4 and 7, other characteristics of the RL such as the standard deviation of the run-length 

(SDRL) can also be computed. More importantly, throughout this paper,  =50000 simulation runs are 

used in an effort to obtain accurate RL values. 
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