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Monitoring schemes are typically designed under the assumption of perfect measurements. However, in real-life applications, data tend to be subjected to measurement errors, i.e., a difference between the real quantities and the measured ones mostly exist even with highly sophisticated advanced measuring instruments. Thus, in this paper, the negative effect of measurement errors on the performance of the homogenously weighted moving average (HWMA) scheme is studied using the linear covariate error model for constant and linearly increasing variance. Monte Carlo simulations are used to evaluate the performance of the proposed HWMA scheme in terms of the run-length characteristics. It is observed that as the smoothing parameter increases, measurement errors have a higher negative effect on the performance of the HWMA ̅ scheme. More importantly, it is shown that the negative effect of measurement errors is reduced by using multiple measurements and / or by increasing the slope coefficient of the covariate error model. Moreover, the performance of the HWMA ̅ scheme is compared with the corresponding exponentially weighted moving average (EWMA) and Cumulative Sum (CUSUM) ̅ schemes. An illustrative example is provided to help in implementing this monitoring scheme in a real-life situation.

Introduction

In statistical process monitoring (SPM), control charts are used to identify the causes of variation in the process. Two sources of variation can be distinguished in SPM, namely the common (or chance) causes and the assignable (or special) causes of variation. Common causes cannot be avoided, while assignable causes of variation need to be reduced as much as possible. When the process runs in the presence of common causes only, the process is considered to be in-control (IC). Otherwise, the process is said to be out-of-control (OOC). When practitioners are interested in monitoring small-to-moderate shifts in the process parameters, popular memory-type monitoring schemes such as the Cumulative Sum (CUSUM) and exponentially weighted moving average (EWMA) schemes are mostly recommended; see for example, [START_REF] Roberts | Control charts tests based on geometric moving averages[END_REF], [START_REF] Page | Cumulative sum charts[END_REF] and [START_REF] Montgomery | Statistical Quality Control: A Modern Introduction[END_REF]. Many authors devoted their valuable time in improving the sensitivity of the CUSUM and EWMA schemes using various techniques. These enhanced schemes include the double CUSUM (DCUSUM), hybrid EWMA (HEWMA), double EWMA (DEWMA), Synthetic CUSUM, Synthetic EWMA, etc. For more details on the enhancement of memorytype schemes, readers are referred to [START_REF] Waldmann | Design of double CUSUM quality control schemes[END_REF], [START_REF] Capizzi | Combined Shewhart-EWMA control charts with estimated parameters[END_REF], [START_REF] Abbas | Mixed exponentially weighted moving average-cumulative sum charts for process monitoring[END_REF], [START_REF] Haq | New synthetic EWMA and synthetic CUSUM control charts for monitoring the process mean[END_REF], [START_REF] Ali | New memory-type dispersion control charts[END_REF], [START_REF] Adeoti | On control chart for monitoring exponentially distributed quality characteristic[END_REF], [START_REF] Malela-Majika | New distribution-free memory-type control charts based on the Wilcoxon rank-sum statistic[END_REF]; just to cite a few.

For other alternative approaches of control charts, such as the use of divergence functions (e.g. parametric and nonparametric Kullback-Leibler Divergence), see for instance [START_REF] Bakdi | An improved plant-wide fault detection scheme based on PCA and adaptive threshold for reliable process monitoring: Application on the new revised model of Tennessee Eastman process[END_REF], [START_REF] Bakdi | Nonparametric Kullback-divergence-PCA for intelligent mismatch detection and power quality monitoring in grid-connected rooftop PV[END_REF] and [START_REF] Bounoua | Online monitoring scheme using principal component analysis through Kullback-Leibler divergence analysis technique for fault detection[END_REF].

More recently, [START_REF] Abbas | Homogeneously weighted moving average control chart with an application in substrate manufacturing process[END_REF] developed a new memory-type scheme that allocates a specific weight to the current sample and the remaining weight is distributed equally among the previous samples; this scheme is known as homogeneously weighted moving average (HWMA) monitoring scheme. The HWMA scheme is in its nature a memory-type scheme used to effectively monitor small-to-moderate shifts (see for example the following articles on the HWMA-type monitoring schemes: [START_REF] Abbas | Homogeneously weighted moving average control chart with an application in substrate manufacturing process[END_REF], Adegoke et al. (2019a, b), [START_REF] Raza | On designing distribution-free homogeneously weighted moving average control charts[END_REF], [START_REF] Abid | A double homogeneously weighted moving average control chart for monitoring of the process mean[END_REF], [START_REF] Abbas | On the efficient monitoring of multivariate processes with unknown parameters[END_REF] and [START_REF] Adeoti | A hybrid homogeneously weighted moving average control chart for process monitoring[END_REF]). To provide an efficient and unbiased estimate of the process mean, Adegoke et al. (2019a) developed a HWMA scheme to monitor the process mean that uses the auxiliary variable in the form of a bivariate regression estimator. Next, Adegoke et al. (2019b) proposed a multivariate HWMA scheme for monitoring the process mean vector when the underlying distribution parameters are known; more recently though, [START_REF] Abbas | On the efficient monitoring of multivariate processes with unknown parameters[END_REF] studied the same scheme when the underlying distribution parameters are assumed unknown and they compared its performance against numerous well-known multivariate schemes. [START_REF] Raza | On designing distribution-free homogeneously weighted moving average control charts[END_REF] proposed a distribution-free HWMA scheme based on the sign and signed-rank statistics to monitor skewed and symmetric distributions observations. More recently, [START_REF] Abid | A double homogeneously weighted moving average control chart for monitoring of the process mean[END_REF] proposed the double HWMA scheme for monitoring small shifts in the process mean and they also investigated the effect of non-normality and parameter estimation on the performance of the double HWMA scheme. Finally, [START_REF] Adeoti | A hybrid homogeneously weighted moving average control chart for process monitoring[END_REF] proposed a hybrid HWMA schemes for monitoring the process mean and they also investigated the effect of non-normality. Note that the double (hybrid) design of the HWMA scheme entails applying the same (different) smoothing parameter twice, respectively. The key difference between the HWMA scheme proposed in this paper and the abovementioned HWMA schemes is that it is not assumed that the observations have perfect or exact measurements. That is, in this paper, the assumption given in the review paper by [START_REF] Maleki | Measurement errors in statistical process monitoring: A literature review[END_REF] is followed: '… exact measurements in real-life applications are a rare phenomenon, even with highly sophisticated advanced measuring instruments; hence, measurement errors tend to exist in any manufacturing and service environment'. Therefore, this paper contributes to the SPM literature by introducing an HWMA scheme that accounts for measurement errors in the process being monitored for a univariate process mean.

A detailed early account of 60 articles on monitoring schemes with measurements errors are documented in [START_REF] Maleki | Measurement errors in statistical process monitoring: A literature review[END_REF]. To discuss a few, [START_REF] Linna | Effect of measurement error on Shewhart control charts[END_REF] studied the effect of measurement errors on Shewhart monitoring scheme and they reported that under measurement errors a monitoring scheme is exposed to lose power in detecting parameters shifts. Next, [START_REF] Maravelakis | EWMA chart and measurement error[END_REF] and [START_REF] Maravelakis | Measurement error on the CUSUM control chart[END_REF] investigated the effect of measurement errors on the EWMA and CUSUM schemes, respectively; with the effect of a two-component measurement error on the EWMA scheme investigated in [START_REF] Abbasi | Exponentially weighted moving average chart and two-component measurement error[END_REF]. For some recent discussions on measurement errors published after the review paper of [START_REF] Maleki | Measurement errors in statistical process monitoring: A literature review[END_REF], see for instance: [START_REF] Yeong | The coefficient of variation chart with measurement error[END_REF], [START_REF] Cheng | VSSI median control chart with estimated parameters and measurement errors[END_REF], [START_REF] Salmasnia | Remedial measures to lessen the effect of imprecise measurement with linearly increasing variance on the performance of the Max-EWMAMS scheme[END_REF], [START_REF] Tang | The performance of the adaptive EWMA median chart in the presence of measurement error[END_REF], [START_REF] Riaz | Auxiliary information based mixed EWMA-CUSUM mean control chart with measurement error[END_REF], Tran et al. (2019aTran et al. ( , b, c, 2020)), [START_REF] Nguyen | On the performance of VSI Shewhart control chart for monitoring the coefficient of variation in the presence of measurement errors[END_REF], [START_REF] Zaidi | Performance of the Hotelling's T 2 control chart for compositional data in the presence of measurement errors[END_REF][START_REF] Zaidi | Performance of the MEWMA-CoDa control chart in the presence of measurement errors[END_REF], [START_REF] Sabahno | Optimal performance of the variable sample sizes Hotelling's T 2 control chart in the presence of measurement errors[END_REF][START_REF] Sabahno | A variable parameters multivariate control chart for simultaneous monitoring of the process mean and variability with measurement errors[END_REF], Shongwe et al. (2020a, b, c), [START_REF] Asif | Hybrid exponentially weighted moving average control chart with measurement error[END_REF]), Noor-ul-Amin et al. (2020).

A number of methods used as remedial approaches are outlined in the review article on measurement errors by [START_REF] Maleki | Measurement errors in statistical process monitoring: A literature review[END_REF] for other remedial sampling strategies, see for instance the book by [START_REF] Aslam | Testing and Inspection using acceptance sampling plans[END_REF]. The most used methodology to reduce measurement inaccuracy is by taking multiple measurements of each item, which was first proposed by [START_REF] Linna | Effect of measurement error on Shewhart control charts[END_REF]. The multiple measurements strategy reduces the effect of measurement errors on the performance of monitoring schemes. That is, taking at least two measurements for each sampled unit effectively reduces the effect of the measurement errors. The level of precision improves by taking and averaging several measurements.

Although it is preferable to maintain a larger number of multiple measurements for better results, one needs to be mindful of additional implications such as costs and time to collect these observations. This is so because, without measurement error, multiple measurements will become redundant in the monitoring scheme methodology by only adding costs for measuring extra and useless observations. Therefore, in this paper, the performance of the HWMA scheme for monitoring the process mean (denoted as HWMA ̅ scheme) is investigated under the effect of measurement errors. The measurement errors are modelled by a linear covariate error model. The negative effect of the measurement errors on the proposed HWMA ̅ scheme is reduced by using a multiple measurements strategy and / or by increasing the slope coefficient of the linear covariate error model.

The rest of this paper is organised as follows: in the second section, the basic properties of the HWMA ̅ scheme without measurement errors are provided. Third section provides properties of the HWMA ̅ scheme with measurement errors using a covariate error model with a constant and a linearly increasing variance. The performance of the HWMA ̅ scheme with a constant and a linearly increasing variance is studied in terms of the average run-length (ARL), standard deviation of the run-length (SDRL) and expected ARL (EARL) values in the fourth section. Moreover, in the fourth section, the HWMA ̅ scheme is compared with the corresponding CUSUM and EWMA ̅ schemes. Two illustrative examples using real-life data are given in the fifth section. Some concluding remarks are presented in the sixth section and the simulation algorithm is provided in the Appendix.

Design of the HWMA ̅ scheme

Let 1, 2, …, and 1, 2, …, be a set of samples of independent normal random variables, i.e.

follows a , where is the in-control mean value, is the in-control standard deviation and is the magnitude of the shift in standard deviation units. When 0, the process is considered to be IC, which implies follows a . However, when 0 the process is OOC.

Let ̅ ∑ ⁄ be the sample mean of the sample. The plotting statistic of the HWMA ̅ scheme (denoted as ) is defined by

̅ ̿ (1) with ̿ ∑ ̅
where (0 1) is the smoothing constant and ̿ is the mean of the previous sample means.

The initial value of ̿ (i.e. ̿ ) is typically set to be equal to the target mean . [START_REF] Abbas | Homogeneously weighted moving average control chart with an application in substrate manufacturing process[END_REF] showed that Equation (1) can also be written as

̅ [( ) ̅ ( ) ̅ ( ) ̅ ( ) ̅ ] (2) 
From Equation ( 2), it can be seen that the HWMA ̅ statistic assigns weight to the current sample and a weight is equally distributed to the previous samples. It can be shown that the mean and variance of the plotting statistic in Equation ( 1) or ( 2) is given by and ). Thus, the HWMA ̅ scheme gives a signal if the plotting statistic in Equation ( 1) plots beyond the control limits defined in Equation ( 4); that is, if or . In case the process has been running for a long time (i.e.

), the term . Therefore, the control limits in Equation ( 4) reduce to the following asymptotic ones

√ and (5) 
√ and, in this case, the process is OOC if or .

The HWMA scheme with measurement errors

Covariate error model with a constant variance

Assume that the true value of the quality characteristic defined in the second section is only observed

through a value { i = 1,2,…; j = 1,2,…, n; k = 1,…, r} described by the expression
, where A and B are two constants depending on the measurement system location error (A and B are also known as the intercept and slope coefficients of the covariate error model, respectively).

Also, denotes the number of measurements taken in each sampled subgroup unit and is a random error due to the measurement error that is distributed independently of ; where is the variance of the measurement system. Based on the discussion in [START_REF] Linna | Effect of measurement error on Shewhart control charts[END_REF] and [START_REF] Maravelakis | EWMA chart and measurement error[END_REF], it is apparent that . Assuming that n observations from the sequence at each sampling point have been collected, the mean

̅ ∑ ∑ ∑ ∑ ∑ ∑ ∑
need to be calculated. Thus, the plotting statistic of the HWMA ̅ scheme is defined by

̅ ̿ ( 6 
)
where ̿ is the mean of the previous sample means and similarly as in Equation ( 2), Equation ( 6) can be written as

̅ [( ) ̅ ( ) ̅ ( ) ̅ ( ) ̅ ]
The initial value of ̿ (i.e. ̿ ) is typically set to be equal to the target mean . Thus, the expected value and variance of the plotting statistic defined in Equation ( 6) are and (7)

{ * +
Let represents the standardized ratio of the measurement system variability to the process variability. When ̅ is from a perfect measurement system, then = 0, so that 0; otherwise, 0.

The time-varying control limits of the HWMA ̅ scheme with -measurements are defined by:

{ √ ( ) √( ) ( ) and (8) { √ ( ) √( ) ( )
where is control limit width parameter of the HWMA ̅ scheme with -measurements.

Since the term when the process has been running for a while, the asymptotic control limits of the HWMA ̅ scheme with -measurements are defined by √ ( ) and ( 9)

√ ( )
The value of is equal to 1 when a standard single measurement is used per sampling unit. However, as increases, the variance in the measurement error component decreases. Hence, it is obvious that when the number of multiple components tends to infinity, the variance in the measurement component tends to zero. However, the number of sets of measurements needs to be determined such that the maximum reduction in the variance of the measurement system is reached and, at the same time, minimizes the cost of using multiple measurements. This is addressed in the fourth section.

Covariate error model with a linearly increasing variance

In some situations, the measurement error should no longer be considered as being a constant but it should be considered as an increasing function of the mean of the variable , i.e. and thus, . Then the time-varying control limits of the HWMA ̅ scheme with -measurements are defined by:

{ √ ( ) √( ) ( ) and (10) { √ ( ) √( ) ( )
where and are constants. Next, the asymptotic control limits of the HWMA ̅ scheme withmeasurements are defined by: √ ( ) and ( 11)

√ ( )

To conserve space, in this paper, the focus is on the time-varying case.

Performance of the HWMA ̅ scheme with measurement errors

One of the most popular measures used to evaluate the performance of a monitoring scheme is the .

The is the mean of the run-length (RL) distribution representing the average number of rational subgroups plotted on a control chart before it gives a signal for the first time. This metric reveals the degree of the sensitivity of a monitoring scheme towards specific shifts. Depending on the type of monitoring scheme, the ARL metric can be computed using Markov chain, Monte Carlo simulation or integral or exact formulas. Among these techniques, Monte Carlo simulation is the most used because of its simplicity in computing the characteristics of the run-length distribution even for complicated and complex monitoring designs. In this paper, Monte Carlo simulation is used to compute the ARL, SDRL and EARL profiles of the HWMA ̅ scheme in SAS® v9.4, see the Appendix for an outline of the simulation algorithm. Note that the EARL metric is used to investigate the performance of a scheme for a range of shifts. The EARL is mathematically defined by (see for example [START_REF] Umar | A combined variable sampling interval and double sampling control chart with auxiliary information for the process mean[END_REF], Shongwe et al. (2020a))

∑ ( 12 
)
where and are the lower and upper bound of the shift ( ) parameter, respectively, is the ARL value for a specific shift and represents the number of increments between and .

Sensitivity analysis

In this section, the effect of measurement errors and multiple measurements on the performance of the HWMA ̅ scheme is investigated in terms of the ARL and SDRL profiles for specific shifts and EARL profile for different ranges of shifts. Thus, the values denoted by , , , , and are used to investigate the performance of the HWMA ̅ scheme for small ( ), moderate ( ), large ( ), small-to-moderate ( ), moderate-to-large (

) and small-to-large ( ) shifts, respectively. Tables 1 presents the ARL and EARL profiles of the HWMA ̅ scheme when 0.1, 0.5, 0.9 , 0, 0.2, 0.5, 0.9 and 1 on the first row (with 4 in parenthesis on the second row) for a nominal value of 500; while, Table 2 displays the corresponding SDRL profiles. Note that the manner in which the smoothing parameter ( ) is chosen depends on the size of the shifts that a practitioner prioritizes; see [START_REF] Abbas | Homogeneously weighted moving average control chart with an application in substrate manufacturing process[END_REF]. For instance, = 0.1 is recommended for a quick detection of small shifts, = 0.5 for moderate and large shifts and = 0.9 for a quick detection of very large shifts. Next, the level of measurements errors ( ) indicates the level of severity of the measurement error, where = 0 implies perfect measurements (i.e. no measurement error), = 0.2 indicates lower level of measurement error, = 0.5 indicates moderate level of measurement errors and = 0.9 indicates higher level of measurement error. From Tables 1 and2 as well as Figures 1 and 2, the following is observed for any value of and =1:

 The design parameter (shown at the bottom of Tables 1 and2) increases as increases; which means, the larger the smoothing parameter, the wider are the control limits. Note that the control limits do not depend on the degree of measurement errors (i.e., value) nor on the number of measurements (i.e., value).

 Measurement errors have a negative effect on the sensitivity of the HWMA ̅ monitoring scheme, which means the higher the value of , the higher are the values of the profile. For instance, when 0.1 and 1, for a small shift of size =0.25, if 0.5 and 0.9, the HWMA ̅ scheme is expected to give a signal on the 95 th and 123 rd subgroups, respectively.

 When is kept fixed, the HWMA ̅ scheme is more sensitive to small values of for small and moderate shifts in the process mean. However, for large shifts, the sensitivity of the HWMA ̅ scheme increases in the interval 0 0.5 and decreases in the interval 0.5 1. In terms of both EARL and values, from small-to-moderate, moderate-to-large as well as from small-to-large shifts, the HWMA ̅ scheme performs better for small shifts. For instance, when 0.2, with 1 and 0.75, the HWMA ̅ scheme is expected to give the first signal on the 15 th ( 15.27), 29 th ( 29.14) and 88 th ( 88.55) subgroups when 0.1, 0.5 and 0.9, respectivelysee Table 1. This pattern holds for the EARLs which show that as increase, the performance of the HWMA ̅ scheme deteriorates.

 Stated differently, the cluster of line graphs in Figures 1(a) and (b) with smaller ARLs corresponds to = 0.1, while those with larger ARLs corresponds to = 0.9. Moreover, for each cluster of line graphs in Figures 1(a) and (b), the smaller the value of , the lower are the ARL profiles as compared to those with higher values of . In summary, the smaller the values of and , the better is the performance of the HWMA ̅ scheme.

 As increases, the IC SDRL values increase towards the nominal value. The sensitivity pattern of the OOC SDRL ( ) profile in Table 2 is similar to the one of the profile with respect to and , where it is shown that whenever increases, the increase and when increases, the is reduced. Hence, moving forth, the focus will mainly be on the ARL profiles.

 Multiple measurements have a positive impact on the sensitivity of the HWMA ̅ scheme. For instance, for ( , ) = (0.9, 0.9) and 0.25, the is equal to 416.4 and 378.8 when 1 and 4, respectively. This indicates that a multiple measurements strategy reduces the effect of measurement errors.

 Keeping in mind that the EARL is a weighted sum of the ARL (see Equation ( 12)), hence, as increases, the ARLs decrease and thus, EARL also decreases; see Figure 2. Note that the EARL values shown at the bottom of Table 1 when = 1 and 4 are those depicted in Figure 2. Hence, for instance, for the , it is observed that there is a slightly larger drop in the value of EARL when increases from 1 to 2; however, increasing further yields lower reductions in the EARL values as compared to increasing from 1 to 2.

Table 1:

The and profiles for 1 (with 4 in parentheses) of the HWMA ̅ scheme when 1, 0.1, 0.5, 0.9 and 0, 0.2, 0.5, 0.9 = 0.1 = 0.5 = 0.9 Shift = 0 = 0.2 = 0.5 = 0.9 = 0 = 0.2 = 0.5 = 0.9 =0 =0.2 =0.5 =0.9 (λ,γ)=(0.1, 0.5) (λ,γ)=(0.1, 0.9) (λ,γ)=(0.9, 0) (λ,γ)=(0.9, 0.2) (λ,γ)=(0.9, 0.5) (λ,γ)=(0.9, 0.9) (λ,γ)=(0.1, 0.5) (λ,γ)=(0.1, 0.9) (λ,γ)=(0.9, 0) (λ,γ)=(0.9, 0.2) (λ,γ)=(0.9, 0.5) (λ,γ)=(0.9, 0.9) It is worth mentioning that varying yields no effect on the ARL and SDRL profiles of the HWMA ̅ scheme and that is equal to 1 in Tables 1 and2 as well as in Figures 1 and2. Next, in Table 3, the effect of varying is illustrated. Firstly, when =0, the ARL profiles are the same for any integer value of (i.e.

(λ,γ)=(0.1, 0) (λ,γ)=(0.
(λ,γ)=(0.1, 0) (λ,γ)=(0.1, 0.2)
). Secondly, for 0, it is shown in Table 3 that for 0, the ARL and EARL decrease as increases. That is, as increases, there is a reduction in the negative effect of measurement errors.

Thirdly, it is also shown in Table 3 that the ARLs and EARLs are lower when =4 than those when =1, indicating a reduction in the negative effect of measurement errors as increases. Finally, although Table 3 is illustrated for =0.1 and =5 only, this pattern holds for other values of and , whenever 0 and 0. Note that a significant reduction is observed for large values of , e.g. for 0.9 with 0.25 and 1, the is equal to 122.2, 93.34 and 86.58 when is equal to 1, 2 and 3, respectively. A similar pattern is observed for EARLs. With regard to the linearly increase in the variance, the effect of varying , and is investigated in Table 4. Note that for =2, only =0 is shown to preserve writing space. Firstly, for =1, =1 and =0.25, the is equal to 131.2, 169.7 and 200.4 when is equal to 0, 1 and 2, respectively. A similar pattern is observed for the corresponding EARLs. This shows that when increases there is deterioration in the performance of the HWMA ̅ scheme. Secondly, for =1, =0 and =0.25, the is equal to 131.2, 169.8 and 200.3 when is equal to 1, 2 and 3, respectively. A similar pattern is observed for the corresponding EARLs. This shows that when increases there is a deterioration in the performance of the HWMA ̅ scheme. Thirdly, for =0, =1 and =0.25, the is equal to 131.2 when =1; however, it is equal to 95.2 when =2. Similarly, the EARLs also decreases when increases. This shows that for a fixed and , increasing yields an improved performance for the HWMA ̅ scheme, which implies that there is a reduction in the negative effect of measurement errors. Finally, it is shown in Table 4 that the ARLs and EARLs are lower when =4 than those when =1 indicating a reduction in the negative effect of measurement errors as increases.

Table 4:

The and profiles for 1 (with 4 in parentheses) of the HWMA ̅ scheme when {1, 2}, {0, 1, 2}, {1, 2, 3} and 0.1, 0.5, 0.9 ( ) is the OOC ARL value for a specific shift when 0.

= 1 = 2 = 0 = 1 = 2 = 0 Shift = 1 = 2 = 3 = 1 = 2 = 3 = 1 = 2 = 3 = 1 = 2 = 3 0.
From Figures 3 (a)-(c), it can be seen that the %Decrease in the performance of the HWMA ̅ scheme is larger (smaller) for large (small) values of . Moreover, the %Decrease in the performance is larger for very small shifts when is small; however, it is smaller for moderate and large values of when is small and the converse is true for large values of . The %Decrease in the performance of the HWMA ̅ scheme reaches its maximum point when 1 for moderate values of and =1.75 for large values of . However, the minimum point is attained for very small shift values. Note that for small values of , the %Decrease in the performance of the HWMA ̅ scheme reaches its maximum point in the interval 0 0.25.

(a) 0.1 (b) 0.5 (c) 0.9 

= 1 & γ (0, 0.9) r = 2 & γ (0, 0.2) r = 2 & γ (0, 0.5) r = 2 & γ (0, 0.9) r = 3 & γ (0, 0.2) r = 3 & γ (0, 0.5) r = 3 & γ (0, 0.9) r = 4 & γ (0, 0.2) r = 4 & γ (0, 0.5) r = 4 & γ (0, 0.9) r = 1 & γ (0, 0.2) r = 1 & γ (0, 0.5)
The %Increase and the expected %Increase in the performance can also be computed in a similar way using the following formula:

| | ( 15 
)
and

∑ ( 16 
)
where ( ) is the OOC ARL value of the HWMA ̅ scheme for a specific shift ( ) when 1 and

( ) is the OOC ARL value for a specific shift when 1.

Figure 4 shows that for small-to-large shifts, the %Increase in the performance or sensitivity of the HWMA ̅ scheme increases as increases. For instance, a small shift of size 0.25 with 0.5 and 0.1, there is a %Increase of 6.68%, 9.17% and 10.01% when 2, 3 and 4, respectively. The larger the value of , the higher the %Increase in the sensitivity of the HWMA ̅ scheme. It can also be observed that for small values of there are random patterns in the %Increase ARL function. (f) 0.9 and 0.5 (g) 0.2 and 0.9 (h) 0.5 and 0.9 (i) 0.9 and 0.9 Figure 4 Figures 5(a)-(l) show that when = 0.1 (i.e. small) and 1, then for small shifts in the process mean, the expected %Decrease in the sensitivity of the HWMA ̅ scheme is 3.25%, 19.35% and 58.57% when 0.2, 0.5 and 0.9, respectively. For moderate values of = 0.5, when 0.2, 0.5 and 0.9, the expected %Decrease in the performance of the HWMA ̅ scheme is 3.61%, 24.32% and 77.16%, respectively. However, for large value of = 0.9, when 0.2, 0.5 and 0.9, the expected %Decrease in the performance of the HWMA ̅ scheme is 3.55%, 19.43% and 47.68%, respectively. These results

show that when 0.2, 0.5 and 0.9 the expected %Decrease in the sensitivity varies between 3.25 to 3.61%, 19.35 to 24.32% and 47.68 to 77.16%, respectively. Thus, when 2, for 0.2, 0.5 and 0.9, the expected %Decrease in the sensitivity of the HWMA ̅ scheme varies between 1.80 to 2.01%, 9.72 to 11.97% and 27.82 to 34.92%, respectively. That is, a higher value of yields lower expected %Decrease in the sensitivity of the HWMA ̅ scheme as compared to a lower one.

Figures 6 (a)-(k) display the expected %Increase in the sensitivity of the HWMA ̅ scheme for different values of and . It is observed that regardless of the size of the mean shift, there is a large increase in the sensitivity of the scheme when is small and the expected %Increase is higher for large values of .

Moreover, Figure 6 shows that the larger the value of the more sensitive is the HWMA ̅ scheme, except for small shifts in the process mean. In the design of statistical monitoring schemes with measurement errors, it is very important to investigate the number of measurements per sampling time necessary to compensate for the negative effect of measurement errors. In most of the cases, the elimination of the effect of measurement errors is almost impossible because in some situations, measurement costs need to be minimized and the use of large sample sizes must be avoided. Figure 7 presents the marginal %Increase in the sensitivity of the HWMA ̅ scheme when using -measurements with 0.1. In this paper, the marginal %Increase in the performance or sensitivity is defined as a percentage drop in the value for one unit increase in the value of . From Figure 7, it is observed that the marginal %Increase decreases as the number of measurement increases. Therefore, for small level of measurement errors, it is advised to use 3 sets of measurements of size 5 because when the marginal %increase in the sensitivity is around 1% which is insignificant. For moderate values of , it is advised to use 3 or 4 sets of measurements and for large values of , the use of no more than 4 or 5 sets of measurements is suggested. These recommendations apply to all values of . In this section, the HWMA ̅ scheme is compared to the CUSUM and EWMA ̅ schemes. The implementation of the CUSUM ̅ scheme requires two important parameters known as the reference and control limits parameters denoted by and , respectively. However, the EWMA ̅ scheme also requires two parameters known as the smoothing and control limits parameter denoted by and , respectively. For a nominal value of 500 and 0.1, it is observed that ( , ) = (0.125, 5.887) and 2.824 are such that the CUSUM and EWMA ̅ schemes yield an attained IC as close as possible to 500. the number of measurements, the HWMA scheme outperforms the CUSUM and EWMA schemes under small mean shifts. The CUSUM scheme outperforms the EWMA scheme for very small shifts (i.e., 0 0.25) and the converse is true for shifts of size 0.25 1. For small and moderate shifts, the EWMA scheme performs better than the CUSUM and HWMA schemes and the latter outperforms the CUSUM scheme. For small-to-moderate shifts as well as for small-to-large shifts in the process mean, the HWMA scheme is superior to the CUSUM and EWMA schemes. However, for moderate-to-large shifts, the EWMA scheme performs better than CUSUM and HWMA schemes and the latter is superior to the CUSUM scheme. 

Illustrative examples

Example 1: Yogurt cup filling process

In order to illustrate the implementation of the HWMA ̅ scheme with measurement errors, the data from Costa and Castagliola (2011) shown in Table 6 is used, assuming that =0 and =1 and that the data is subjected to a constant variance in the measurement system. The data is based on a yogurt cup filling process where the quality characteristic is the weight of each yogurt cup. In this example, it is assumed that the IC mean and the IC standard deviation are given by 124.90 and = 0.76 ,

respectively. An independent R&R study estimated the measurement standard deviation = 0.24, yielding = 0.24/0.76 = 0.316. The quality practitioner in charge of this process decided to take, every hour, two sets of measurements, each of size n = 5 (i.e. r = 2 and n = 5). For a nominal value of 500 and 0.1, it is found that 2.938 that yields an attained of 499.49. Thus, when = 2, the lower and upper control limits of the HWMA ̅ scheme when 1 and 2 are calculated using Equation (8) as follows:

{ √ ( ) √( ) ( ) (17a) (17b) 
and

{ √ ( ) √( ) ( ) (18a) (18b) 
For , the rest of the time-varying control limits can also be calculated in a similar way as shown in Equations ( 17b) and (18b), respectively. For illustration purpose, the first three plotting statistics are calculated as follows:

̅ and ̿ ̅ and ̿ ̅ ̅ and ̿ ̅ ̅ so that, ̅ ̿ ̅ ̿ ̅ ̿
The rest of the plotting statistics of the HWMA ̅ scheme with 2-measurements are empirically shown in 

Conclusion

Most of the SPM schemes are based on the assumption of known process parameters under perfect measurements. This paper contributes to the SPM literature with an extensive investigation of the performance (or sensitivity) of the HWMA ̅ scheme to monitor the process mean under the assumption of imperfect measurements using a constant and linearly increasing variance error model in the measurement system. A remedial approach that involves multiple measurements is implemented in the HWMA ̅ scheme and it shows that it has a positive outcome in reducing the negative effect of measurement errors. Since multiple measurements increase cost and time in process monitoring, the negative effect of measurement errors can also be reduced by increasing the value of in the covariate error model. Based on the sensitivity analysis, practitioners are not advised to use more than four measurements in the design of the HWMA ̅ scheme regardless of the level of measurement error.

Compared to the CUSUM scheme, the HWMA scheme is found to be superior regardless of the size of the mean shift. However, the HWMA scheme is superior to the EWMA scheme under small shifts only.

In terms of the overall performance measure, the HWMA scheme outperforms the EWMA scheme for small, small-to-moderate and small-to-large shifts in the process mean. However, the latter performs better than the HWMA scheme under moderate, large and moderate-to-large shifts in the process mean.

Note that the HWMA ̅ scheme is designed under the assumption of normally distributed data; however, when this assumption is violated, the properties of the HWMA ̅ scheme need to be reinvestigated.

Moreover, researchers can also investigate the sensitivity of the HWMA scheme to monitor autocorrelated observations with and without measurement errors.

Appendix: Simulation Algorithm

The computation of the IC and OOC run-length (RL) properties for the HWMA ̅ scheme in the case of a standard normal distribution using simulation runs are described below. The computation is done in two stages; i.e. on the first stage, a search for the design parameter(s) that gives an attained IC ARL as close as possible to the nominal is conducted and if such design parameters exist, they are called the optimal design parameters; and on the second stage, these optimal design parameters are used to compute OOC ARL values.

First stage -Search of the optimal design parameter :

Step 1. Specify the nominal , , , , , , , n, , and the IC process parameters and .

Step 2. (a) Fix a first value of and calculate the control limits and go to Step 3.

(b) If required, increase (or decrease) and recalculate the control limits so that the attained IC ARL get closer to the nominal .

Step 3. Randomly generate a sample from the distribution. Calculate the charting statistic and compare it to the control limits found in Step 2. If the charting statistic plots between the control limits, then collect the next subgroup and calculate its charting statistic and compare it to the control limits. Continue this process until a sample point plots beyond the control limits. Then, record the number of samples plotted until an OOC signal occurs, this represents one value of the IC RL ( ) distribution. Repeat Step 3 a total of times to find the vector.

Step 4. Once the vector is obtained, calculate the attained IC ARL ( ∑ ). If the attained IC ARL is equal or much closer to the nominal , go to Step 5. Otherwise, go back to Step 2(b) (i.e., since the attained IC is considerably greater (smaller) than the nominal value, then update the control limit(s) narrower (wider) and repeat again Steps 3 and 4).

Step 5. The design parameter found in Step 4 is called the optimal design parameter. Record the optimal and its corresponding control limits. Thus, the search of the optimal is completed.

Second stage -Computation of the characteristics of the OOC RL ( ):

{

  respectively. Therefore, the time-varying lower and upper control limits (i.e. and ) of the HWMA ̅ monitoring scheme are defined by is the control limits constant that is set to have a pre-specified false alarm rate or incontrol (
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 2 Figure 2: The EARL profiles of the HWMA ̅ scheme for {1, 2, 3, 4, 5} when 0.5, 5, 0.1 and =2.9380

Figure 3

 3 Figure 3 displays the percentage decrease (%Decrease) in the performance of the HWMA ̅ scheme with respect to for different values of ; while Figure 4 displays the %Increase in the profile ofthe HWMA ̅ scheme from using one set of measurements (i.e., 1) to multiple sets of measurements (i.e., 1). Moreover, Figure5displays the expected %Decrease in the performance of the HWMA ̅ scheme for different values. The %Decrease and the expected %Decrease in the performance are computed using the following formula:
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 3 Figure 3: The %Decrease in the profile of the HWMA ̅ scheme with a constant variance for different values of and
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 56 Figure 5: The Expected %Decrease in the value of the HWMA ̅ scheme with a constant variance

Figure 7 :

 7 Marginal %Increases of the HWMA ̅ scheme with a constant variance when 0.1 Note that Figures 3 to 7 were constructed for any value and =1. For other values of , and , a similar conclusion is observed for different values of , and .
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 2 The

			profiles for	1 (with	4 in parentheses) of the HWMA ̅ scheme when	0,
				1,	0.1, 0.5, 0.9 and	0, 0.2, 0.5, 0.9				
				= 0.1				= 0.5				= 0.9	
	Shift	=0	=0.2	=0.5	=0.9	=0	=0.2	=0.5	=0.9	=0	=0.2	=0.5	=0.9
	0.00	407.9	406.2 (408.0)	409.0 (407.4)	407.1 (407.1)	496.1	496.0 (496.5)	500.7 (500.7)	496.6 (497.2)	504.8	503.6 (502.4)	502.0 (501.2)	504.8 (503.2)
	0.25	56.65	58.89 (57.62)	68.20 (59.71)	89.08 (66.17)	214.9	220.7 (215.4)	245.6 (221.5)	291.8 (239.7)	357.4	363.6 (360.5)	381.5 (361.2)	416.3 (378.0)

Table 3 .

 3 The effect of on the ARL and EARL for =1 (with =4 in parentheses) of the HWMA ̅

	scheme when

:

  The %Increase in the profile of the HWMA ̅ scheme with a constant variance for different values of and 0.1
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																											10									
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  Table 5 displays the ARL and EARL profiles of the HWMA, CUSUM and EWMA ̅ schemes for different values of and . From this table, at each shift value or range of shift values, the best performing scheme is boldfaced. It is observed that, regardless of the level of measurement error and

Table 5 :

 5 Performance comparison of the ARL and EARL values for =1 (with =4 in parentheses) of the

		HWMA, EWMA and CUSUM ̅ schemes when	0.1,	{0, 0.2, 0.5, 0.9} for a nominal	
								value of 500				
			CUSUM ̅ scheme			EWMA ̅ scheme			HWMA ̅ scheme
	Shift		0.125 and	5.887			2.824 and = 0.1		2.938 and = 0.1
		= 0	= 0.2		= 0.5	= 0.9	= 0	= 0.2	= 0.5	= 0.9	= 0	= 0.2	= 0.5	= 0.9
	0.00	500.60	501.02 (502.13)	500.51 (502.70)	500.93 (503.58)	500.72	499.06 (500.55)	502.63 (501.54)	500.92 (499.52)	499.32	497.82 (501.99)	499.97 (503.58	498.50 (501.33)
	0.25	84.00	85.65 (84.22)		97.14 (87.22)	123.9 (94.43)	102.69	106.50 (105.14)	124.17 (109.61)	164.75 (119.82)	81.19	83.65 (82.57)	95.07 (85.55)	123.14 (93.04)
	0.50	34.66	35.43 (34.89)		39.60 (35.99)	49.68 (38.76)	28.75	29.70 (29.04)	35.60 (30.34)	50.99 (34.40)	28.41	29.59 (28.85)	34.15 (29.98)	45.18 (33.10)
	0.75	21.71	22.24 (21.83)		24.62 (22.40)	30.61 (24.11)	13.61	14.08 (13.71)	16.64 (14.36)	23.52 (16.13)	14.90	15.27 (15.00)	17.89 (15.60)	24.11 (17.28)

Table 6

 6 and graphically in Figure8. It is observed that the HWMA ̅ scheme give an OOC signal for the first time on the 13 th subgroup.

Table 6 :

 6 Illustration of the implementation of the HWMA ̅ scheme using the yogurt cup filling data

	̅	̿	Signal

Table 7 :

 7 Illustration of the implementation of the HWMA ̅ scheme using the piston rings data Illustrative example of the HWMA ̅ scheme using the piston ring data

	=0.0	=0.9
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Example 2: Piston rings measurements

To illustrate the negative effect of increasing measurement errors from =0 to =0.9 without the use of multiple measurements, consider the dataset from [START_REF] Montgomery | Statistical Quality Control: A Modern Introduction[END_REF] on the inside diameters in millimeter (mm) of piston rings manufactured by a forging process. This dataset contains 15 samples each of = 5 observations. From the historical data, it is shown in Chapter 6 of [START_REF] Montgomery | Statistical Quality Control: A Modern Introduction[END_REF] that the IC mean and the IC standard deviation are given by 74.0011mm and = 0.0094mm, respectively.

Assuming that =0, =1, and a nominal value of 500, taking 0.1 and 2.938 then the corresponding plotting statistics of the HWMA ̅ scheme are given in Table 7. For =0 and 0.9, the corresponding time-varying control limits are as shown in Table 7 and Figure 9. It is observed that, for the same dataset, when =0 and 0.9, the HWMA ̅ scheme gives the first OOC signal at the sample number 12 and 13, respectively. That is, HWMA ̅ scheme in Figure 9 shows that the control limits for =0.9 are wider than those of =0. Thus, when the measurement error is relatively large, there is a delay in the signaling event of the HWMA ̅ scheme when compared to a process with no measurement errors.

Step 6. For a specific shift ( 0) and , randomly generate a test sample from the distribution. Calculate the charting statistic(s) and compare to the control limit(s) found in Step 5. If the charting statistic plots between the control limits, then collect the next sample and calculate its charting statistic and compare it to the control limits. Continue this process until a sample point plots beyond the control limits. Then, record the number of subgroups plotted until an OOC signal occurs. This number represents one value of the distribution. Repeat Step 6 a total of times to find the vector.

Step 7. Once the vector is obtained, calculate the OOC ARL value ( ∑ ).

Step 8. The computation of the characteristics of the is completed.

Note that in Steps 4 and 7, other characteristics of the RL such as the standard deviation of the run-length (SDRL) can also be computed. More importantly, throughout this paper, =50000 simulation runs are used in an effort to obtain accurate RL values.
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