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b Université de Clermont Auvergne, CNRS, GEOLAB UMR – 4 rue Ledru, Clermont-Ferrand, 63057, France 
c Climate Change Impacts and Risks in the Anthropocene C-CIA, Institute for Environmental Sciences, University of Geneva – Bd. Carl-Vogt 66, Geneva, 1205, 
Switzerland 
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In mountain environments, precise rockfall risk evaluation is crucial to reduce death tolls and costs. However, to date, existing rockfall risk assessment procedures 
remain scarce, as they focus only on existing elements at risk and with the damage expectation as sole risk measure. Here, we propose an approach to evaluate the 
distribution of damages on an individual basis as a continuous function of space. Furthermore, rockfall risk is evaluated through (i) the damage expectation and 
based on (ii) the value-at-risk (VAR) and (iii) the expected shortfall (ES). VaR and ES risk measures allow better assessing the risk due to extreme events and 
accounting for various short- term/long-term constraints faced by stakeholders. This procedure is applied to Le Brocey slope (municipality of Crolles, French Alps), 
frequently affected by rockfall events, illustrating its potential for land-use planning. Notably, obtained individual risk values can be confronted with acceptability 
thresholds to perform legal zoning on sound basis. Also, they allow comparison of risk management strategies as function of different behaviors towards risk, 
budgetary constraints and/or temporal horizons. Hence, the approach provides valuable tools for future land-use planning and decision-making. It could easily be 
transferred to other hazards as a wider contribution to the determination of the best balance between safety and sustainability.   

1. Introduction

In mountain areas, rapid landslides result from the combination of
topographic, lithologic and climatic factors. Seeing them as random 
processes defines the concept of mountain hazards, and additional 
consideration of their damageable consequences for various stakes 
identifies mountain risks. This is a constant threat for settlements and 
their inhabitants and creates conflict between development and safety. 
No countermeasures can be taken after mass movement initiation 
because the time before the damageable impact is generally less than 1 
min. Risk mitigation through rigorous land-use planning and/or design 
of defense structures is therefore a crucial issue for authorities and 
stakeholders so as to reduce death tolls, especially in densely populated 
valleys where space is limited and real estate pressure is continuously 
increasing [56,58,64]. 

Rockfalls are a common type of fast moving landslide [46], corre-
sponding to the detachment of individual rocks and boulders of different 
sizes from a vertical or sub-vertical cliff and to their travel down the 

slope by free falling, bouncing and/or rolling [30,65]. Rockfalls are 
triggered by multiple factors such as short-term weather conditions 
(freeze-thaw events, temperature variations or intense precipitation), 
seismic activity, permafrost degradation, vegetation (root wedging) or 
anthropogenic activities [18,55]. This phenomenon represents a major 
hazard in mountain areas worldwide, endangering human lives, trans-
portation infrastructures, industry and dwellings [2,40,42]. Abundant 
literature reports fatalities, e.g., in Switzerland [6,62], France [4], Italy 
[1], Austria [44] or Canada [10]. 

In that respect, quantitative risk assessment (QRA) procedures 
initially developed for other landslide types [16,38,39,47] have been 
adapted to the specificities of rockfall processes, increasing the aware-
ness of existing risk levels and the appreciation of the efficiency of the 
actions undertaken [1,13,15,16]. In QRAs, rockfall risk for exposed el-
ements is estimated by including in the analysis each component of risk: 
the hazard, the exposure and the vulnerability. However, in practice, 
this quantitative estimation is challenging [13,32,53], so that 
state-of-the-art methods remain scarce [1,14,43,45]. Notably, risk is 
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always evaluated for already existing buildings and infrastructures only 
[1,13,54,61]. Mathematically consistent approaches for evaluating in-
dividual risk as a continuous function of space in areas potentially 
suitable for establishing new stakes (e.g. new building constructions) are 
therefore lacking. This precludes (i) reliable anticipation of future 
rockfall risk in a context of urban plans evolving rapidly and substan-
tially evolving [31], and (ii) zoning on the basis of acceptability 
thresholds [3,25,43,66]. 

Furthermore, risk remains in the field of rockfalls - as for most of 
natural hazards - always defined as the damage expectation [1,26,27,35, 
36]. This risk measure has been classically adopted since it is intuitive 
and easy to compute. Indeed, given its linearity, the expectation of a sum 
of random variables is equal to the sum of individual expectations, and 
this holds if they are independent or not. From this perspective, risk is 
thus additive, allowing to evaluate easily the risk for a whole system by 
summing individual risks for each element of the system [32]. However, 
the damage expectation as a measure of risk is also hampered by several 
limitations. First, the damage expectation fails to capture the whole 
range of consequences especially those related to rare events [68]. It 
therefore tends to underestimate the consequences of 
low-frequency/high-magnitude events. Besides, putting forward the 
damage expectation as sole measure of risk does not offer any alternative 
integrating short/long term constraints or trade-offs between protection 
and costs faced by decision-makers. Specifically, this risk measure does 
not consider the time necessary to reach the expected damage, and the 
maximal damage that may be expected during this time [28]. 

Quantifying risks is an old question in statistics, economics and 
finance. While variance and standard deviation were historically the 
dominating risk measures in financial markets, measures based on 
quantiles have became popular in actuarial sciences since the 1990 [29, 
41]. One of the most widely metric used in banking and other financial 
institutions is the value-at-risk (VaR). For example, this measure has 
been successfully adopted by the Basel Committee on Banking Super-
vision for the prudential regulation of banks and owes its popularity to 
its conceptual simplicity. Value-at-risk indicates the damage which is 
not exceeded for a portfolio, with a given probability α, over a pre-
determined horizon [51]. Unfortunately, VaR fails to capture the extent 
of consequences beyond the confidence level α. In view of this limita-
tion, risk managers often prefer in practice the expected shortfall (ES), 
sometimes called conditional value-at-risk (CVaR), average value-at-risk 
(AVaR) or expected tail (ETL). ES measures the expected damage that is 
incurred in the events that are worse than the VaR of the portfolio [51]. 
It thus provides a better evaluation of damages to a portfolio due to 
unexpected or extreme scenarios. 

In this context, we develop here an approach for evaluating new 
individual quantile-based rockfall risk measures relying on the entire 
distribution of damages evaluated as a continuous function of space in 
an area where new constructions are envisaged. We apply it to evaluate 
risk at each 10× 10 m2 cell of Le Brocey slope (Crolles municipality, 
French Alps), where numerous rockfalls and intense urban sprawl dy-
namic have been reported since the beginning of the 20th century [48]. 
The complete distribution of damages is obtained by combining rockfall 
simulations with the physical vulnerability of potentially affected 
buildings and the complete distribution of block volumes in the range 
1–20 m3. At each cell, rockfall risk is evaluated as (1) the expected 
damage, (2) the value-at-risk, and (3) the expected shortfall risk mea-
sures. What follows details our innovative methodological approach and 
illustrates with the case study the added value of the resulting panel of 
risk maps for land-use planning. 

2. Methods

2.1. Risk measures 

2.1.1. Risk as annual expected damage 
In the field of natural hazards, risk is generally defined as the com-

bination of hazards with its consequences (e.g. Ref. [5,24,59,60]). This 
provides a statistical value for the expected damage per year [17,64]: 
Rz = q(z) × Ƶ× λ × E[Dz] . (1)  

Rz represents the expectations of the consequences (or a certain amount 
of damage) of hazard for the element at risk z, characterized by an 
exposure factor q(z) and a value Ƶ. In the most common configurations, 
these elements are physical (i.e. people, traffic infrastructure, build-
ings), but other less tangible aspects can be introduced such as the image 
and aesthetics of an element. λ is the temporal occurrence frequency of 
potentially damageable events (in events/yr). Dz is the random variable 
describing the damage distribution for the element z which is at risk. 
Hence, E[Dz] =

∫ dz L (dz) ddz with L (dz) the probability distribution of 
damages for the element z. 

For rockfall risk, this generic equation is often written as: 

Rz = q(z) × Ƶ× λ × pz

∫

pz(Event) dz(Event) dEvent . (2) 

Integration is therefore performed over the variability of rockfall 
events. The latter is related to different physical and kinetic properties, i. 
e. volume, mass, shape, translational and rotational energies, passing
height, impact angle, etc. from one rockfall to another. In addition, the 
damage expectation is evaluated considering only rockfall events that 
reach the element z. Hence, pz is the reach probability on the element at 
risk z, pz(Event) the local distribution of physical and kinetic properties 
of rockfall events reaching z and dz(Event) the resulting damage. 
Depending on the purpose of the analysis, the damage can refer, e.g., to a 
failure probability for buildings and infrastructures (physical vulnera-
bility) or to lethality rates (vulnerability of people). Based on vulnera-
bility curves [11,16,33,34], it is expressed on a scale ranging from 0 (no 
damage) to 1 (total damage). 

Eventually, due to the complexity and suddenness of rockfall pro-
cesses, several parameters (e.g. fragmentation of the block, impact 
angle, etc.) that would be useful for risk assessment are systematically 
lacking [9]. As a consequence, in practice, kinetic energy is generally the 
sole magnitude variable considered. This leads the following simplified 
equation: 

Rz = q(z) × Ƶ× λ × pz

∫

pz(E) dz(E) dE , (3)  

where pz(E) is the local distribution of kinetic energy E conditional to 
reach and dz(E) the resulting damage. 

2.1.2. Quantile-based risk measures 
To extent the risk analysis to alternative risk metrics, such as 

quantile-based measures, rather than its sole expectation, the complete 
distribution of damages L (d) is required (the indexing by z is relaxed for 
simplicity). In that respect, we developed in this study a methodology 
that evaluates it all over the rockfall volume distribution as: 

L (d)=

∫

vCl

L (d, vCl) dvCl =

∫

vCl

L (d|vCl) p(vCl) dvCl , (4)  

where vCl denotes the rockfall volume class and p(vCl) the related 
probability distribution. 

Specifically, we consider here the value-at-risk (VaR) and the 
expected-shortfall (ES) risk measures. Value-at-risk and expected 
shortfall are quantile-based measures that hedge against worst-case 
damages defined beyond a confidence level α. In grater details, the 
value-at-risk at level α ∈ (0,1) of a variable D is given by the smallest 
damage d such that the probability that the damage D exceeds d is not 
larger than (1-α). In other words, VaR is simply defined as the α-quantile 
of the damage distribution L (d). Formally: 
VaRα = inf{d ∈ ℝ|Pr{D ≥ d} ≤ (1 − α)} = inf{d ∈ ℝ|L (d) ≥ α } , (5) 
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where Pr{D≥ d} is the probability that the damage D exceeds d and 
L (d) the cumulative distribution function of damage, both conditional 
to rockfall volume distribution. 

Similarly, the expected shortfall at level α ∈ (0,1) is defined as the 
expected coverage in the (1-α) worst-case damages. Hence, it is closely 
related to value-at-risk as it corresponds to the expected damage that is 
incurred in the events exceeding VaR. Here we get: 
ESα = E(D|D ≥ VaRα) . (6) 

By definition, value-at-risk and expected shortfall are risk measures 
which depend only on the damage distribution L (d) and on the confi-
dence level α. For α set at 0, ESα is equal to the expected damage of the 
distribution. Similarly, if L (d) follows a normal distribution and α =

0.5, VaRα corresponds to E(D). Obviously, VaRα ≤ ESα (Fig. 1 [51]). 
No clear-cut recommendation can be given on the choice of α since 

the latter is a user-defined parameter that reflects the risk attitudes of 
the decision-maker [69]. Here, value-at-risk and expected shortfall are 
evaluated for different temporal horizons t (in years). Hence, t gives the 
length of the risk-management horizon for the stakeholder and is asso-
ciated to a certain confidence level given by: 

α= 1 −
1

λt
, (7)  

where λ corresponds to the temporal occurrence frequency of rockfall 
events. Demonstration of this mathematical relation is proposed in 
Appendix A. 

2.2. The different components of rockfall risk assessment 

Rockfall risk assessment involves three main steps: (1) analysis of 
rockfall activity in order to quantify the temporal occurrence of events 
and their associated volume distribution; (2) modeling of rockfall tra-
jectories to account for the spatially distributed nature of the rockfall 
process; (3) evaluating damages suffered by elements at risk due to 
rockfall impacts by making use of so-called vulnerability curves. Even-
tually, the required risk estimates are derived from the resulting damage 
distribution. 

2.2.1. Rockfall initiation 
Potential rockfall release areas are deduced from a DEM-based geo-

morphometric approach known as the slope angle frequency distribu-
tion (SAFD) procedure [49,52]. In this procedure, using the Excel-based 
Histofit application, slope angle distribution is decomposed in several 

Gaussian distributions. The terrain is considered a potential rockfall 
source if its slope angle exceeds a certain threshold, which in turn is 
defined where the Gaussian distribution corresponding to the “rock 
cliff” morphological unit becomes dominant over the one corresponding 
to the “steep slope” unit. 

Furthermore, we separately investigated (i) the temporal occurrence 
of rockfall events and (ii) their associated volume distribution through a 
catalog of past events. Assuming that any rockfall is characterized by the 
detachment of an individual block that will not disintegrate along the 
path, the distribution of volumes exceeding a volume threshold value u 
is characterized by an asymptotic model of the generalised Pareto dis-
tribution (GPD) family [12]. According to Pickands (1975) [57], for any 
random variable, this is the true limiting distribution as soon as u is high 
enough. The rockfall volume distribution is therefore given by: 

Pr{V > v | V > u} =
[

1 + ξ
(v − u

σ

) ]−1/ξ

, (8)  

where V represents the volume of the blocks (in m3) and u, σ and ξ, the 
location, scale and shape of the GPD distribution, respectively. 

2.2.2. Rockfall propagation 
Rockfall propagation is supported by a high-resolution 3D numerical 

modeling performed using the Rockyfor3D (v5.0) code [19]. On the 
basis of a digital elevation model, this probabilistic process-based 
rockfall trajectory model combines physically based deterministic al-
gorithms with stochastic approaches to simulate rockfall in three di-
mensions. The model calculates sequences of classical, uniformly 
accelerated parabolic free fall through the air and rebounds on the slope 
surface and trees (for details see Dorren et al., 2005 [20]). During each 
rebound, the model allows the block to deviate from its direction before 
rebounding. If an impact against a tree takes place, part of the rock 
energy is dissipated as a function of the stem diameter of the corre-
sponding tree and the relative position between the rock and tree center. 
As outputs, the model provides, for example, information on rock 
propagation for any location in the study site, the number of rocks 
passing through a given surface or the kinetic energy values of all 
simulated blocks at a given location. 

2.2.3. Rockfall damage 
By considering a potential area theoretically available for urban 

development, this study aims at assessing rockfall risk for a potential 
structural element (building type). Hence, the energies recorded over 
the Rockyfor3D simulations are expressed in terms of damage value on a 

Fig. 1. Simplified representation of the value-at-risk (VaR) and expected shortfall (ES) for a normal (A) and a heavy-tailed (B) cumulative distribution function of the 
random variable D expressing the damage for the considered element at risk. These quantile-based measures are compared with the expected damage (E). From the 
normal to the heavy-tailed distribution, minor variations are observed for the expected damage and the value-at-risk, while the expected shortfall substan-
tially increases. 
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theoretical structure based on the physical vulnerability curve proposed 
by Agliardi et al. (2009) [1]. This curve results from the back analysis of 
the 2004 rockfall event in Fiumelatte (Italy) and converts the energy of 
the impact into potential damage varying between 0 (no structural 
damage) and 1 (total collapse). It is expressed as: 

d(E)= 1 −
1.358

1 + e
E−129000

120300

, (9)  

where d represents the damage on a structure and E the impact energy 
(in Joules). 

3. Application

3.1. Case study 

As a typical case-study, our approach was applied on Le Brocey slope, 
located in the Crolles municipality (northeast of the Grenoble conur-
bation), in the Isère department (Fig. 2A, B, C). The study site forms a 
700-m long talus slope settled on the eastern slope of the Chartreuse 
Massif (French Alps). Its elevation ranges between 420 and 260 m a.s.l., 
from the lower limit of a centennial protection forest to the road D1090. 
Its slope angles decrease gradually from 20◦ ± 05◦ in the upper portion 
to 04◦ ± 03◦ at the level of the current urban front (Fig. 2D and E). Land- 
use and land-cover patterns are characterized by a mosaic of wasteland, 
grassland, wooded and constructed plots [32,48]. The site is topped by a 
300-m-high sub-vertical cliff made of thickbedded limestones and marls 
from the upper Jurassic period [23]. The cliff triggers rockfall with sizes 
varying from gravel clasts to blocks with volumes > 30 m3. Historical 
archives, fresh blocks, recent impact craters on the ground and visible 
growth disturbances (i.e., scars, decapitated trees) on the forest stand 
confirm ongoing strenuous rockfall activity on the slopes. 

3.2. Rockfall probability 

According to the Histofit routine, the threshold slope angle for source 
areas was set at 49◦ [31]. Terrain units exceeding the threshold slope 
angle were mapped into a Geographical Information System (GIS) and 
converted to raster for subsequent trajectographic analyses. In that 
respect, 6371 cells were identified as potential rockfall sources, corre-
sponding to a total surface of 35.9 hm2. 

In addition to susceptibility, the temporal probability of failure must 
be addressed to define the probability of the occurrence of a rockfall 
event [40]. For this purpose, 29 blocks potentially released from a 
11.5-hm2 cliff section were inventoried along a 900-m-long transect 
[32]. Given the relative freshness of the blocks (limited patina, absence 
of blunt or rounded-off edges, lichens or vegetation on the surface) and 
the presence of visible scars on tree stems, we estimated that the 
observation period of rockfall events should not reasonably exceed one 
century. In addition, the temporal occurrence was defined for volumes 
greater than the threshold u = 1 m3 as we consider it as the minimum 
volume that can significantly damage infrastructures. Assuming that 
rockfall stating points are homogeneously distributed on the rocky cliff, 
the rockfall frequency was thus estimated at 0.015 events/yr/hm2 [32]. 
Consequently, the total frequency λ of rockfall events equal 0.53 
events/yr. 

Finally, the probability distribution of rockfall volumes was obtained 
by fitting the GPD distribution using the maximum likelihood procedure 
on inventoried rockfall events [12]. Hence, a reduced catalog containing 
only the volumes u and greater was retained. This resulted in maximum 
likelihood estimators σ and ξ equal to 0.94 and 0.355, respectively 
(Fig. 3B). The related uncertainty was obtained by propagating their 
asymptotic covariance matrix using a delta-like approach [12]. 

Fig. 2. (A–B) The pre-alpine conurbation of Crolles is located in the Isère valley, near the city of Grenoble, on the southeastern slopes of the Chartreuse Massif 
(French Alps); (C) The calcareous cliff that threatens Le Brocey slope in 2017; (D) Local urban planning scheme of the Crolles area. The site is divided into three units: 
the protection forest, the agricultural area, and the urbanized area; (E) Land-use and land-cover (LULC) map of Le Brocey slopes in 2017. 
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3.3. Rockfall damage 

The topography of the slope was implemented in the Rockyfor3D 
model through a 5m-resolution DEM while the parameters used to 
characterize the interactions between the block and the soil - soil me-
chanical properties (i.e. restitution coefficients) and soil roughness - 
were described by the current land-use and land-cover (LULC) pattern of 
Crolles (Fig. 2E [31,48]). LULC patchiness was derived, according to the 
cadastral map, from aerial photo interpretation using standard photo-
graphic keys (i.e., tone, texture, pattern, shape and size) as well as in-
formation available from the French digital cadaster database. Soil types 
(e.g., fine soil material or bedrock) and roughness parameters were 
associated with each LULC class [48]. 

At Le Brocey scale, a total of 6371 potential rockfall sources were 
mapped on the DEM, and for each of those, 10,000 rockfall simulations 
with volumes randomly extracted between 1 m3 and 20 m3 were 
simulated. To provide information on rock propagation at any location 
of the study site, the slope was divided in 4700 cells z of 10× 10 m2 and 
rockfall energies were stored as: 

E(S, z)=

{

E(S, z) if S ∩ z

0 if S ∩ z = {∅}
(10)  

where E is the kinetic energy (in Joules) of the block in a certain position 
z along the slope for rockfall simulation S. Similarly, rockfall volume and 
simulation ID associated to each energy value were stored (Fig. 3A). 

Following Eq. (9), energies resulting from the Rockyfor3D model 
were derived in term of degree of loss. Furthermore, a typical structural 
element characterized by a floor area of 100 m2 (Ƶ, according to DEM 

resolution) was associated to each of the 4700 cells z constituting the 
slope. As we disregard the impact location of rockfalls on structures 
[50], their exposure was directly provided by the reach probability, so 
that q(z) = 1. Consequently, damages were expressed in terms of 
destroyed surface (in m2) and evaluated at each cell along the slope for 
each simulation (Fig. 3A). 

3.4. Risk estimates 

Rockfall risk values were numerically evaluated at each 10× 10 m2 

cell of Le Brocey slope through the damage expectation and based on 
VaR and ES metrics. In that respect, we (i) extracted the damage values 
of a random sample of the total simulations that respects the rockfall 
volume distribution (GPD model; Eq. (8)) and (ii) compiled the damage 
distribution at each cell z along the slope (Fig. 3B). 

3.4.1. Rockfall risk from expected damages 
With respect to Eq. (1), the mean annual surface destroyed per year 

(m2/yr) was estimated as: 
Rz = q(z) × Ƶ× λ × dz , (11)  

where dz correspond to the mean damage on element at risk z evaluated 
all over the retained simulations sample. 

3.4.2. Quantile-based rockfall risk values 
Here, rockfall risk values were estimated based on VaR and ES 

metrics. Following Eq. (5) and Eq. (6), local ES and VaR damage values 
were computed for fixed α-values corresponding to specific temporal 

Fig. 3. General scheme of the framework used to quantify the distribution of individual damages due to rockfall for rock volumes in the range 1–20 m3. The 
methodology is summarized in two main steps: (A) Rockfall propagation with the Rockyfor3D code and data storage (simulation and cell IDs, volumes, energies and 
probabilities of damage). (B) Estimation of individual damage cumulative probability distribution by sampling simulation results. 
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horizons t (Eq. (7)). Finally, with respect to Eq. (1), local damage values 
corresponding to VaR and ES were used to assess (i) the minimum and 
(ii) the average risk per year expected over t years due to rockfall events 
involving worst-case scenarios as: 

RVaR
z = q(z) × Ƶ×

1

t
× VaRα , (12)  

RES
z = q(z) × Ƶ×

1

t
× ESα , (13)  

where t is the considered temporal horizon in years. Hence, the value-at- 
risk can as well be expressed as the annual risk that should not be 
exceeded by α% of the rockfall events expected over t years. 

3.5. Uncertainty quantification by bootstrap 

In order to quantify the robustness of our results to the sampling 
scheme (section 3.4), a bootstrap procedure was performed for n = 100 
iterations. At each step of the bootstrap procedure, a random sample of 
3,353,158 damage values conditional to the rockfall volume distribution 
(GPD model; Eq. (8)) was extracted from the total simulations. This 
especially accounts for the variability of the results, that may result from 
large volumes which induce high damage but are rare. Eventually, for 
each iteration n, we compiled the damage distribution at each cell z 
along the slope and rockfall risk was quantified from the expected 
damage, the value-at-risk and the expected shortfall. The values from 
the bootstrap sampling were average at the cell scale and their disper-
sion was quantified through the standard deviation (SD) and the coef-
ficient of variation (COV). 

4. Results

4.1. Rockfall hazard 

On average, over the 100 bootstrap iterations, 12% of the simula-
tions (392,229) propagate over 3031 out of the 4700 cells z (64.5%) of 
Le Brocey slope. The remaining 88% are blocked in the centennial 
protection forest located upslope from the study site. Among the simu-
lations reaching Le Brocey slope, on average, 112,610 and 719 are 
associated to volumes in the range 1–2 m3 and 19–20 m3, respectively. A 
reach probability 0 < pz ≤ 0.10% is associated to 90% of the 3031 
impacted cells z. The maximum value (pz = 0.0133) is recorded in the 
upper part of the study site, at the contact of the protection forest. 

Based on the temporal occurrence probability λ, Fig. 4A shows the 
spatial distribution of rockfall recurrence intervals at Le Brocey. In de-
tails, recurrence intervals lower than 1000 years are observed on 195 
cells z (4%). Unsurprisingly, these values are localized in rockfall cor-
ridors (where rockfall passages are the most frequent). The minimum 
value is estimated at 141 years (pz max. = 0.0133) in pixel zA. For the 
remaining cells, recurrence intervals are higher and exceeded 1,000,000 
years downslope, mostly below the current urban front limit (Fig. 4A). 

The mean kinetic energy conditional to reach along rockfall trajec-
tories exceeds 650 kJ for a large part of the simulations (Fig. 4B). The 
maximum energy (73,000 kJ for a block volume of 20 m3) is recorded in 
the lower part of the slope. High mean kinetic energies conditional to 
reach observed in the lower part of the slope are related to (i) the limited 
roughness associated with grassland, wasteland as well as urbanized 
areas and (ii) to the steepness of the slope up to the level of the urban 
front. Furthermore, as the damage is close to 1 for kinetic energy E 
exceeding 650 kJ (see Eq. (9)), a large proportion of simulations is 
associated to a damage value of 100 m2 conditional to reach. 

Fig. 4. (A) Rockfall hazard map for the area of Le Brocey. (B) Spatial distribution of rockfall mean kinetic energy conditional to reach. For each cell z, the return 
period (A) and the mean kinetic energy (B) have been evaluated over 100 bootstrap iterations (Section 3.5). 
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4.2. Quantitative analysis of rockfall risk 

4.2.1. Damage distribution 
Damage distributions are computed for the 4700 cells z of Le Brocey 

slope. For illustration purposes, Fig. 5 focuses on the empirical damage 
distribution associated to two specific cells zA and zB and evaluated for 
to the bootstrap iteration n = 1. Both cells are chosen according to their 
reach probability pz: pzA is the maximum reach probability observed on 
the slope (pzA = 0.0133) whereas pzB is significantly lower (pzB = 0.003). 
Despite this difference, the mode of both damage distributions is 0 m2 

and the probabilities Pr{D = 0 m2} are 0.9866 and 0.9970 on zA and zB, 
respectively. In addition, a second sharp increase in the damage cu-
mulative distribution function is only observed on zA, for a damage 
value of 100 m2. In detail, the probability for having a damage value of 
100 m2 on zA is equal to 0.0013. 

4.2.2. Expected damage 
Following Eq. (11) - which combines the rockfall occurrence fre-

quency and the expected damage - we computed the risk to buildings 
expressed as the mean annual surface destroyed per year (m2/yr). Fig. 5 
shows the expected damage associated to cells zA and zB for bootstrap 
iteration n = 1. It equals to 1.1 m2 and 0.14 m2, respectively. Given the 
rockfall frequency λ = 0.53 events/yr, risk as expected damage is 
evaluated to 0.58 m2/yr and 0.074 m2/yr at cells zA and zB, respectively. 

Fig. 6 represents the spatial distribution of the expected damage per 
year (in m2/yr). In detail, it is < 0.01 m2/yr for 85% of the cells z and 

values below 0.0005 m2/yr are mainly located in the currently urban-
ized area. Highest values are computed in rockfall corridors and exceed 
0.5 m2/yr at two cells, including zA. 

4.2.3. Value-at-risk 
The value-at-risk has been used to quantify the risk within fixed 

temporal horizons (Eq. (12)). It expresses the risk as the annual mini-
mum damage expected over t years due to worst-case rockfall scenarios. 
Again, for illustration purposes, results first focus on zA and zB cells. 

Based on Eq. (7), worst-case rockfall events represent 1% (α = 0.99) 
of the damage distribution for a temporal horizon t = 200 years, leading 
damage and risk values of 86 m2 and 0.43 m2/yr at zA, respectively 
(Fig. 5A). Similarly, worst-case rockfall events represent 0.2% of the 
damage distribution for t set at 1000 years (α = 0.998). Based on this 
α-quantile, damage and risk values are 25 m2 and 0.025 m2/yr at zB, 
respectively (Fig. 5B). In other words, the risk induced by rockfall events 
expected over 200 years should never exceed 0.43 m2/yr with a prob-
ability of 0.99 at zA. On zB, there is a probability of 0.998 that rockfall 
events expected over 1000 years do not damage more than 0.025 m2/yr. 

Fig. 7 evaluates the damage and risk values corresponding to VaR as 
continuous function of the temporal horizon t ranging between 1/λ and 
106 years. For zA, damages corresponding to VaR are 0 m2 for temporal 
horizons up to t = 141 years (Fig. 7A). According to Eq. (7), this tem-
poral horizon, associated with the probability of no damages, corre-
sponds to an α-quantile < 0.9866. For zB, the same probability is 
observed up to t = 634 years (Fig. 7C) and α-quantiles < 0.997. High 

Fig. 5. Rockfall cumulative damage distributions at zA (A) and zB (B) cells for the bootstrap iteration n = 1 (Section 3.5). For each distribution, the value-at-risk (blue 
dot) and the expected shortfall (red dot) have been computed for temporal horizons t = 200 years (α = 0.99) on zA and t = 1000 years (α = 0.998) on zB. Results are 
compared with the mean damage (green dot). 
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Fig. 6. Map of the risk expressed as the expected damage (in m2 destroyed per year) at Le Brocey. For each cell z, it has been computed over 100 bootstrap iterations 
(Section 3.5). 

Fig. 7. Rockfall damage (A, C) and risk (B, D) as function of the temporal horizon t at zA and zB cells based on the value-at-risk and the expected shortfall. All curves 
were evaluated for the bootstrap iteration n = 1 (Section 3.5). 
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rockfall energies observed at Le Brocey combined with the vulnerability 
curve of Agliardi et al. [1], result in a sharp increase of damage distri-
butions from 0 to 100 m2 for horizon above 141 years at zA and 634 
years at zB. Damages reach systematically 100 m2 when t exceeds 1429 
years (Fig. 7A), 47,541 years (Fig. 7C) at zA and zB, respectively. 
Consequently, RVaRz reaches a maximum value for t = 209 years (0.43 
m2/yr, zA; Fig. 7B) and t = 1977 years (0.038 m2/yr, zB; Fig. 7D) and 
tends towards 0 m2/yr for longer time periods. 

Fig. 8 shows the spatial distribution of RVaRz for specific temporal 
horizons t set to 100 years (α = 0.98), 300 years (α = 0.994), 1000 years 
(α = 0.998) and 10,000 years (α = 0.9998). For a temporal horizon t of 
100 years, RVaRz is null for each cell of the studied area (Fig. 8A). In other 
words, the probability that damages occur on any cell over 100 years is 
< 0.02 (1-α). Similarly, for a temporal horizon of 300 years, the prob-
ability for risk values corresponding to VaR to be null is 0.994 for 4683 
out of 4700 cells (Fig. 8B). Remaining cells associated with RVaRz ranging 
between 0.1 m2/yr and 0.5 m2/yr are mainly located in the upper part of 
rockfall corridors. 

As expected, the number of cells characterized by non-null RVaRz in-
creases downslope preferentially along rockfall corridors for t = 1000 
(Fig. 8C), 10,000 years (Fig. 8D). For the latter horizon, damage values 
corresponding to VaR are equal to 100 m2 for 16 cells mainly located in 
the upper part of the study site at the contact of the protection forest 
(hatched area on map, Fig. 8D). In other words, as the damage values 
corresponding to VaR is 100 m2, worst-case scenarios (over 10,000 
years) will necessarily fully destroy the building-like infrastructure 
present in these cells. Finally, our map shows that 99.98% of the events 
expected over 10,000 years will not reach the level of the current urban 
front. 

4.2.4. Expected shortfall 
Based on the expected shortfall (Eq. (13)), the damage and risk 

values expected at zA, over a 200-year horizon, are 98 m2 and 0.49 m2/ 
yr, respectively (Fig. 5A). They obviously exceed the damage and risk 
values corresponding to VaR (86 m2 and 0.43 m2/yr). Similarly, at zB, 
damage and risk values corresponding to ES (70 m2 and 0.07 m2/yr) for 
t = 1000 years are approximately 3 times higher than damage and risk 
values corresponding to VaR (25 m2 and 0.025 m2/yr; Fig. 5B). 

Fig. 7B and D show the evolution of RESz for temporal horizons t be-
tween 1/λ years and 106 years. Unsurprisingly, in view of Eq. (7) and 
Appendix B, RESz is equal to the expected value for t = 1/ λ and as long as 
α < Pr{D = 0 m2}. The differences between RESz and RVaRz are maximum 
below 141 years (0.53 m2/yr) at zA (Fig. 7A and B) and 634 years (0.075 
m2/yr) at zB (Fig. 7C and D). Above these temporal horizons, both risk 
distributions rapidly converge. They are strictly equal (shaded area on 
Fig. 7B, D) when α > Pr{D < 100 m2}, for t > 1429 years (zA) and t >
47,541 years (zB). 

Maps presented in Fig. 9 show the spatial distribution of RESz for the 
2% (100 years), 0.6% (300 years), 0.2% (1000 years) and 0.02% (10,000 
years) of worst-case scenarios. These maps using the expected-shortfall 
as risk measure strongly differ from those computed with the value-at- 
risk (Fig. 8). Again, in view of Appendix B, the ES-map at a temporal 
horizon of 100 years is strictly similar to the one computed using the 
arithmetic mean (Fig. 6). Maps computed for 300 years, 1000 years and 
10,000 years show similar risk patterns but differ at cells were RVaRz is 
not equal to 0 m2/yr (α > Pr{D= 0 m2}; Fig. 8B, C, D). More interest-
ingly, regardless of temporal horizons, low risks values corresponding to 
ES are computed in cells located below the current urban front. This 
illustrates the non-null risk incurred in the currently inhabited area. 

4.3. Bootstrapping 

Fig. 10 shows the standard deviation (SD) and the coefficient of 
variation (COV) for ES and temporal horizons t = 100 years, 1000 years 
and 10,000 years. The standard deviations do not exceed 3e−3 at an 

horizon of 100 years (Fig. 10A). As damages tend more systematically to 
100 m2 through time, this minimum value decreases for 1000 and 
10,000 years temporal horizons (Fig. 10C, E). Obviously, the coefficient 
of variation which represents the ratio between the SD and the average 
of risk decreases through time (Fig. 10B, D, F). This demonstrates the 
sufficient robustness of our results to the sampling of the volume 
distribution. 

5. Discussion, conclusion and outlooks

5.1. Main methodological outcomes of the work 

Classically, risk is evaluated through the standard damage expecta-
tion, widely adopted since it is intuitive, easy to compute and interpret, 
as well as additive. Yet, a major drawback lies in its inability to capture 
the extent of consequences due to rare events. In addition, it provides a 
unique risk estimate, which does not account for different short/long 
term constraints or trade-offs faced by risk decision-makers. To better 
assess the risk from extreme events, we proposed, in this study, an 
innovative approach where rockfall risk is estimated based on quantile- 
based measures. Also, in order to make it usable in area where new 
constructions are envisaged, we evaluated these quantile-based risk 
measures as well as the expected damage as continuous function of space 
on an individual basis at each location along a slope potentially suitable 
for new buildings [3]. For this purpose, our approach requires the 
complete distribution of damages, individually assessed by combining 
rockfall simulations with the rockfall volume distribution of block vol-
umes in the range 1-20 m3 and the physical vulnerability of potentially 
affected buildings. 

Specifically, we introduced the value-at-risk (VaR) measure, which is 
nothing more than the α-quantile of the distribution of damages [28]. 
Despite its high interest, it however fails to capture potential conse-
quences beyond the confidence level α [51]. We therefore com-
plemented our approach by introducing the expected-shortfall (ES), that 
aims at quantifying the consequences of events above the value-at-risk. 
Both value-at-risk and expected shortfall measures enable 
decision-makers to modulate their management according to different 
risk preferences: α close to 0 being more risk neutral, and α close to 1 
more risk conservative [69]. More generally, VaR and ES measures 
enable the ranking and comparison of risk management options and 
leave to decision-makers the final decision, depending on their person-
ality and on their political, social and/or budgetary constraints. Addi-
tionally, the approach developed here not only precisely assess the 
rockfall risk due to extreme events, but also provide rockfall risk maps 
over different temporal horizons. Hence, our approach may provide 
valuable tools for future land-use planning and decision-making, and 
more widely, determine the right balance between safety and sustain-
ability in rockfall prone areas. 

Eventually, in the existing literature, rockfall hazard and risk as-
sessments are classically based on trajectory models. However, given the 
complexity of the rockfall process (with respect i.e., rebounds, deviation 
and damage of energy induced by obstacles [20]), multiple simulations 
are required to properly assess the distributions of rockfall trajectories 
and energies in each cell of our study site. In that respect, we developed 
a bootstrap procedure that (1) enables to integrate a large spectrum of 
potential rockfall events while (2) optimizing data storage and pro-
cessing. Based on this process, 3,358,158 simulations were sampled 
100-times from the 63,710,000 trajectories stored from RF3D simula-
tions. In the absence of bootstrapping, nearling results of similar 
steepness would have required a number of simulations more than 
5-times higher (3,358,158× 100). We believe that this approach could 
be even more relevant for other natural hazards for which only rare 
events lead to a total destruction of impacted buildings. 
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Fig. 8. Map of the value-at-risk (in m2 destroyed per year) at Le Brocey and for temporal horizons t of 100 years (A), 300 years (B), 1000 years (C) and 10,000 years 
(D). For each cell, the mean VaR has been computed over 100 bootstrap iterations (Section 3.5). 
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Fig. 9. Map of the expected-shortfall (in m2 destroyed per year) at Le Brocey and for temporal horizons t of 100 years (A), 300 years (B), 1000 years (C) and 10,000 
years (D). For each cell, the mean ES has been computed over 100 bootstrap iterations (Section 3.5). 
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5.2. Implications for the case study 

For illustration, our approach has been implemented at Le Brocey 
slope, in the municipally of Crolles, where numerous rockfalls have been 
reported since the beginning of the 20th century [31]. Based on 

α-quantiles deduced from fixed temporal horizons t ranging between 
100 years and 10,000 years, risk values risk values corresponding to VaR 
and ES have been quantified at each location along the slope. The 
resulting panel of individual VaR-risk maps demonstrates that no risk 
exists as long as t < 100 years. Above this temporal horizon, the number 

Fig. 10. Map of the standard deviation (SD) and of the coefficient of variation (COV) of the expected shortfall for temporal horizons t of 100 years (A–B), 1000 years 
(C–D) and 10,000 years (E–F). For each cell, SD and COV have been computed over the 100 bootstrap iterations (Section 3.5). Cells with reach probability pz < 3e−6 

were excluded. 
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of at-risk locations, and, hence, potentially threatening buildings, in-
creases downslope, preferentially along rockfall corridors, but remains 
very limited. The absence of risk associated with a large majority of 
locations results from (1) the low probability for a rockfall event to 
propagate downslope due to the presence of the protection forest. This is 
particularly true given that the forest has significant impacts on rockfall 
propagation for lower volumes (< 3 m3 [21,22,63]), that represent 80% 
of the rockfall simulations at Le Brocey. Similarly, (2) individual rockfall 
events have a limited spatial extent as function of the trajectory of the 
block and its size. As a consequence, the latter generate very localized 
damages contrary to other mass movements such as snow avalanches, 
landslides, or seismic events, which are susceptible to produce wide-
spread damages within the extent of a single event [11,37,68]. 

However, we observed that for a large proportion of the cells, 
rockfall damages lead to the near-total destruction of potentially 
exposed buildings as soon as they are hit. This results from another 
specificity of rockfall processes, namely high energies during their mo-
tion, that mainly cause total destruction in case of an impact on a 
building-like structure (damage probability of 1 [1]). Moreover, indi-
vidual ES maps highlight that rockfall risk is widely spread in Le Brocey 
but remains strictly equal to the expected damage value as long as α <

Pr{D = 0 m2} (or risk value corresponding to VAR equals to 0 m2/yr). 
This means that the expected damage gives a first insightful risk estimate 
for a large part of the study area but leads to a significant overestimation 
of the risk for temporal horizons t above 1/λ (rockfall return period). 

Overall, these results suggest that rockfall risk at Le Brocey is mainly 
located in rockfall corridors. However, analysis of extreme events 
demonstrates that a large proportion of Le Brocey slope (including 
currently inhabited area) is subject to potential rockfall damages. 
Furthermore, given the high energies of events during their propagation, 
any impact with a building-like structure should lead to its near-total 
destruction. By quantifying the risk through alternative measures, our 
results thus complement the current knowledge and understanding of 
rockfall risk in the municipality of Crolles, opening the door to a more 
efficient and suitable risk assessment and management. 

5.3. Outlooks for further work 

In the field of natural hazards, simple statistics such as the arithmetic 

average, the maximum value, or a percentile [47] are still employed to 
characterize the risk undertaken in a specific context. On the contrary, 
practitioners in insurance and other financial institutions are used to 
deal with more advanced risk measures [7], and a large range of ap-
proaches to measuring risk has been developed in recent decades [51]. 
In this study, we introduced the most popular financial risk measures (i. 
e., the value-at-risk and the expected shortfall) for quantifying rockfall 
risk and demonstrated their added value for risk management. Such 
developments could be in the future extended to other natural hazards, 
such as other landslide types or flooding [8]. Furthermore, an optimal 
value of the α-quantile could be determined by implementing the 
approach on different case studies and coupling it with interviews or 
surveys [67]. Also the choice of mitigation strategies could be optimized 
taking into account the behavior of decision-maker facing risk [25]. 
Similarly, based on acceptability thresholds [35,43,66], refined rockfall 
zoning maps could be proposed. Eventually taking into account poten-
tial changes in rockfall activity and propagation related to, e.g., land-
scape evolution (very likely to occur within decades), would be an 
interesting perspective to enlarge relevance of the risk analysis in local 
contexts submitted to drastic changes. 
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Appendices. 

Appendix A. Determination of the confidence level α for a predetermined temporal horizon t 

The annual probability that k rockfall events lead a damage D≤d is given by: 
Pran(D ≤ d) =

∑

k

Pr(K = k) Pr(D ≤ d)k , (A.1)  

with the random variable K describing the number of rockfall events occurring each year. 
Following extreme value theory, K∼Po(λ) with λ the average number of rockfall events per year [57], Po() denoting the Poisson distribution. The 

annual probability is thus given by: 

Pran(D≤ d)=
∑

k

[

λk

k!
e−λ

]

L (d)k . (A.2) 

Using a Taylor expansion and a first-order approximation, 

Pran(D≤ d)= e−λ
∑

k

[λL (d)]k

k!
= e−λeλL (d) ≈ 1− λ[1−L (d)]. (A.3) 

Hence, the annual probability that rockfall events lead a damage D>d is: 
Pran(D≤ d)= 1− Pran(D≤ d)= λ[1−L (d)]. (A.4) 

The time period t between two events that lead a damage D>d corresponds to: 
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t =
1

Pran(D > d)
=

1

λ[1 − L (d) ]
. (A.5) 

Conversely, the mean damage d over the period t is: 
d =L

−1(α) , (A.6)  

where 

α= 1 −
1

λt
. (A.7)  

Appendix B. Annualized expected shortfall for α lower than Pr{D = 0}

Following Eq. (1), the annualized expected damage is given by: 
Rz = q(z) × Ƶ× λ × E[Dz] . (B.1) 

By distinguishing null- and non null-damages, the mean risk per year can also be expressed as: 

Rz = q
(

z
)

× Ƶ× λ × Pr
{

D > 0
}

× E[D > 0] , (B.2)  

where Pr{D> 0} is the probability of having non-null damages. 
According to Eq. (7), the temporal horizon t can be expressed as: 

t=
1

λ(1 − α)
, (B.3)  

and consequently the annualized expected shortfall is: 
RES

z = q(z) × Ƶ× λ(1 − α) × ESα . (B.4) 
The probability of D > 0 given D > Dα is obtained from conditional probability rules: 

Pr{D> 0 | D>Dα}=
Pr{D > 0 ∩ D > Dα}

Pr{D > Dα}
=

Pr{D > 0}

Pr{D > Dα}
. (B.5) 

Finally, knowing that: 
Pr{D>Dα}= (1−α) , (B.6)  

for 0≤ α <Pr{D = 0}, the annualized expected shortfall RESz can be rewritten as: 
RES

z = q(z)×Ƶ× λ(1−α)× Pr{D> 0 | D>Dα}×E[D> 0]

= q(z)×Ƶ× λ(1−α)×
Pr{D > 0}

1 − α
×E[D> 0]

= q(z)×Ƶ× λ×Pr{D> 0}×E[D> 0]

= Rz .

(B.7) 

In other words, for 0≤ α <Pr{D = 0}, the annualized expected shortfall coincides with the annualized expected damage. 
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