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Introduction

Modelling, design and motion regulation of fluid-flexible structures witness much attention since they are used in many life applications such as underwater robotic systems, space vehicles or resonant beams for measurement purposes [START_REF] Naik | Dynamic response of a cantilever in liquid near a solid wall[END_REF][START_REF] Qiao | Vibration and stability of an axially moving beam immersed in fluid[END_REF][START_REF] Fadaee | Active vibration control of carbon nanotube-reinforced composite beam submerged in fluid using magnetostrictive layers[END_REF]. These structures would be destabilized if undesired disturbance loads are applied. To this end, active vibration attenuation is a powerful tool to resolve this dilemma. By bonding piezo-patches (actuators and sensors) on the surface of the vibrating beam, the oscillations of the dynamic system can be suppressed. However, a control structure is required to stabilize the fluid-beam oscillations [START_REF] Wagg | Nonlinear vibration with control[END_REF]. Consequently, this paper is focused on modelling and adaptive control of a flexible beam immersed in a fluid under modelling uncertainty. Designing an appropriate control system requires proper modelling for the target dynamic system. Two key points should be considered in modelling of a smart beam-fluid system: 1) fluid hydrodynamics and 2) piezoelectric patches. Fortunately, the dynamics of piezo-patches integrated with the beam can be neglected due to the slight effect on vibrations characteristics of the system [START_REF] Zhang | Adaptive vibration control of micro-cantilever beam with piezoelectric actuator[END_REF]. On the other hand, if the beam is imposed to oscillate with fluid vibrations then the hydrodynamic forces can be decomposed into two main forces: 1) hydrodynamic forces dependent of beam motion that can be represented by inertia, damping and stiffness forces and 2) external hydrodynamic forces independent of beam oscillations and these forces are of random signals and are determined experimentally [START_REF] Faltinsen | Sea loads on ships and offshore structures[END_REF]. For more details on fluid-structure interaction, see [START_REF] Naik | Dynamic response of a cantilever in liquid near a solid wall[END_REF][START_REF] Qiao | Vibration and stability of an axially moving beam immersed in fluid[END_REF][START_REF] Fadaee | Active vibration control of carbon nanotube-reinforced composite beam submerged in fluid using magnetostrictive layers[END_REF][START_REF] Faltinsen | Sea loads on ships and offshore structures[END_REF][START_REF] Xing | Natural vibration of a beam-water interaction system[END_REF][START_REF] Sader | Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope[END_REF][START_REF] Zhao | Natural vibration of a flexible beam-water coupled system with a concentrated mass attached at the free end of the beam[END_REF][START_REF] Qiao | Vibration and stability of an axially moving beam immersed in fluid[END_REF][START_REF] Shabani | Coupled vibration of a cantilever micro-beam submerged in a bounded incompressible fluid domain[END_REF][START_REF] Ni | Free vibration and stability of a cantilever beam attached to an axially moving base immersed in fluid[END_REF][START_REF] Eftekhari | A mixed modal-differential quadrature method for free and forced vibration of beams in contact with fluid[END_REF][START_REF] Rezaiee-Pajand | Solving coupled beam-fluid interaction by[END_REF]. For simplicity, linear modelling for the coupled beam-fluid system is considered and this eases the task of the controller; however, the parameters of the target system are assumed unknown. Therefore, conventional control structures such as conventional PID or optimal control etc. (see e.g. [START_REF] Song | Hybrid regressor and approximation-based adaptive control of piezoelectric flexible beams[END_REF] and the references therein) maybe not useful for this type of system. Two control techniques are strong to deal with the uncertainty: adaptive control and robust bounded control, see e.g. [START_REF] Farrell | Adaptive Approximation Based Control: Unifying Neural, Fuzzy and Traditional Adaptive Approximation Approaches[END_REF][START_REF] Ioannou | Adaptive control tutorial[END_REF][START_REF] Huang | Adaptive control of robot manipulators: a unified regressor-free approach[END_REF] for more details. In general, two strategies of adaptive control are available: regressor and approximation-based control. The former is a physics-based control that is difficult to deal with disturbances if exist, while approximation-based control is a powerful tool to treat complex systems, the reader is referred to [START_REF] Song | Hybrid regressor and approximation-based adaptive control of piezoelectric flexible beams[END_REF][START_REF] Huang | Adaptive control of robot manipulators: a unified regressor-free approach[END_REF][START_REF] Corves | Function approximation technique-based adaptive virtual decomposition control for a serial-chain manipulator[END_REF][START_REF]On local approximation-based adaptive control with applications to robotic manipulators and biped robots[END_REF][START_REF] Song | Hybrid regressor and approximation-based adaptive control of robotic manipulators with contact-free motion 2[END_REF][START_REF] Song | Decentralized adaptive partitioned approximation control of high degrees-of-freedom robotic manipulators considering three actuator control modes[END_REF][START_REF]FAT-Based Adaptive Backstepping Control of an Electromechanical System with an Unknown Input Coefficient[END_REF] for more information. In view of the above, this work is concerned with modelling and adaptive approximation control of a linear smart beam model interacting with fluid. The control architecture consists of three main terms: PD term, adaptive approximation compensator term and a robust sliding term for reducing the modelling error if exist. A simply supported beam provided with two piezo-patches is simulated. The smart beam system is immersed in a fluid media. The vibration source is assumed as a harmonic force that excites the coupled fluid-beam system. In effect, this disturbance results from the external fluid hydrodynamic forces that are independent of beam vibrations. The results show the strength of the proposed controller under uncertain modelling and impulse disturbances. The remainder of the paper is structured as follows. Section 2 describes the dynamic modelling of the smart beam-fluid system while section 3 introduces the proposed control architecture. Simulation results and discussions are evaluated in Section 4. Section 5 concludes.

Dynamic modelling of a coupled beam-fluid system

Below modelling of smart beam immersed in a fluid is presented, see Figure 1 for a depiction of beam-fluid model. For modelling purposes, the following points are assumed [START_REF] Wagg | Nonlinear vibration with control[END_REF][START_REF] Faltinsen | Sea loads on ships and offshore structures[END_REF]:

(i) A linear fluid-structure model is considered, i.e. small deflections are imposed. (ii)

The hydrodynamic forces are decomposed into two terms: forces dependent on beam oscillations and external disturbance forces free from beam vibrations. (iii)

A sufficient number of piezo-sensors are available such that modal amplitudes are measurable.  are Young's modulus, moment of inertia, cross-sectional area, and density of the beam respectively. p T is the moment per unit length exerted by the piezo-actuator, D is a constant depending on properties of the regular beam and smart materials [START_REF]FAT-Based Adaptive Backstepping Control of an Electromechanical System with an Unknown Input Coefficient[END_REF]. In order transfer the PDF of Equation ( 1) into multi-modal ODEs, the Galerkin approach is used, hence
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is the mode shape,
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is the modal amplitude and 𝑁 is the number of the mode shapes.Substituting Equation (4) into Equation (1), multiplying by an arbitrary
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, integrating along the beam length and using the orthogonal conditions for a simply supported beam with some manipulations, we obtain
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where 𝑙 𝑏 referring to length of the beam and 𝑁 𝑎 is the number of piezo-actuators. In a matrix form, Equation ( 5) is expressed as 
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Control design

The objective of the controller is to regulate the beam oscillations due to external disturbances. The proposed control law consists of three terms: PD term, an adaptive approximation compensator term, and a robust sliding term for compensation of modelling errors if exist. Thus, the controller form can be represented as [START_REF] Huang | Adaptive control of robot manipulators: a unified regressor-free approach[END_REF][START_REF] Corves | Function approximation technique-based adaptive virtual decomposition control for a serial-chain manipulator[END_REF][START_REF]On local approximation-based adaptive control with applications to robotic manipulators and biped robots[END_REF][START_REF] Song | Hybrid regressor and approximation-based adaptive control of robotic manipulators with contact-free motion 2[END_REF][START_REF] Song | Decentralized adaptive partitioned approximation control of high degrees-of-freedom robotic manipulators considering three actuator control modes[END_REF][START_REF]FAT-Based Adaptive Backstepping Control of an Electromechanical System with an Unknown Input Coefficient[END_REF] ) sgn( ˆe is the desired reference vector,
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are the weighting coefficient and the basis function matrix/vector, and  is the number of basis function. Equating Equation (7a) to Equation (6) to get
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is the modelling error. Equation ( 9) represents a closed-loop dynamics for the beam-fluid system.

As we see from Equation ( 7), the unknown matrix α ˆ is required to be updated with guaranteed stability.

To this end, consider the following non-negative function along Equation ( 9)
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Taking time derivative of Equation ( 10) 
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To stabilize Equation ( 12), the appropriate update law is chosen as
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Equation ( 15) is stable according to Lyapunov theory.

Results and discussions

To prove the efficacy of the proposed controller, a pinned-pinned beam with a couple of piezo-patches installed on its surface. The dimension and the properties of piezo-materials, beam and fluid are listed in Table 1. The oscillations source that irritates the smart beam motion is considered as a sinusoidal disturbance force with a frequency of 50 Hz with 1 N amplitude. This disturbance is developed due to the hydrodynamic fluid loading that is free of beam motion. Below, we will not investigate the configurations of the beam mode shapes and the frequency response for the coupled beam-fluid system, for more details see [START_REF] Wagg | Nonlinear vibration with control[END_REF]. What is important here is the effectiveness of the proposed controller while the coupled beam-fluid system under harmonic oscillations. 
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The suggested control structure is applied to the target beam system with the following control gains: 
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For proper tuning of control gains, a private strategy suggested in [START_REF] Zhu | Virtual decomposition control: Toward Hyper Degrees of Freedom Robots[END_REF] was adopted. The key idea is to set values for the target gains gradually from zero to a value at which the system instability occurs and then the gain value is halved for safety. Besides, two important points should be noted: 1. The modelling error is neglected and hence the robust sliding term is nullified.

2. The Chebyshev polynomials are used as approximators for the adaptive approximation compensator. The initial conditions for the beam oscillations and the weighting coefficient matrix are imposed zero. Investigating Figures 2 and3 shows that the proposed controller strongly damps out the oscillations. Two experiments are tested: 1) beam oscillations without a controller, and 2) beam oscillations with the application of the proposed control law. It should be mentioned that the piezo-actuators would have limit value for the output voltage and hence a bounded control is preferred to be implemented that is lost in this work. Besides, we have simulated 2 piezo-actuators/sensors for the first two-mode shapes and this can ease the calculations. In practice, the number of actuators could be not equal to the investigated mode of shapes and hence pseudo-inverse matrix should be used, see [START_REF] Preumont | Vibration control of active structures[END_REF] for more details. 

Conclusions

This work supposes adaptive approximation control with integrated PD for motion regulation of the beam-fluid system. The analysis is confined to the linear behaviour of the beam-fluid system. Despite the results show that the proposed controller is a powerful strategy for oscillation damping of flexible structures, the following points should be noted:

1. The nonlinear model for flexible structures should be considered.

2. The fluid hydrodynamic forces are evaluated based on the concept of added mass and damping, however, more complex theory should be investigated considering different fluid mediums. 3. The current controller is applied to a simple beam. The behaviour of the suggested controller should be tested on plate and shells.
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Figure 1 .

 1 Figure 1. A flexible beam with piezo-patches interacting with fluid.

H

  is a Heaviside step function of the beam displacement. On the other hand, hydrodynamic force per unit length due to the beam motion and 𝑓 𝑒 (𝑥, 𝑡) referring to an external hydrodynamic force independent of beam motion. Remark 1. As aforementioned, the overall hydrodynamic fluid forces are partitioned into two terms; e m f f  , where m f is a function of acceleration and velocity of the beam oscillations (the concept of added mass and damping), while e f is experimentally determined. In effect, this work assumes the vibration source results from e f .

  where

Figure 2 .

 2 Figure 2. Modal coordinates for the coupled smart beam-fluid system considering the first two modes.

Figure 3 .

 3 Figure 3. The input control for the piezo-actuators.

Table 1 .

 1 Properties of beam, piezo-materials, and fluid

	Beam		b		kg 8000	/	m	3	,	l b			4 . 0	m ,	E b		190		10	3	MPa	,	A b		04 . 0		m 001 . 0	2	,
		b 1		07 . 0	N	s .	/	m ,	b 2		03 . 0	N	s .	/	m
	Piezo-material	l			0	.	08	, m	A		0	035 .		. 0	0004	m	2	,	E		70		10	3	MPa	.
		p												p															p
	Fluid (FC-72)																												6	2	3	3
					2	.	, 1	/			2280	,				0	.	4	10	,	1	68 .	10	/	.