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Abstract. A Lagrangian scheme devoted to the approximation of advection
term in advection-diffusion equation (ADE) is proposed to deal with large
values of Péclet number. Advection and diffusion of circular concentration in
a vortex flow are considered for validation purpose. The Lagrangian scheme
reduces the numerical diffusion to almost computer error and provides better
results than other Eulerian classical schemes of the literature. The injection of
a pollutant in a cavity is finally illustrated.
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1 Introduction

The tracking of pollutants in gas and liquid is a major problem to address in atmo-
spheric environment, air quality characterization and industrial material processes.
The design of schemes for the hyperbolic advection term of the transport equation for
pollutant concentration has been widely studied, with mostly Eulerian schemes rely-
ing on splines reconstruction, high-order spectral, finite difference and finite volume
schemes, combined with limiters belonging to the class of TVD or WENO approaches.
Reviews and comparisons of these schemes are for example given in [5] [6]. The con-
clusion of all studies if that when the molecular or turbulent diffusion is low compared
to the advection, all schemes are diffusive or dispersive, providing unexpected spread-
ing or unphysical oscillations of the numerical solutions. In the present work, a new
Lagrangian scheme [6] is proposed for the advection-diffusion equations that avoids
diffusion and respects the monotonicity of the solution.

2 Model and numerical methods

The framework of the present work is the simulation of incompressible fluid flows
with a Finite-Volume method on Cartesian staggered grids. The advection-diffusion
equation (ADE) of a quantity Φ (temperature, pollutant concentration, . . .) is con-
sidered. Γ is the diffusivity and ~u the fluid velocity, either prescribed or given by the
last iteration of the Navier-Stokes resolution. Classical Eulerian Centered, Upwind,
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Quick, TVD or WENO schemes are generally used for discretizing the advection term.
Solving the ADE with centered schemes introduce oscillations and non bounded so-
lutions for a low diffusivity coefficient Γ or high Péclet cell number values, given by
Pe = ‖~u‖∆x/Γ . On the contrary, low order upwind schemes induce important numer-
ical diffusion that alter the physical meaning of the solution, as centered schemes do.
A Sequential Operator Splitting (SOS) method [2, 4] is utilized. Introducing a time
step ∆t, ADE is split in time into two substeps: advection

∂Φ

∂t
+ ~∇ · (~uΦ) = 0 (1)

is first solved along the time interval ]t, t +∆t], providing intermediate solution Φ?.
Then, diffusion

∂Φ

∂t
− ~∇ ·

(
Γ ~∇Φ

)
= 0 (2)

is solved with initial condition Φ(t) = Φ?(t + ∆t). It provides the approximated so-
lution of Φ(t + ∆t). The SOS is second-order accurate at each time step [2]. More
sophisticated SOS can be found in [2, 4]. Let us consider Φn = Φ(tn) as the discrete
value of Φ at time tn = t0+n∆t, n being the iteration number and ∆t = tn+1− tn the
time step. In practice, the intermediate solution Φ? after advection is updated solving
Eq. (1) with an explicit Lagrangian scheme (see below) while Eq. (2) is discretized
with an implicit Eulerian centered scheme and direct MUMPS [1] or preconditioned
MILU-BICGSTAB II iterative solvers are used to obtain solutions. In addition to the
Lagrangian scheme developed in this paper, a non-conservative Weno scheme of order
5 [3] will be used, coupled with a third order Runge-Kutta time integration. For com-
parison, results obtained with a QUICK scheme are also presented. The Lagrangian
scheme for ADE is an extension of VSM scheme from [6]. A number of M markers
(Lagrangian particles), located at ~Xm and bringing volumes δVm, are seeded in the
Eulerian grid (Fig. 1) devoted to solving of conservation equations. Initially, markers
are equality placed in each cell according to a number of particles per direction and
per cell (ppdpc). A simulation then handles ppdpcd × Nx × Ny × Nd−2

z Lagrangian
objects, where d is the space dimension and Nx, Ny and Nz are the numbers of scalar
cells in each space direction. Furthermore, the markers carry the local information,
φm, of the Eulerian field Φ. At initial time φ0m = Φ0( ~X0

m). The markers are then
advected solving the Lagrangian equation d ~Xm

dt = ~u| ~Xm
. The material derivative on

marker position is integrated in time with a second order Runge-Kutta scheme. The
velocities at particle positions follow a linear Q1 interpolation. As illustrated in Fig. 1
for marker 2, the volume δVm of a marker can contribute to the computation of Φ?

on neighboring cells. The value of Φn+1 is then obtained solving the unsteady diffu-
sion equation (2). Finally, the local (marker) information is updated according to the
variation of Φ during the diffusion step at the particle position:

∂φm
∂t

∣∣∣∣
~Xn+1
m

=
∂Φ

∂t

∣∣∣∣
~Xn+1
m

(3)

The number of particles per cell, Mc, varies over time. It can increase or decrease
according to local streamline convergence or divergence. It can be interesting to re-
move or add particles in each cell in order to save computational time and maintain
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Fig. 1. Sketch of the Lagrangian particles (blue diamond) on a 2D staggered grid. Veloci-
ties at particles position are interpolated with surrounding grid velocities (see marker 3 for
example, red left triangle and green triangle stand for horizontal and vertical components,
respectively). The Eulerian information is computed with averages of markers included in
the corresponding cell (see cell Ωi+1,j for example).

physical relevancy of the solution. This way,Mc is reduced to a constant value at each
iteration by using the following treatment:

– In each cell whereMc > ppdpcd, the distances between particles and its neighbors
are computed for every pair. The particle having the lower distance (according to
a norm, L2 for example) is removed (particle 7 in Fig. 1) and this procedure is
applied until Mc = ppdpcd.

– In cells where Mc < ppdpcd, new particles are randomly introduced until Mc =

ppdpcd. By noting M0
c the initial number of markers, we have to insert Mi =

ppdpcd −M0
c particles.

As discussed in the next section, these reseeding operations can lead to spurious effect
on isovalues of the scalar field.

3 Advection-diffusion of a concentration peak

A peak of concentration is placed in a domain defined by (x, y) ∈ [0, L]2 with velocity
field ~u(x, y) = −a (y − yc)~ex+a (x− xc)~ey corresponding to a block rotation motion
around the fixed point (xc, yc). With a = π/2 and xc = yc = L/2, a marker placed in
this field needs T = 4 seconds to make a complete turn and return back to its initial
position. In this velocity field, a peak of concentration of radius R is initialized such
that

Φ(r, t = 0) =


R− r
R

if r < R

0 otherwise
(4)
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where r =
√
(x− xp)2 + (y − yp)2 is the radial coordinate centered around (xp, yp)

the position of the peak center. At the initial time, (xp, yp) = (L/2, 3L/4). The
analytical solution over time is given by

Φ(r, t) =

∞∑
n=1

AnJ0(λnr) exp(−λ2nΓt) (5)

where J0 is the zeroth order Bessel function of the first kind and λn the nth root of
J0(λ) = 0. The An coefficients are obtained as:

An =
2RJ1(Rλn)

λnJ1(λn)2
− 2

RJ1(λn)2λ3n

(
(Rλn)

2J1(Rλn)−

πRλn
2

[H0(Rλn)J1(Rλn)−H1(Rλn)J0(Rλn)]
) (6)

with J1 the first order Bessel function of the first kind, and H0 and H1 the Struve
functions of order 0 and 1, respectively. The numerical solutions obtained with differ-
ent schemes are compared to this reference solution after a simulation time of T = 4

seconds and the diffusion coefficient Γ varies from 10−4 to 10−6 m2/s. The domain is
discretized with Nx = Ny = N and ∆t is chosen according to CFL condition defined
by a

2∆t/∆x (a/2 is the velocity at the peak center). A first set of results is given in
Fig. 2 for Γ = 10−6 m2/s and different schemes. On one hand, The QUICK scheme
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Fig. 2. Zoom on the numerical (blue lines) and reference solutions (black) after one turn for
different schemes on a N2 = 1282 mesh and for Γ = 10−6 m2/s.

introduces an excessive numerical diffusion and is sensitive to the advection direction.
The numerical diffusion is reduced with the Weno5 scheme. On the other hand, os-
cillations disrupt the numerical solution of the Lagrangian scheme but this latter do
not introduce numerical diffusion and presents, on this mesh, a better solution than
the other schemes. Note that the Lagrangian scheme, with 2 particles per direction
and per cell (ppdpc), is able to represent 95% of the peak value. The second set of
results (Fig. 3) presents, on the same mesh, the results obtained with the Lagrangian
scheme and different values of ppdpc. The first observation is that the oscillations can
be reduced increasing by the ppdpc value. In the same time, the quality of the solution
increase, i.e. 99.2% of the peak value is correctly represented for ppdpc = 8. It has



Title Suppressed Due to Excessive Length 5
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Lagrangian scheme (8 ppdpc)
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Fig. 3. Zoom on the numerical (blue lines) and reference solutions (black) after one turn for
different values of ppdpc on a N2 = 1282 mesh and for Γ = 10−6 m2/s.

been verified that the oscillations come from the reseeding procedures. Indeed, all the
markers follow circle trajectories and come back to their initial position after time T .
Removing reseeding procedures in this particular rotation motion case suppress the
oscillations even with a small ppdpc value. However, in practical cases, enrichment is
mandatory to balance particle lack in sheared zones.

4 Injection of a pollutant in a cavity

The Lagrangian scheme is applied to polluted air injected into a rectangular enclosure
containing the same fluid at rest. A round jet enters with a flow rate of 40 `/min. Gas
exits through an open circular outlet at atmospheric pressure. The Reynolds number
based on the injector diameter is Re = 1500. The numerical solution is obtained on
a mesh with 64× 32× 32 cells and without any turbulence modeling. The dynamical
solution is used in the ADE equation. The Figure 4 presents the concentration fields
is observed after 1.5 second. Iso-concentration for the Weno5 and Lagrangian with 4
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Fig. 4. Iso-concentration C = 0.25, 0.5 and 0.75 plotted for Lagrangian and Weno5 scheme
at 1.5 s.

ppdpc schemes are shown. The left part of the cavity presents the iso-concentration
obtained with the Lagrangian scheme while the right part provides the Weno5 results.
The numerical diffusion introduced by the Weno scheme prevents it form picking up
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the signal correctly while the Lagrangian scheme is able to represent high values of
the concentration field.

5 Concluding remarks

The efficiency of a fully Lagrangian scheme has been demonstrated for the resolution
of an ADE. It is even more effective than the ratio between advection and diffusion
is important. The overcost of the particle tracking method used by the Lagrangian
scheme is counterbalanced by the fact that the advection process does not introduce
numerical diffusion, respect monotonicity of the solution and allows coarser meshes
to use in comparisson to classical Eulerian schemes. The major drawback of the La-
grangian approach is the spurious oscillations introduced by the reseeding procedures.
This will be considered in future works, as well as local varying Lagrangian seeding
of particles in order to reduce the global cost of the scheme.
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