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ANNEX: PROOF OF THEOREM 2 FOR m ≥ 2

Proof We prove the theorem 2 in the case m ≥ 2 and l = 2. For l ≥ 3, the
proof could be obtained using Taylor Lagrange formula at a higher order.

We recall the following equation verified by the limit (theorem 1):∫
Rm

vkg(θ∞, ψ̄σ + v) exp(−||v||
2

2σ2
)dv = 0 , (1)

First step: d(ψ̄σ,L) −−−→
σ→0

0

We suppose that d(ψ̄σ,L) does not converge towards 0. Even if it means ex-
tracting, we can suppose that, ∃c > 0,∀σ > 0, d(ψ̄σ,L) > 3c. As for the
one-dimensional proof, we forget the θ in g and write g(ψ) = g(θ∞, ψ). We
also set K0 = K \ {y | d(y,L) < c}.

We want to show that

∃c0 > 0,∃c1 > 0,∀y ∈ K0,∃1 ≤ i ≤ m,∀x verifying ||x−y|| ≤ c1, |
∂g

∂ψi
(x)| > c0 .

(2)
By contradiction, we can take c0 = 1/n and extract a converging subsequence
in the compact K0 to find:

∀c1 > 0,∃y ∈ K0,∀1 ≤ i ≤ m,∃x verifying ||x− y|| ≤ c1, |
∂g

∂ψi
(x)| = 0 .
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However, because y /∈ L, there exists 1 ≤ j ≤ m such that | ∂g∂ψj (y)| 6= 0. If we

take c1 small enough then, for all x such that ||y − x|| ≤ c1, | ∂g∂ψj (x)| 6= 0 and

we find a contradiction. Hence, the condition (2) is verified.

Hence,

∃c0 > 0,∃c1 > 0,∀σ > 0,∃k ∈ [|1,m|],∀v verifying ||v−ψ̄σ|| ≤ c1, |
∂g

∂ψk
(v)| > c0 .

As for the proof in dimension 1, we split up our integral in two parts:
I1 = {v | ∀i ∈ [|1, n|], vi ≤ c2} and I2 = {v | ∃i ∈ [|1, n|], vi ≥ c2} where c2 is
chosen such that {v | ∀i ∈ [|1, n|], vi ≤ c2} ⊂ {v | ||v|| ≤ c1}.

First, on I2,

∫
I2

vkg(ψ̄σ + v) exp(−||v||
2

2σ2
)dv ≥

∫
I2,vk≤0

vkg(ψ̄σ + v) exp(−||v||
2

2σ2
)dv

≥ ||g||∞
(∫

Rm,vk≤0

vk exp(−||v||
2

2σ2
)dv −

∫
I1,vk≤0

vk exp(−||v||
2

2σ2
)dv

)
≥ −σ2(

√
2πσ)m−1||g||∞

(
1−

(
1− exp(− c22

2σ2
)

)
erf

(
c2√
2σ

)m−1
)

where erf is the error function defined by erf(x) = 2√
π

∫ x
0
e−t

2

dt.

We now integrate on I1. We write v−k the vector such that, ∀i 6= k, (v−k)i =
vi and (v−k)k = −vk. Then, using the mean value theorem, we have

∫
I1

vkg(ψ̄σ + v) exp(−||v||
2

2σ2
)dv =

∫
I1,vk≤0

vk(g(ψ̄σ + v)− g(ψ̄σ + v−k)) exp(−||v||
2

2σ2
)dv

=

∫
I1

2v2
k

∂g

∂ψk
(ψ̃v) exp(−||v||

2

2σ2
)dv

where, for i 6= k, (ψ̃v)i = (ψ̄σ)i + vi and (ψ̃v)k ∈ [(ψ̄σ)k − vk, (ψ̄σ)k + vk].
But we know that ∂g

∂ψk
does not cancel on I1. Hence, it is either positive or

negative. If it is positive, we find:

∫
I1

vkg(ψ̄σ + v) exp(−||v||
2

2σ2
)dv ≥ 2c0

∫
I1,vk≤0

v2
k exp(−||v||

2

2σ2
)dv

≥ 2c0(
√

2πσ)m−1σ2

[
−c2 exp(− c22

2σ2
) + σ

√
π

2
erf(

c2√
2σ

)

]
erf

(
c2√
2σ

)m−1
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Finally, using (1), we have:

2c0

[
−c2
σ

exp(− c22
2σ2

) +

√
π

2
erf(

c2√
2σ

)

]
erf

(
c2√
2σ

)m−1

≤ |g||∞

1− erf
(

c2√
2σ

)m−1

σ
+

1

σ
exp(− c22

2σ2
)erf

(
c2√
2σ

)m−1

 (3)

But,

erf(x) =x→∞ 1− exp(−x2)√
πx

+ o

(
exp(−x2)

x

)
.

Hence, when σ goes to 0, the left-hand side of the inequality goes to
√
πc0

while the right-hand side goes to 0. We thus find a contradiction.

Finally, if ∂g
∂ψk

is not positive on I1 (as supposed here) but negative, we
can use the same method to find an upper bound on the integral on I2 and on
the integral on I1. We would then find the same inequality as in (3).

Hence, in all cases, we have proved that d(ψ̄σ,L) −−−→
σ→0

0.

Second step: Choice of the basis

The upper bound using second derivatives is more complex to obtain for m > 1
as crossed partial derivatives appear that can be either positive or negative. To
control those parts, the choice of the compact is more complex. We will first
show that we can express our vector v and our function g in any orthonormal
basis and still have the equation (1).

Indeed, let P be a change-of-basis matrix. Then, because the equation (1)
is linear on vk and true for all k ∈ [|1,m|], we still have:∫

Rm
(Pv)kg(ψ̄σ + v) exp(−||v||

2

2σ2
)dv = 0 .

Using the change of variable u = Pv, we then find, for any k ∈ [|1,m|]:∫
Rm

ukg(P−1(Pψ̄σ + u)) exp(−||u||
2

2σ2
)dv = 0 .

We write h : u 7→ g(P−1u). Hence, h verifies the equation (1).

We can thus choose to express our function g in any base. In particular,
we write ψM the nearest maximum of ψ̄σ. Then, the Hessian of g at ψM is
a negative symmetric matrix. Hence, it is diagonal in an orthonormal basis.
We choose to express g in that basis. With a change of notation, we can
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hence assume that the hessian of g at ψM is diagonal. In particular, for all
i 6= j ∈ [|1,m|],

∂2g

∂ψ2
i

(ψM ) < 0 and
∂2g

∂ψi∂ψj
(ψM ) = 0 .

In particular, we are now able to impose a condition between the second deriva-
tives of g on a compact centered around ψM . There exists K0 compact such
that,

− sup
K0

∂2g

∂ψ2
k

>(m− 1) sup

{
∂2g

∂ψk∂ψj
(v)

∣∣∣∣ v ∈ K0, j 6= k,
∂2g

∂ψk∂ψj
(v) > 0

}
− m− 1

2
inf

{
∂2g

∂ψk∂ψj
(v)

∣∣∣∣ v ∈ K0, j 6= k,
∂2g

∂ψk∂ψj
(v) < 0

}
(4)

Third step: Search of the upper bound

As for the proof in 1D, we will split our integral into two parts and say that nei-
ther can be too big for the complete integral to be equal to 0. More precisely, for
σ > 0, let k be the coordinate such that |(ψ̄σ)k−(ψM )k| = max |(ψ̄σ)i−(ψM )i|.
We write for i ∈ [|1,m|], (ασ)i = |(ψ̄σ)i − (ψM )i|. The goal is to show that
(ασ)k goes to 0 when σ goes to 0.

Let c > 0 and σ small enough such that

I1 :=
{
v ∈ Rm | vk ∈ [−(ασ)k, (ασ)k] and, for i 6= k, vi ∈ [−c, c]

}
⊂ K0 .

On Ic1 , we use the same upper bounds as in the first step to find:∫
Ic1

vkg(ψ̄σ + v) exp(−||v||
2

2σ2
)dv ≥ −σ2(

√
2πσ)m−1||g||∞

·

(
1−

(
1− exp(− (ασ)2

k

2σ2
)

)
erf

(
c√
2σ

)m−1
) (5)

On I1 we will use once again the mean value theorem, first between ψ̄σ+v−k

and ψ̄σ + v to find ψ̃v ∈ K0 such that, for i 6= k, (ψ̃v)i = (ψ̄σ + v)i, (ψ̃v)k ∈
[(ψ̄σ − v)k, (ψ̄σ + v)k] and

g(ψ̄σ + v)− g(ψ̄σ + v−k) = 2vk
∂g

∂ψk
(ψ̃v)

and then between ψ̃v and ψM to find ψ1
v ∈ K0 such that:

∂g

∂ψk
(ψ̃v) =

m∑
i=1

(ψ̃v − ψM )i
∂2g

∂ψk∂ψi
(ψ1
v) .
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Even if it means changing basis, we can assume that, ∀i ∈ [|1,m|], (ασ)i =
|(ψ̄σ)i − (ψM )i| = (ψM )i − (ψ̄σ)i without modifying the hypothesis (4).

The difficulty to find upper bounds is that ∂2g
∂ψk∂ψi

(ψ1
v) and also (ψ̃v−ψM )i

can be either positive or negative.

Using those previous equalities and the facts that ∂2g
∂ψ2

k
< 0 on K0 and

(ψ̃v − ψM )k ≤ (ψ̄σ + v − ψM )k = (v − ασ)k, we have:∫
I1

vkg(ψ̄σ+v) exp(−||v||
2

2σ2
)dv ≥ 2

∫
I1,vk≥0

v2
k

m∑
i=1

(v−ασ)i
∂2g

∂ψk∂ψi
(ψ1
v) exp(−||v||

2

2σ2
)dv

We will study the different terms of the sum differently according to i = k,
or i 6= k.

First, for i = k, using the fact that (v − ασ)k ≤ 0 on I1, we can compute
the integral using integration per part and the function erf defined above to
find:∫
I1,vk≥0

2v2
k(v − ασ)k

∂2g

∂ψ2
k

(ψ1
v) exp(−||v||

2

2σ2
)dv ≥ sup

K0

(
∂2g

∂ψ2
k

)∫
I1,vk≥0

2v2
k(v − ασ)k exp(−||v||

2

2σ2
)dv

= −2 sup
K0

(
∂2g

∂ψ2
k

)
(
√

2πσ)m−1erf

(
c√
2σ

)m−1

(ασ)4
k

[√
π

2

(
σ

(ασ)k

)3

erf

(
(ασ)k√

2σ

)

−2

(
d

(ασ)k

)4(
1− exp(− (ασ)k

2σ2
)

)]
For i 6= k, we do similar computations remarking that:

– if ∂2g
∂ψk∂ψi

(ψ1
v) > 0 and (v − ασ)i > 0,

2v2
k(v − ασ)i

∂2g

∂ψk∂ψi
(ψ1
v) exp(−||v||

2

2σ2
) > 0

– if ∂2g
∂ψk∂ψi

(ψ1
v) > 0 and (v−ασ)i < 0, with K+

0 =
{
v ∈ K0| ∂2g

∂ψk∂ψi
(v) > 0

}
,

2v2
k(v−ασ)i

∂2g

∂ψk∂ψi
(ψ1
v) exp(−||v||

2

2σ2
) > 2v2

k(v−ασ)i exp(−||v||
2

2σ2
) sup
K+

0 ,i

∂2g

∂ψk∂ψi

– if ∂2g
∂ψk∂ψi

(ψ1
v) < 0 and (v − ασ)i < 0

2v2
k(v − ασ)i

∂2g

∂ψk∂ψi
(ψ1
v) exp(−||v||

2

2σ2
) > 0

– if ∂2g
∂ψk∂ψi

(ψ1
v) < 0 and (v−ασ)i > 0, with K−0 =

{
v ∈ K0| ∂2g

∂ψk∂ψi
(v) < 0

}
,

2v2
k(v−ασ)i

∂2g

∂ψk∂ψi
(ψ1
v) exp(−||v||

2

2σ2
) > 2v2

k(v−ασ)i exp(−||v||
2

2σ2
) inf
K−

0 ,i

∂2g

∂ψk∂ψi
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Hence, for i 6= k, we write I−1 = {v ∈ I1 | vk ≥ 0, vi ≤ (ασ)i} and:

∫
I−1

2v2
k(v − ασ)i

∂2g

∂ψk∂ψi
(ψ1
v) exp(−||v||

2

2σ2
)dv ≥ sup

K+
0 ,i

∂2g

∂ψk∂ψi

∫
I−1

2v2
k(v − ασ)i exp(−||v||

2

2σ2
)dv

= 2 sup
K+

0 ,i

∂2g

∂ψk∂ψi
(
√

2πσ)m−1erf

(
c√
2σ

)m−1

(ασ)4
k

·

[√
π

2

(
σ

(ασ)k

)4

erf

(
(ασ)k√

2σ

)
−
(

σ

(ασ)k

)3

exp

(
− (ασ)2

k

2σ2

)]

·

exp
(
−c2
2σ2

)
− exp

(
−(ασ)2j

2σ2

)
√

2πerf
(

c√
2σ

) − 1

2

(ασ)j
d

1 +
erf
(

(ασ)j√
2σ

)
erf
(

c√
2σ

)



Similarly, with I+
1 = {v ∈ I1 | vk ≥ 0, vi ≥ (ασ)i},

∫
I+1

2v2
k(v − ασ)i

∂2g

∂ψk∂ψi
(ψ1
v) exp(−||v||

2

2σ2
)dv ≥ inf

K−
0 ,i

∂2g

∂ψk∂ψi

∫
I+1

2v2
k(v − ασ)i exp(−||v||

2

2σ2
)dv

= 2 inf
K−

0 ,i

∂2g

∂ψk∂ψi
(
√

2πσ)m−1erf

(
c√
2σ

)m−1

(ασ)4
k

·

[√
π

2

(
σ

(ασ)k

)4

erf

(
(ασ)k√

2σ

)
−
(

σ

(ασ)k

)3

exp

(
− (ασ)2

k

2σ2

)]

·

exp
(
−(ασ)2j

2σ2

)
− exp

(
−c2
2σ2

)
√

2πerf
(

c√
2σ

) − 1

2

(ασ)j
d

1−
erf
(

(ασ)j√
2σ

)
erf
(

c√
2σ

)



Those three upper bounds are quite complex, but we can remark that they

can be written as dm−1erf
(

c√
2σ

)m−1

(ασ)4
kh
(

(ασ)k
σ

)
.

We will now see that this function h is strictly positive at infinity.

Indeed, using all the previous upper bounds presented previously, equation

(1) and using the fact that erf
(

c√
2σ

)
≥ 1/2 for σ small enough, we can write:

(ασ)4
kerf

(
c√
2σ

)m−1
(
h
(αk
σ

)
−

1− erf
(
c/
√

2σ
)

σ2erf
(
c/
√

2σ
) ) ≤ ||g||∞

2
σ2
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with:

h(x) =
ex

2/2

x4

[
− sup

K0

∂2g

∂ψ2
k

(√
π

2
xerf(x/

√
2)− 2(1− e−x

2/2)

)
+

(√
π

2
xerf(x/

√
2)− x2e−x

2/2

)
·

[
(m− 1)( inf

K−
0 ,i

∂2g

∂ψk∂ψi
− sup
K+

0 ,i

∂2g

∂ψk∂ψi
)(

2√
2πx

+
1

2
)

− m− 1

2
sup
K+

0 ,i

∂2g

∂ψk∂ψi

]]

is a function independent of ασ and σ.

In particular, when x goes to infinity, h(x) is equivalent to:

ex
2/2

x4

√
π

2
x

[
− sup

K0

∂2g

∂ψ2
k

+
m− 1

2
inf
K−

0 ,i

∂2g

∂ψk∂ψi
− (m− 1) sup

K+
0 ,i

∂2g

∂ψk∂ψi

]

But, according to the hypothesis done on the compact K0, this is strictly pos-
itive.

Hence, there exist c0 > 0, c1 > 0 such that, if x ≥ c1, h(x) > c0 > 0.
We will now suppose that (ασ)k ≥ c1σ. Then, h

(
αk
σ

)
≥ c0 > 0. Moreover,

1− erf
(
c/
√

2σ
)

σ2erf
(
c/
√

2σ
) −−−→

σ→0
0 .

So, for σ small enough, it is smaller than c0/2 and we finally find:

(ασ)4
k ≤ c0||g||∞

σ2

erf
(

c√
2σ

)m−1

Using the fact that erf
(

c√
2σ

)m−1

−−−→
σ→0

1 gives us finally the existence of a

constant c > 0 such that

d(ψ̄σ,L) ≤ (c1σ) ∨ (c
√
σ)

which allows us to conclude for σ small enough.

Fourth step: Approximation when σ goes to infinity

The last step follows the exact same steps as for m = 1. It is copied here.
We use again the equation (1). For all σ ∈ R, ∀1 ≤ k ≤ m,∫

Rm
vkg(ψ̄σ + v) exp(−||v||

2

2σ2
)dv = 0
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Using the change of variable ψ̄σ + v, we find:

(ψ̄σ)k =

∫
Rm vkg(v) exp

(
− ||v−ψ̄σ||

2

2σ2

)
dv∫

Rm g(v) exp
(
− ||v−ψ̄σ||

2

2σ2

)
dv

But ψ̄σ is supposed to stay in a compact so, ∀v ∈ Rm, exp
(
− ||v−ψ̄σ||

2

2σ2

)
−−−−→
σ→∞

1. Using the integrability of g and v 7→ vkg(v), it is easy to conclude using the
dominated convergence theorem.


