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Abstract The Expectation-Maximization (EM) Algo-

rithm is a widely used method allowing to estimate the

maximum likelihood of models involving latent vari-

ables. When the Expectation step cannot be computed

easily, one can use stochastic versions of the classical

EM such as the Stochastic Approximation EM (SAEM).

This algorithm, however, has the disadvantage to re-

quire the joint likelihood to belong to the curved ex-

ponential family. This hypothesis is a bottleneck in a

lot of practical situations where it is not verified. To

overcome this problem, Kuhn and Lavielle (2005) in-

troduce a rewriting of the model which “exponential-

izes” it. It consists in considering the parameter as an

additional latent variable following a Normal distribu-

tion centered on the newly defined parameters and with

fixed variance. The likelihood of this new exponential-
ized model now belongs to the curved exponential fam-

ily and stochastic EM algorithms apply. Although often

used, there is no guarantee that the estimated mean

will be close to the maximum likelihood estimate of the

initial model. In this paper, we will quantify the error

done in this estimation while considering the exponen-

tialized model instead of the initial one. More precisely,

we will show that this error tends to 0 as the variance

of the new Gaussian distribution goes to 0 while com-

puting an upper bound. By verifying those results on

an example, we will see that a compromise must be

made in the choice of the variance between the speed

of convergence and the tolerated error. Finally, we will
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Introduction

With the increase of data, parametric statistical mod-

els have become a crucial tool for data analysis and

understanding. To be able to describe complex natural

phenomena (epidemiology, ecology, finance, disease evo-

lution, etc.), the models have an increasing complexity.

Some of them are based on observed features or data

which are assumed to be generated from a latent ran-

dom effect. A usual example is the family of mixed ef-

fects models which have been used in pharmacokinetic,

pharmacodynamic, shape analysis, etc. In such a con-

text, one aims at optimizing the model parameter to

maximize the likelihood of the observed dataset. This

likelihood is also called the incomplete one as the latent

variables are unknown.

Formally, this writes as follow: let y ∈ Rn be the obser-

vation and θ ∈ Θ the model parameter. We call g the

incomplete likelihood:

g(y, θ) =

∫
Z

f(y, z, θ) dz .
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In that case, z is the latent or missing variable and f is

the joint likelihood of the observations and latent vari-

ables, depending on a parameter θ ∈ Θ.

The Expectation Maximization (EM) algorithm pro-

vides a numerical process to answer this problem by

computing iteratively a sequence of estimates (θn)n∈N
which, under several conditions (see Dempster et al.

(1977); Wu (1983)), converges towards the maximum

likelihood estimate. It proceeds in two steps for each

iteration k. First, in the Expectation step (E), the func-

tion

Q(θ|θk−1) =

∫
Z

log(f(y, z, θ))p(y, z, θk−1) dz

is computed where p is the conditional distribution of

z given the observations: p(y, z, θ) = f(y, z, θ)/g(y, θ).

θk is then updated in the Maximization step (M) as the

argument of the maximum of the function Q(.|θk−1).

The EM algorithm has been first introduced in Demp-

ster et al. (1977). Its properties have then been stud-

ied in numerous papers, see Balakrishnan et al. (2017);

Chrétien and Hero (2008); Ma et al. (2000); Meng et al.

(1994); Redner and Walker (1984); Tseng (2004); Wu

(1983) among many other works.

In many cases, the (E) step is in fact intractable

as we have no closed form for Q. Different algorithms,

both deterministic and stochastic, have been introduced

in the literature to overcome this problem. The Monte-

Carlo EM (Wei and Tanner (1990)) replaces the (E)

step by computing a Monte Carlo approximation of Q

using a large amount of simulated missing data z. An-

other possibility, more computationally efficient, is to

use a Stochastic Approximation (SA) of the function Q.

This SAEM algorithm has been introduced in Delyon

et al. (1999) and the authors proved the convergence

towards a local maximum of the incomplete likelihood

with probability 1 under several hypotheses. It has later

on been generalized in Kuhn and Lavielle (2004) in the

case where we are not able to easily sample z. This

new algorithm, called the SAEM Monte Carlo Markov

Chain (SAEM-MCMC) replaces the sampling of z by

one step of a Markov Chain targeting the conditional

distribution p. Those two algorithms have then been

applied in lots of different contexts: deformable models

(Allassonnière et al., 2010; Bône et al., 2018; Debave-

laere et al., 2020; Schiratti et al., 2015), Independent

Component Analysis (Allassonniere et al., 2012) and

in many medical problems (see Benzekry et al. (2014);

Guedj and Perelson (2011); Lavielle and Mentré (2007);

Sissoko et al. (2016) among many others).

Among the hypotheses ensuring the convergence of

most of these algorithms, and in particular our focus,

the SAEM algorithm, one of the most restrictive is the

necessity for the joint likelihood to belong to the curved

exponential family. This writes:

f(y, z, θ) = exp (−Ψ(θ) + 〈S(y, z), Φ(θ)〉) , (1)

where S is called a sufficient statistic of the model and

Φ and Ψ are two functions on Θ. Similarly, the differ-

ent extensions to the SAEM algorithm, and some of the

EM algorithm, carry the same assumption (Kuhn et al.,

2020; Lartigue et al., 2020; Panhard and Samson, 2009;

Samson et al., 2006).

However, this hypothesis can in fact be a bottleneck

in lots of situations. For example, it is not verified for

heteroscedastic models (Dubois et al., 2011; Kuhn and

Lavielle, 2005) nor with more complex models (Bône

et al., 2018; Debavelaere et al., 2020; Lindsten, 2013;

Meza et al., 2012; Schiratti et al., 2015; Wang, 2007).

Most of the authors then choose to compute the maxi-

mization step using a gradient descent. However, in that

case, there is no theoretical guarantee of convergence.

Moreover, the computational complexity increases. One

needs to compute the gradient descent steps and com-

pute the stochastic approximation of the complete like-

lihood while this function may not have a simple form.

To solve this problem, Kuhn and Lavielle (2005) pro-

pose to transform the initial model to make it curved

exponential.

Their solution consists in considering the parameter

θ as a realization of a Gaussian vector of mean θ̄ and

fixed variance σ2. θ then becomes an additional latent

variable and the new parameter to estimate is θ̄. We call

this new model the exponentialized model. It now be-

longs to the curved exponential family. However, as the

likelihood of this exponentialized model is different, the

function to maximize has also been modified. In partic-

ular, there is no guarantee that the new parameter to

estimate is close to the initial one. Nevertheless, this

trick has been successfully used in different situations

(Ajmal et al. (2019); Bône et al. (2018); Debavelaere

et al. (2020); Schiratti et al. (2015) among others).

In this paper, we will study the maximum likelihood

of this new exponentialized model and measure its dis-

tance to one of the maxima of the initial likelihood.

More precisely, we will show that this distance goes to

0 as the variance σ2 of the exponentialized model tends

to 0. We will also provide an upper bound to this error

when σ is small enough. Finally, we will verify those

results on an example. This example will show us that
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a compromise must be done in the choice of σ. Indeed,

if σ is too big, a substantial error is made in the estima-

tion. However, for σ too small, despite the theoretical

guarantees, the numerical convergence is difficult to ob-

tain. To overcome this problem, we will present a new

algorithm allowing a better estimation of the initial pa-

rameter θ in a reasonable computation time.

1 Presentation of the Stochastic Approximation

Expectation Maximization (SAEM) Algorithm

In this section, we recall the Stochastic Approximation

Expectation Maximization (SAEM) algorithm, first pre-

sented in Delyon et al. (1999) and recall the hypotheses

ensuring convergence. In the following, we suppose that

the observation y belongs to Rn, the latent variable z

to Rl and that the parameter space Θ is an open subset

of Rp with n, l, p ∈ N∗.

1.1 Expectation Maximization (EM) Algorithm

The original EM algorithm proposes to maximize a

function defined via:

g(y, θ) =

∫
Rl
f(y, z, θ)µ(dz)

with f the joint likelihood of the model and µ is a σ-

finite measure on Rl.
This situation is of interest to estimate the param-

eters of a statistical model using maximum likelihood

estimates where the model depends on unobserved la-

tent variables.

The Expectation-Maximization consists of iterations

which guarantee an increase in g(θk) at each step. Start-

ing from θ0, the algorithm iterates:

– Expectation. Compute

Qk(θ) =
∫
Rl log (f(y, z, θ)) p(y, z, θk)dz.

– Maximization. Set θk+1 = argmax Qk(θ).

where p is the conditional distribution of z given the

observations:

p(y, z, θ) =

{
f(y, z, θ)/g(y, θ) if g(y, θ) 6= 0

0 otherwise.

1.2 SAEM Algorithm

Because the expectation with respect to the conditional

distribution p(y, z, θ) is often intractable in practice, a

different approach suggests replacing the E-step by a

stochastic approximation on Q, starting from θ0 and

Q0 = 0. This gives us the following algorithm:

– Simulation. Generate zk, a realization of the hidden

variable under the conditional density p(y, z, θk).

– Approximation. Update

Qk(θ) = Qk−1(θ)+γk(log f(y, zk, θ)−Qk−1(θ)) . (2)

– Maximization. Set θk+1 ∈ argmax Qk(θ).

Convergence of this procedure is shown under the fol-

lowing hypotheses:

(M1) The parameter space Θ is an open subset of Rp,
and f can write:

f(y, z, θ) = exp (−Ψ(θ) + 〈S(y, z), Φ(θ)〉) , (3)

where S(·) is a Borel function taking its value in S,

an open subset of Rns . In that case, we say that f

belongs to the curved exponential family.

Moreover, the convex hull of S(Rl) is included in S
and, for all θ ∈ Θ,∫

Rl
|S(y, z)|p(y, z, θ)µ(dz) <∞ .

(M2) The functions Ψ and Φ are twice continuously

differentiable on Θ.

(M3) The function s : Θ → S defined as:

s(θ) =

∫
Rl
S(y, z)p(y, z, θ)µ(dz)

is continuously differentiable on Θ.

(M4) The observed log-likelihood l(θ) := log g(y, θ) is

continuously differentiable on Θ and

∂θg(y, θ) =

∫
Rl
∂θf(y, z, θ)µ(dz) .

(M5) There exists a function θ̂ : S → Θ such that

∀θ ∈ Θ,∀s ∈ S, L(s, θ̂(s)) ≥ L(s, θ), with L(s, θ) =

−Ψ(θ) + 〈s, Φ(θ)〉.
Moreover, θ̂ is continuously differentiable on S.

(SAEM1) For all k ≥ 0, 0 ≤ γk ≤ 1,
∑∞
i=1 γk = ∞

and
∑∞
i=1 γ

2
k <∞.

(SAEM2) θ̂ : S → Θ and the observed-data log like-

lihood l : θ → R are ns times differentiable.

(SAEM3) For all positive Borel function φ:

E(φ(zk+1)|Fk) =

∫
Rl
φ(z)p(z, θk)µ(dz) ,

where zk is the missing value simulated at step k

under the conditional density p(y, z, θk−1) and Fn
is the family of σ-algebra generated by the random

variables S0, z1, . . . , zn.
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(SAEM4) For all θ ∈ Θ,
∫
Rl ||S(y, z)||2p(y, z, θ)µ(dz) <

∞ and Γ (θ) := Covθ(S(y, z)) is continuous with re-

spect to θ.

With the hypothesis (M1) specifying the form of

the complete likelihood and (M5) giving us the exis-

tence of a maximizer θ̂, the algorithm can take a simpler

form. Indeed, using the fact that Q is fully defined by a

sufficient statistic S, we remark, by linearity, that the

stochastic approximation (2) is only applied on this suf-

ficient statistic. Similarly, the maximization step can be

rewritten using only the sufficient statistic and θ̂. This

gives the following algorithm:

– Simulation. Generate zk, a realization of the hidden

variable under the conditional density p(y, z, θk).

– Approximation. Update Sk = Sk−1 + γk(S(y, z) −
Sk−1)

– Maximization. Set θk+1 = θ̂(Sk).

We finally assume the following hypothesis:

(A) With probability 1, clos((Sk)k≥1) is a compact sub-

set of S.

Remark 1 The assumption (A) can be relaxed by pro-

jecting the sequence (Sk)k∈N on increasing compacts.

See Andrieu et al. (2005) for more details.

Under the hypotheses (M1)-(M5), (SAEM1)-(SAEM4)

and (A), it was shown in Andrieu et al. (2005) that the

distance between the sequence generated by the SAEM

and the set of stationary point of the observed likeli-

hood g converges almost surely towards 0.

However, in numerous cases, even quite simple (Dubois

et al., 2011; Kuhn and Lavielle, 2005), the joint likeli-

hood f does not verify the hypothesis (M1) as it does

not belong to the curved exponential family. In the next

section, we will present a trick allowing us to approx-

imate the maximum likelihood when (M1) is not veri-

fied.

In the following, to simplify the notations, we no longer

write the variable y in the different expressions.

1.3 Exponentialization process

We now denote by (θ, ψ) the parameters of g where

θ ∈ Θ, ψ ∈ Ψ = Rm, and we tackle the case where the

model cannot be written under the curved exponential

form (4) because of the parameter ψ. In that case, the

log-likelihood can only be written as:

f(z, θ, ψ) = exp (−Ψ(θ) + 〈S(z), Φ(θ)〉)h(z, ψ) (4)

and f does not belong to the curved exponential family.

Here, some parameters θ are separable from the la-

tent variables z and do not require further transforma-

tion. Other variables ψ are at the source of the com-

putational problem and the exponentialization process

will only apply on those parameters. It must be noticed

that, in some cases, θ can be empty.

The trick proposed in Kuhn and Lavielle (2005)

is to consider ψ as a Gaussian random variable ψ ∼
⊗N (ψ, σ2), where the notation ⊗N (., .) denotes a mul-

tivariate Gaussian distribution with diagonal covari-

ance matrix. Hence, in this augmented model, ψ is no

longer a parameter but becomes an additional latent

variable while a new parameter ψ̄ appears.

The resulting perturbed statistical model is curved

exponential, with augmented parameters θ̂ = (θ, ψ) and

augmented random latent variables ẑ = (z, ψ).

The variance σ2 is chosen by the user, and should

be reasonably small in order to minimally perturb the

original model. In practice, this variance should at the

same time be chosen reasonably large in order to speed-

up the parameter estimation (see experiments in section

3).

The complete log-likelihood of this exponentialized

model then writes:

log fσ(y, ẑ, θ̂) =− Ψ(θ) + 〈S(z), Φ(θ)〉

+ log(h(z, ψ))− ||ψ − ψ̄||
2

2σ2
.

(5)

It is easy to check that the complete log-likelihood

now belongs to the curved exponential family with suffi-

cient statistics: (S(z), ψ). Concerning the parameter θ,

the maximization is done as usual: θk+1 = θ̂(Sk) with

Sk the stochastic approximation of the (S(zi))i≤k. The

update of the parameter ψ̄ can for its part be written

as:

ψ̄k+1 = ψ̄k + γk(ψk − ψ̄k) . (6)

If we suppose that this augmented model satisfies

the hypotheses (M1)-(M5), (SAEM1)-(SAEM4) and (A),

we know, using the theorem proved in Andrieu et al.

(2005), that it will converge towards a critical point

of its incomplete likelihood. However, if this process is

used in several applications (Lavielle, 2014), there is in

fact no guarantee that the algorithm will converge to-

wards a critical point of the incomplete log-likelihood

of the initial model.
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In the following section, we show that, in general,

the parameter returned by the SAEM on the exponen-

tialized model is indeed not a maximum likelihood of

the initial model. However, when σ goes to 0, it con-

verges towards a critical point of the incomplete log

likelihood of the initial model. We also give an upper

bound of the error made by this process for σ small.

It is interesting to notice that, even if this proof

is done in the context of the SAEM algorithm, the

same results can be obtained for the MCMC-SAEM

(Kuhn and Lavielle, 2004) as well as for the Approxi-

mate SAEM (Allassonnière and Chevallier, 2019).

2 Distance between the limit point and the

nearest critical point

In this section, we first present an equation satisfied by

the limit of the sequence of estimated parameters of the

SAEM algorithm for the exponentialized model. Using

this equation, we will then give an upper bound on

the distance between this limit point and the nearest

critical point of the incomplete likelihood of the non-

exponential model. This upper bound will in particular

show us that this distance tends to 0 when σ goes to 0.

2.1 Equation verified by the limit

We now state a theorem giving us an equation satisfied

by the limit parameter estimated by the SAEM algo-

rithm applied on the exponentialized model. It is im-

portant to remark that, if the set of the critical points of
l is finite then, the SAEM algorithm converges almost

surely towards one of them (and not only towards a

point at zero distance). Hence, we can study the param-

eters returned by the SAEM on the exponential model:

ψ̄σ and look at their behaviour when σ goes to 0.

Theorem 1 Assume that the exponentialized model with

variance σ verifies the hypotheses (M1)-(M5), (SAEM1)-

(SAEM4), (A) and that Ψ = Rm. Assume also that, for

all σ > 0,

Lσ :=
{

(θ, ψ̄) ∈ Θ × Ψ | ∂θ,ψ̄lσ(θ, ψ̄) = 0
}

is finite where lσ refers to the observed log-likelihood of

the exponentialized model of variance σ. Then, the se-

quence returned by the SAEM algorithm converges al-

most surely towards (θ∞, ψ̄σ), solutions of the following

set of equations: ∀1 ≤ k ≤ m,∫
Rm

vkg(θ∞, ψ̄σ + v) exp(−||v||
2

2σ2
)dv = 0 , (7)

where vk is the k-th coordinate of v ∈ Rm and g(θ, ψ) =∫
Z
f(z, θ, ψ)µ(dz).

Remark 2 Here, we suppose Ψ = Rm to be able to de-

fine a Gaussian distribution on Ψ . The following proofs

would be adaptable as long as one can define such a

gaussian distribution, necessary for applying the expo-

nentialization trick.

Proof The update of Sk, ψk can easily be seen as a Rob-

bins Monro update:{
ψ̄k+1 = ψ̄k + γkvk
Sk+1 = Sk + γk(S(zk)− Sk−1)

where zk, vk are sampled following the conditional

law fσ(y, z, ψ + ψ̄k|θk, ψ̄k).

Under the hypotheses explained section 1.2, it has

been shown that this Robbin Monroe approximation

verifies limk→∞ d((θk, ψ̄k),Lσ) = 0. Moreover, because

Lσ is finite, Delyon et al. (1999) show that the se-

quence (θk, ψ̄k)k≥0 converges almost surely towards a

point (θ∞, ψ̄σ) ∈ Θ × Ψ (theorem 6). Using the reg-

ularity of lσ, we deduce that those parameters verify

∂θ,ψ̄lσ(θ∞, ψ̄σ) = 0.

By replacing lσ by its value in this equation and using

the assumption (M4), we find, for all 1 ≤ k ≤ m:

∫
Rm

(vk − ψ̄σ)q(y, z, θ∞, v) exp(−||v − ψ̄σ||
2

2σ2
)dvdz = 0

Using a change of variable, we finally find the expected

result.

Proposition 1 Suppose that a point ψ ∈ Rm verifies:

∀v, θ ∈ Rm ×Θ, g(θ, ψ + v) = g(θ, ψ − v) . (8)

Then, ψ is solution to Eq. (7) and can be the parameter

returned by the exponential model.

Remark 3 It is not necessarily the only possibility of

returned parameter. Several values of ψ could be solu-

tions of Eq. (7).

In particular, a solution of (8) is a critical point of

g. However, a critical point of g is not always solution

of such an equation and will not always be a solution of

Eq. (7). It is in fact easy to find cases where the maxi-

mum is not a solution to Eq. (7) and hence where the

exponentialized model introduces a bias in the estima-

tion of maximum likelihood.

We introduce next subsection a function g presenting

such a behaviour and we explain the heuristics behind

Theorem 1.
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2.2 Heuristics

We want to compare the solution of equation (7) to a

maximum of the function g. Because of the form of f

supposed in equation (4), we see that we can maximize

g in θ and ψ independently of the other. In particular,

we still immediately have θ∞ ∈ argmaxθg(θ, ψ) (inde-

pendent of ψ as can be seen in equation (4)).

To explain equation (7), we introduce the function

g : v 7→ 1
v exp(− 1

v2 ) presented Figure 1. This func-

tion has a maximum for ψ =
√

2 but is not symmetric

around it. We will look at the integral:∫
Ψ

vg(ψ + v) exp

(
− v2

2σ2

)
dv

for different values of ψ and σ. ψ is a solution of equa-

tion (7) if and only if this integral is null. It is interesting

to remark that one can consider this integral as an ex-

pectation if normalized.

First we look at the case ψ =
√

2, the argmax of

g, and σ = 1 on Figure (2a). In that case, because g

is not symmetric around its maximum, v 7→ g(
√

2 +

v) exp
(
− v2

2σ2

)
is not symmetric either. In particular, it

means that
√

2 is not a solution of equation (7) as the

integral is strictly positive.

We then reduce the value of σ by taking σ = 0.1 on

Figure (2b). The function v 7→ g(
√

2 + v) exp
(
− v2

2σ2

)
is still not symmetric around 0. Even if the value of the

integral is smaller,
√

2 is still not a solution of equation

(7).

We now interest ourselves in the case where ψ is

not the argmax of g by taking ψ = 1 and σ = 1

on Figure 3. This time, g is strictly increasing from

1 to
√

2. Hence, even if we multiply by the exponential,

v 7→ g(1+v) exp
(
− v2

2σ2

)
is still increasing at 0. As g de-

creases slower than it increases, 1 cannot be a solution

of equation (7). The integral is indeed strictly positive.

The same behaviour would be observed for any point

before
√

2.

We now look at a value bigger than the maximum:

ψ = 4 and σ = 5 Figure 4a. This time, as g decreases

at v = 4, v 7→ g(4 + v) exp
(
− v2

2σ2

)
still decreases at

0. But g decreases slower than it increases. Hence, it is

possible to compensate this difference of variation by

taking ψ >
√

2 as a solution of equation (7).

Let us now take a smaller value of σ as in Figure

4b. This time, the integral is negative. Indeed, v 7→
g(4 + v) exp

(
− v2

2σ2

)
still decreases at 0. However, due

to the multiplication by the exponential, the difference

of variation before and after the maximum is now way

smaller. In particular, it is this time too small to com-

pensate the decrease at 0 and the integral will be nega-

tive. To have a solution of equation (7) for this value of

σ, we would need to choose a value of ψ smaller. This

suggests that, as σ goes to 0, the solution of equation

(7) is closer to
√

2.

From these examples, we can deduce two things.

First, the argmax of g is not always solution of the

equation (7) even for small values of σ because there is

a difference in the speed of variation before and after

this maximum. However, it is possible to compensate

this difference of variation by choosing a value different

than the argmax and thus to find a solution of (7) dif-

ferent than the argmax. Moreover, when σ goes to 0,

the difference of variation obtained by multiplying by

the exponential is smaller and smaller. It means that a

parameter closer and closer to the argmax will be solu-

tion of equation (7).

We illustrate this behaviour by plotting the exact value

of the solution of equation (7) as a function of σ in Fig-

ure 5.

In the following, we write ψM the critical point of

g(θ, ψ) minimizing the distance to ψ̄σ.

Using the heuristics presented above, we will, in the

next section, state the theorem giving us an upper bound

on the distance to the nearest critical point of g. We will

then prove it in the case Ψ = R. A more general proof in

Rm for m ≥ 2 is given in the supplementary material.

2.3 Upper bound on the distance between ψ̄σ and the

nearest critical point of g

Theorem 2 1. Assume that the exponential model ver-

ifies the hypotheses (M1)-(M5), (SAEM1)-(SAEM4)

and (A). Assume also that, for all σ > 0, Lσ is fi-

nite, that L := {ψ ∈ Rm|∂ψg(θ, ψ) = 0} is compact

and that there exists K compact such that, ∀σ > 0,

ψ̄σ ∈ K. Then,

d(ψ̄σ,L) −−−→
σ→0

0 .

2. Assume also that L is finite and that, for all ψM ∈
L, there exists an integer lM such that g is lM -times

continuously differentiable and such that

∀k ≤ m,∃i ≤ lM with
∂ig

∂ψik
(ψM ) 6= 0 .
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Fig. 1: Function g studied subsection 2.2, with a maximum reached at
√

2.

(a) v 7→ g(θ,
√

2 + v) exp(−v2

2
) (b) v 7→ g(θ,

√
2 + v) exp( −v2

2∗0.12 )

Fig. 2: Plot of v 7→ g(θ,
√

2 + v) exp(−v
2

2σ2 ) for different values of σ. In all cases, we can see that
√

2 is not a solution

of Eq. (7).

We write l = maxψM∈LlM .

Then, there exists c > 0 such that, for σ small

enough,

d(ψ̄σ,L) ≤ cσ
2
l+2 . (9)

3. Suppose that v 7→ g(θ∞, v) and v 7→ vkg(θ∞, v) are

integrable for all k between 1 and m. Then, we have

the following approximation of ψ̄σ when σ goes to

infinity: for all 1 ≤ k ≤ m,

(ψ̄σ)k −−−−→
σ→∞

∫
Rm vkg(θ∞, v)dv∫
Rm g(θ∞, v)dv

.

Remark 4 When m = 1, lM is the smallest integer such

that the lM -th derivative of g(θ∞, .) at ψM is not 0.

The inequality (9) indicates that the convergence will

be slower when the function to maximize behaves as a

flat curve around the maximum, which was expected.

If such a lM does not exist, it means that g is constant

in at least one direction around ψM .

Remark 5 We need to take a maximum over all ψM
in L since, from one σ to another, ψσ can approach a

different maximum ψM ∈ L. It is also why the upper

bound depends on this maximum l. It is constrained

by the critical point for which the convergence is the

slowest.

Remark 6 For m = 1, we have the exact value of the

constant in (9):

c = max
ψM∈L

(12(lM − 1)!
||g||∞

|∂lMψ g(θ∞, ψM )|

) 1
lM+2

 .
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Fig. 3: Plot of v 7→ g(θ, 1 + v) exp(−v
2

2σ2 ). Since g is increasing at 1 and increases quicker than it decreases, 1 is not

solution of (7).

(a) v 7→ g(θ, 4 + v) exp( −v2

2∗52 ) (b) v 7→ g(θ, 4 + v) exp(−v2

2
)

Fig. 4: Plot of v 7→ g(θ, 4 + v) exp(−v
2

2σ2 ) for different values of σ.

Remark 7 The results presented here would still be true

in the case of the SAEM-MCMC algorithm. Indeed,

the equation (7) verified by the limit parameter of the

SAEM would still be verified in the case of the SAEM-

MCMC and the same reasoning could then be done.

In the following, we will present the proof in the

case m = 1. The proof in the multi-dimensional case

follows the same ideas than in dimension one but is

more technical. It is presented in the supplementary

material.

Proof We present the proof in the case m = 1. As

the maximum does not depend of θ∞ and to simplify

notations, we will forget the variable θ in g and use

g(ψ) = g(θ∞, ψ).

First step: d(ψ̄σ,L) −−−→
σ→0

0

We suppose that ψ̄σ is never a critical point of g for

σ small enough. Otherwise, we directly have the result.

The equation (7) writes:∫
R
vg(ψ̄σ + v) exp(− v2

2σ2
)dv = 0 .

The first step is to show that d(ψ̄σ,L) −−−→
σ→0

0.

By contradiction, even if it means extracting, we can

suppose that there exists c > 0 such that ∀σ > 0,

d(ψ̄σ,L) > 3c.

Because there is no critical point between ψ̄σ − c

and ψ̄σ+c, g is either increasing or decreasing on [ψ̄σ−
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Fig. 5: Solution of Eq. (7) as a function of σ for the function g studied subsection 2.2.

c, ψ̄σ + c]. We first suppose it is increasing. In partic-

ular, K0 := K \ {y | d(y,L) < c} is compact and thus

c0 := inf{g′(y) |y ∈ K0, g
′(y) ≥ 0} > 0. According to

equation (7), the integral on [−c, c] must have the same

absolute value as the integral on [−c, c]c. However, we

will show that, when σ goes to zero, the first one con-

verges towards 0 much more slowly than the second

one. Indeed,∫
|v|≥c

vg(ψ̄σ + v) exp(− v2

2σ2
)dv

≥
∫
v≤−c

vg(ψ̄σ + v) exp(− v2

2σ2
)dv

≥ ||g||∞
∫
v≤−c

v exp(− v2

2σ2
)dv

≥ −σ2||g||∞ exp(− c2

2σ2
) .

On the other hand, we have:∫
|v|≤c

vg(ψ̄σ + v) exp(− v2

2σ2
)dv

=

∫
0≤v≤c

v
(
g(ψ̄σ + v)− g(ψ̄σ − v)

)
exp(− v2

2σ2
)dv .

Using the mean value theorem, for all 0 ≤ v ≤ c,

there exists ψ̃v ∈ [ψ̄σ−v, ψ̄σ+v] ⊂ K0 such that g(ψ̄σ+

v)− g(ψ̄σ − v) = 2vg′(ψ̃v) ≥ 2c0v. Hence, we find:∫
|v|≤c

vg(ψ̄σ + v) exp(− v2

2σ2
)dv

≥ 2c0

∫
0≤v≤c

v2 exp(− v2

2σ2
)dv .

But, using an integration per part and defining

erf(x) :=
2√
π

∫ x

0

e−t
2

dt ,

we have:∫
|v|≤c

vg(ψ̄σ + v) exp(− v2

2σ2
)dv

≥ 2c0σ
2

[
−c exp(− c2

2σ2
) + σ

√
π

2
erf(

c√
2σ

)

]
.

Hence, because∫
|v|≤c

vg(ψ̄σ + v) exp(− v2

2σ2
)dv

= −
∫
|v|≥c

vg(ψ̄σ + v) exp(− v2

2σ2
)dv ,

we have:

||g||∞ exp(− c2

2σ2
)

≥ 2c0

[
−c exp(− c2

2σ2
) + σ

√
π

2
erf(

c√
2σ

)

]
.

It is easy to find the same inequality if g is decreas-

ing on [ψ̄σ−c, ψ̄σ+c]. Indeed, in that case, by integrat-

ing only on {v ≥ c}, we first show that∫
|v|≥c

vg(ψ̄σ + v) exp(− v2

2σ2
)dv ≤ σ2||g||∞ exp(− c2

2σ2
) .

Then, by considering this time c1 := sup{g′(y) |y ∈
K0, g

′(y) ≤ 0} < 0, we find:∫
|v|≤c

vg(ψ̄σ + v) exp(− v2

2σ2
)dv

≤ 2c1σ
2

[
−c exp(− c2

2σ2
) + σ

√
π

2
erf(

c√
2σ

)

]
.
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Hence, for all σ > 0, there exists C := 2 max(c0,−c1) >

0 such that:

||g||∞
σ

exp(− c2

2σ2
) ≥ C

[
− c
σ

exp(− c2

2σ2
) +

√
π

2
erf(

c√
2σ

)

]
.

By taking σ to 0 and using the fact that erf(x) −−−−→
x→∞

1, we find C ≤ 0 which is a contradiction.

Hence, we have proved that

d(ψ̄σ,L) −−−→
σ→0

0 .

The next step is to find an upper bound on d(ψ̄σ,L).

Second step: Search of the upper bound

In the following, we will suppose that the critical

point towards which ψ̄σ converges is a maximum. In

practice, it will always be the case as any other critical

point would be unstable numerically. Theoretically, a

set of conditions (LOC1)-(LOC3) are given in Delyon

et al. (1999) insuring the convergence towards a local

maximum.

We write ψM the closest critical point to ψ̄σ and

ασ = |ψ̄σ − ψM |. We also write lM the smallest integer

such that g(lM )(ψM ) 6= 0. Moreover, as explained above,

we assume that ψM is a maximum. It must be remarked

that ψM depends on σ. However, as L is finite, we will

be able to consider maxima at the end of the proof.

Since we assume ψM maximum, lM is even and, for

σ small enough, since g(lM ) is continuous, ∀v ∈ [ψ̄σ −
ασ, ψ̄σ + ασ],

g(l)(v) ≤ 1

2
g(lM )(ψM ) := −cM < 0 .

As before, we will split up the integral (7) in two

parts: {v||v| < ασ} and {v||v| > ασ}. The idea behind

the computations is that ασ cannot be too big without

making the absolute value of the integral on {v||v| <
ασ} strictly superior than the one on {v||v| > ασ}.

On {v | |v| > ασ} we can use the same upper and

lower bounds as before to find:∣∣∣∣∣
∫
|v|≥ασ

v g(ψ̄σ + v) exp(− v2

2σ2
)dv

∣∣∣∣
≤ σ2||g||∞ exp(− α2

σ

2σ2
) .

(10)

On {v | |v| < ασ}, we use twice the mean value the-

orem to find, for any v ∈ [0,ασ], there exist ψ̃0
v ∈

[ψ̄σ − v, ψ̄σ + v] and ψ̃1
v ∈ [ψ̄σ −ασ, ψ̄σ +ασ] such that:

g(ψ̄σ + v)−g(ψ̄σ − v)

= 2vg′(ψ̃0
v) = 2v(g′(ψ̃0

v)− g′(ψM ))

= 2v(ψ̃0
v − ψM )lM−1g(lM )(ψ̃1

v)/(lM − 1)!

≥ 2v(ψ̄σ + v − ψM )lM−1g(lM )(ψ̃1
v)/(lM − 1)! .

We first suppose that g is increasing on [ψ̄σ−ασ, ψ̄σ+

ασ]. Then, ασ = ψM − ψ̄σ and:

g(ψ̄σ + v)− g(ψ̄σ − v) ≥ 2cM
(lM − 1)!

v(ασ − v)lM−1 .

Hence, computing the integral (7) on {v | |v| < ασ},
we find:∫
|v|≤ασ

vg(ψ̄σ + v) exp(− v2

2σ2
)dv

≥ 2cM
(lM − 1)!

∫ ασ

0

v2(ασ − v)lM−1 exp(− v2

2σ2
)dv

≥ 2cM
(lM − 1)!

αlM+2
σ

∫ 1

0

v2(1− v)lM−1 exp(−α2
σv

2

2σ2
)dv

≥ 2cM
(lM − 1)!

αlM+2
σ exp(− α2

σ

2σ2
)

∫ 1

0

v2(1− v)dv .

Finally, by combining this inequality and (10), we

find:

σ2||g||∞ exp(− α2
σ

2σ2
) ≥ cM

6(lM − 1)!
αlM+2
σ exp(− α2

σ

2σ2
) .

Hence, if σ ≤ 1,

ασ ≤
(

6(lM − 1)!
||g||∞
cM

)1/(lM+2)

σ
2

lM+2

≤ max
ψM∈L

((
6(lM − 1)!

||g||∞
cM

)1/(lM+2)
)
σ

2
l+2 .

Because L is finite, we indeed have a maximum which

is strictly positive.

In the case where g in decreasing on [ψ̄σ −ασ, ψ̄σ +

ασ], we have ασ = ψ̄σ−ψM and it is easy to show that

we have this time

g(ψ̄σ +v)−g(ψ̄σ−v) ≤ −2cMv(ασ−v)lM−1/(lM −1)! .

Hence, we can use the same inequalities as before to

find again:

ασ ≤ max
ψM∈L

((
6(lM − 1)!

||g||∞
cM

)1/(lM+2)
)
σ

2
l+2 .

Third step: Approximation when σ goes to

infinity
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We use again the equation (7). For all σ > 0,∫
R
vg(ψ̄σ + v) exp(− v2

2σ2
)dv = 0 .

Using the change of variable ψ̄σ + v, we find:

ψ̄σ =

∫
R vg(v) exp

(
− (v−ψ̄σ)2

2σ2

)
dv∫

R g(v) exp
(
− (v−ψ̄σ)2

2σ2

)
dv

.

But ψ̄σ is supposed to stay in a compact so, ∀v ∈
R, exp

(
− (v−ψ̄σ)2

2σ2

)
−−−−→
σ→∞

1. Using the integrability of

g and v 7→ vg(v), it is easy to conclude using the dom-

inated convergence theorem.

3 Simulation of a counter example

In this section, we demonstrate that the maximum like-

lihood of g is indeed not reached by the SAEM algo-

rithm on the exponentialized model on a concrete situ-

ation.

3.1 Application of the SAEM algorithm to the

exponentialized model

We choose to study a heteroscedastic model where the

variance depends on the observation. This model has

been used in Kuhn and Lavielle (2005) in order to an-

alyze the growth of orange trees. The parameters to

estimate are the age β1 at half asymptotic trunk cir-

cumference ψi and the grow scale β2 of n orange trees

according to the measurement of their circumference

yi,j at m different ages xj .

We suppose that our observation yi,j verifies, for i

between 1 and n and j between 1 and ki:

yi,j =
φi

1 + exp
(
−xj−β1

β2

) (1 + εi,j) ,

where εi,j are independent noises of distributionN (0, σ2
ε)

of variance σ2
ε supposed to be known.

φi is treated as a random effect and is supposed to fol-

low a Gaussian distribution of mean µ to estimate and

known variance τ2.

Such a model cannot be written in an exponential

form due to the parameters β1 and β2 and we will hence

consider an exponentialized model where β1 and β2 are

considered as random effects with β1 ∼ N (β̄1, σ
2) and

β2 ∼ N (β̄2, σ
2).

Writing

h(φ, β1, β2, x) =
φ

1 + exp
(
−x−β1

β2

) ,
the complete likelihood of the exponentialized model

can then be written as:

f(y,φ, β1, β2, θ)

= 2πσ2(2πσ2
ε)−nm/2(2πτ2)−n/2

· exp

− 1

2σ2
ε

∑
i,j

(
yi,j

h(φi, β1, β2, xj)
− 1

)
−
∑
i,j

log(h(φi, β1, β2, xj))

−
∑
i

(φi − µ)2

2τ2
− (β1 − β̄1)2

2σ2
− (β2 − β̄2)2

2σ2

]
,

where θ = (µ, β̄1, β̄2) are the exponentialized model pa-

rameters to estimate.

Remark 8 It would be easy to suppose τ and σ2
ε un-

known and estimate them using the SAEM algorithm.

Those parameters would leave the joint distribution

curved exponential and it would not be necessary to

further exponentialize the model. To simplify, we as-

sume them known here.

It is then easy to show that this likelihood belongs to

the curved exponential family with sufficient statistics
being: 

S1(φ) =
∑
i φi ,

S2(β1) = β1 ,

S3(β2) = β2 .

The maximum likelihood estimator can then be ex-

pressed as a function of S1(φ), S2(β1) and S3(β2) as

follows: 
µ̂ = S1(φ)/n ,
ˆ̄β1 = S2(β1) ,
ˆ̄β1 = S3(β2) .

Because we cannot easily sample (φ, β1, β2) from the

conditional distribution, we will not directly use the

SAEM algorithm but the SAEM-MCMC algorithm. We

replace the sampling step by one iteration of a Metropo-

lis Hastings algorithm targeting the posterior distribu-

tion. Under hypotheses presented in Kuhn and Lavielle

(2004), this process converges towards the same limit as

the SAEM algorithm. In particular, it has been proved

in Kuhn and Lavielle (2005) that those conditions are
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indeed verified here and thus that the algorithm con-

verges. Moreover, as the limit is the same than the one

given by the SAEM, our theorem 2 still applies.

We then create a synthetic dataset of a thousand ob-

servations following this model (100 subjects observed

at 10 different ages). Knowing the exact value of µ, we

plot the incomplete likelihood of the non-exponentialized

model gNE as a function of (β1, β2) figure 6a. We also

plot its behaviour around the maximum and along the

axes β1 and β2 figures 6b and 6c.

As we can see, the function is not symmetric around

the maximum. Hence, there should be a bias while es-

timating the maximum likelihood using the exponen-

tialized model. More precisely, we can see the error in

β2 should be larger than the one in β1 as the function

is less symmetric along the y axis than along the x axis.

To verify this heuristic, we use the SAEM-MCMC

algorithm and launch our algorithm a hundred times for

different values of σ. We then compare the results given

by the SAEM-MCMC algorithm to the exact value of

the maximum likelihood of the initial model. Because

we know the exact parameters from which the dataset

has been simulated, we are also able to compute nu-

merically the solution of the equation (7) as a function

of σ. The results are presented figure 7.

For σ ≥ 1, the results of the simulation follow our

theory with the estimated parameters estimated close

to the solution of the equation (7). Moreover, as ex-

pected, the error is bigger in the estimation of β2 than

in the estimation of β1 (see axis scale).

However, for a small σ, the algorithm does not con-

verge. Indeed, in that case, the variance of the condi-

tional distribution is really small as it is proportional to

exp
(
− (β−β̄)2

2σ2

)
. In particular, it means that the algo-

rithm will be extremely long to converge and, in prac-

tice, will stay near the initial value (β1 = 6, β2 = 34

here).

3.2 Proposition of a new algorithm

To prevent this phenomenon, we now propose a new

process that will allow a better estimation of the real

maximum of the non-exponentialized likelihood. We will

still use the exponential trick but using an adaptive σ

along the iterations. The goal is to allow the estimate to

escape from its initial value while converging towards a

point closer to the true maximum.

We propose to first run the algorithm with σ = 1 for

a certain number m of iterations and then reduce the

value of σ by multiplying it by 0.9. We iterate this pro-

cess every m iterations until the difference between suc-

cessive parameters estimated is sufficiently small. We

then let the algorithm converge with this small value of

σ. This may be seen as launching the algorithm several

times with an initialization closer and closer to the true

maximum likelihood. While the algorithm will not con-

verge towards the real maximum likelihood estimate as

σ is still positive during the last iterations, the error

should be smaller than before as σ has been signifi-

cantly reduced.

To test this new algorithm, we launch this process

a hundred times. We present the means and variances

of the estimated parameters in Table 1 and as green

crosses in figure 7. If we do not reach the maximum

likelihood of the initial model, the error for β2 is now

smaller: 1.04% while it was at least 2.6% without re-

ducing the variance throughout the algorithm. As for

β1, the error is of the same order as before.

Remark 9 In Kuhn and Lavielle (2005), the authors use

this model and algorithm on a real dataset for differ-

ent values of σ. They conclude that the estimation of

(β1, β2) does not seem to depend on the choice of σ.

In fact, for the particular values of this real dataset,

the likelihood is practically symmetric around its max-

imum. Hence, the error made in that case is indeed

small for any σ.

Conclusion

In this paper, we have proved that the exponential-

ization process does not converge in general towards

the maximum likelihood of the initial model using the

SAEM or SAEM-MCMC algorithm. If the error con-

verges towards 0 when σ goes to 0, it is numerically im-

possible to take σ too small as the algorithm is numer-

ically never able to converge. To overcome this prob-

lem, we propose a new numerical scheme consisting in

launching the algorithm several times while making the

variance of the exponentialized model decrease. Thanks

to out theoretical results, we show that this new process

converges towards a better estimation of the maximum

of likelihood of the initial model, as verified by the nu-

merical simulations. Hence, we are able to approach the

exact maximum likelihood even in the case where our
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(a) Plot of the incomplete likelihood of the initial model as a function of (β1, β2).

(b) Plot of the incomplete likelihood of the initial model
as a function of β1 for β̄2 the argmax of likelihood.

(c) Plot of the incomplete likelihood of the initial model
as a function of β2 for β̄1 the argmax of likelihood.

Fig. 6: Plot of the incomplete likelihood of the initial model as a function of (β1, β2) along different sections for

µ = 5.

likelihood does not belong to the curved exponential

family.
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