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Highlights 13 

• Design of a drop-former rainfall simulator using porous pipes 14 

• Easier to build and maintain than rainfall simulators using capillaries 15 

• Performances in the range of previous designs 16 

Abstract 17 

A drop-former rainfall simulator was designed and tested. Its novelty is the use of 18 

porous pipes instead of capillaries. Compared to rainfall simulators using 19 

capillaries, this feature makes easier its building and maintenance. Rainfall 20 

intensity can be selected by simply setting the water supply pressure. The rainfall 21 

simulator was able to deliver rainfall intensities between 24 and 75 mm/h for a 22 

pressure range of 0.25-1.40 bar. As other drop-former rainfall simulators, the 23 
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rainfall kinetic energy (expressed in J.m-2.mm-1) and drop size do not depend on 24 

the rainfall intensity. Tested on a 0.25 m² area, larger format could be build. 25 
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1. Introduction 30 

Rainfall simulators are widely used in surface hydrology and in soil science 31 

(Iserloh et al., 2013; Kesgin et al., 2018; Nielsen et al., 2019). While they come in 32 

many variations, there are two basic types of rainfall simulators: nozzle-based and 33 

drop-former (Iserloh et al., 2013). 34 

The present paper describes a drop-former simulator. While drop-former 35 

simulators typically make use of capillaries (needles, holes or small tubes), the 36 

present design uses porous-pipes to generate the drops. 37 

While our laboratory have used for years an oscillating-nozzle simulator (Foster et 38 

al., 1979), an experiment required (1) a continuous rainfall over a surface of 39 

0.25 m², and (2) that rainfall intensity could be changed without altering the other 40 

rainfall properties (kinetic energy, drop size). Aware of the complexity of 41 

(1) building a regular drop-former rainfall simulator (with its hundreds to thousands 42 

of capillaries per square meter) and (2) maintaining it (especially the clogging of 43 

the capillaries) over long periods, we came with a new design that replace the 44 

capillaries with porous pipes. 45 

After detailing the design of the porous-pipe rainfall simulator, its performances are 46 

evaluated and its use is discussed. 47 



2. Materials and methods 48 

2.1 Design 49 

The design of the present porous-pipe rainfall simulator is part of the drop-former 50 

rainfall simulator category. Basically, the capillaries and their specifically-designed 51 

water supply are replaced by porous pipes connected to a manifold pipe. 52 

Porous pipes are cheap and commonly used in gardens and horticulture for 53 

irrigation. They are similar to water hoses, and can be bought in any garden shop. 54 

They may come in different brands and specifications. The one used here is made 55 

of a rubber-like material, with an outside diameter of 16 mm and an inside 56 

diameter of 13 mm. 57 

For our simulator, 25 sections of porous pipe of 0.9 meter long are used (Fig. 1). 58 

They are lined up parallel to each other, with an inter-pipe spacing of 24 mm. One 59 

end of the porous pipe section is blocked with a stopper, while the other end is 60 

connected to a manifold pipe. 61 

The porous pipes are placed under a one meter square sheet of expanded metal, 62 

and attached to the sheet with plastic tie straps every 20 mm. The sheet of 63 

expanded metal provides both a rigid frame and attachment holes for the tie straps. 64 

The tie straps are key in achieving a homogeneous spatial distribution of the drops: 65 

they collect the water coming out of the pipes and are the location where falling 66 

drops are formed. 67 

The manifold is connected to a water pump. A digital manometer is installed on the 68 

manifold to allow for pressure monitoring and adjustment of the rainfall intensity. 69 

Like in Ulrich et al. (2013) and Mayerhofer et al. (2017), a fine mesh (square 3 mm 70 

openings, wire diameter of 0.5 mm) is placed 65 cm below the drop former device. 71 

This mesh has two purposes: breaking the big drops into smaller drops, and 72 



avoiding the drops to constantly fall onto the exact same location of the 73 

experimental surface. 74 

The porous pipes of the rainfall simulator are set 6.60 m above the experimental 75 

area. 76 

2.2 Rainfall properties assessment 77 

36 pluviometers (cylindrical beakers of 64.5 mm in diameter and 110 mm in height) 78 

are used to assess the intensity and spatial variability of the rain inside a central 79 

area of 50 cm by 50 cm, which is the size of the test bench to be used in 80 

subsequent experiments. The collected amount of water is measured by weighting 81 

the pluviometers. The uniformity coefficient of Christiansen is calculated (Iserloh et 82 

al., 2013). 83 

For the drop size and the rainfall kinetic energy, an optical disdrometer is used 84 

(Laser Precipitation Monitor, Thies clima, part number 5.4110.00.XXX). This 85 

disdrometer senses the drops crossing a laser beam and reports their number, 86 

sizes and falling speeds every minute. It is located in the center of the test area. 87 

During preliminary tests, an underestimation of the rainfall intensity by the 88 

disdrometer was found, as previously reported (Prata de Moraes Frasson et al., 89 

2011; Angulo-Martinez et al., 2018). Hence, kinetic energies are linearly 90 

compensated based on the differences between disdrometer intensity and 91 

pluviometer intensity. 92 

Rainfall properties are assessed at four water pressures (0.25, 0.50, 0.86, and 93 

1.40 bar). Three replicates were carried out for the 0.86-bar pressure to assess the 94 

reproductibility of the rainfall intensity. 95 



3. Results and discussion 96 

For the range of pressure 0.25–1.40 bar, rainfall intensity varied between 24 and 97 

75 mm/h (Table 1). The dependency of the intensity to the water pressure was 98 

mostly linear, making it easy to reach a prescribed intensity. The variability of the 99 

rainfall intensity was about 10% between replicates, which is in the usual range for 100 

rainfall simulators (Iserloh et al., 2013). The uniformity coefficient of Christiansen is 101 

always above 90%, which is in the higher range compared with other rainfall 102 

simulators (Iserloh et al., 2013). The spatial variability of rainfall intensity showed a 103 

gradient along the direction of the porous pipes (Fig. 2): compared to the mean 104 

value, the intensity was lower by 7% on the half of the test surface located to the 105 

manifold side, and higher by 7% on the half of the test surface located on the 106 

stopper side. This gradient was mostly independent of the rainfall intensity. 107 

The simulator produced droplets with a mean weighted diameter of 3.0 mm. This 108 

value did not change with the rainfall intensity. This is typical of drop-former rainfall 109 

simulators which, by design, cannot alter their drop size (except by changing the 110 

wire mesh). 111 

The drop velocities were independent of the rainfall intensity (data not shown). 112 

Drop-former rainfall simulators generates drops with an initial zero velocity. During 113 

their fall, drops interact with the wire mesh and accelerate due to gravity. Hence 114 

their final velocity depends simply of their size and falling height. 115 

Rainfall kinetic energies were in the range of 18-23 J.m-2.mm-1 (Table 1). These 116 

values are quite close, meaning that the kinetic energy of the rain did not depend 117 

on the rainfall intensity. This was expected because (1) drop sizes and velocities 118 

were constant whatever the water pressure, and (2) the kinetic energy is 119 

expressed by millimeter of rainfall. The obtained kinetic energies are higher that in 120 



the previously-reported range (Iserloh et al., 2013), owing to the larger drop fall 121 

height. 122 

Overall, the results are in accordance with the expected behavior of a drop-former 123 

rainfall simulator, validating the present design for further use. The present design 124 

allows changing the rainfall characteristics independently: rainfall intensity 125 

depends on the water supply pressure, while the drop size and kinetic energy 126 

depends on mesh size and falling height. This feature could be advantageous to 127 

study the sensitivity of processes (such as particle splash or herbicide transfer) to 128 

the different rainfall properties. 129 

Upon designing and using this simulator, we encountered several issues that 130 

should draw attention: 131 

• The porosity of the hose roll may not be constant along its length. It may 132 

depends on the batch and on the brand. Hence, after testing, some 0.9 m 133 

sections have been discarded. 134 

• On start-up, the rainfall intensity may be lower than expected: the porous 135 

pipes need to be moistened before they provide a constant water flow. 136 

Hence, the simulator needs to be run for a few minutes before being fully 137 

functional. By contrast, the rainfall stops instantaneously when the water 138 

supply pipe is disconnected from the pump. 139 

• As underlined earlier, the intensity is lower on the manifold side than on the 140 

stopper side. If this rainfall intensity gradient is too high compared to the 141 

requirements, two manifolds could be used, supplying water from both 142 

sides of the porous pipes. 143 

• For a given pressure, rainfall intensity decreases over the course of several 144 

weeks. This could be due to aging and clogging of the porous pipes 145 

(Teeluck and Sutton, 1998). With a few exceptions, such as Battany and 146 



Grismer (2000), clogging is rarely mentioned in publications about drop-147 

former rainfall simulators. However, this issue is well-known to users. 148 

Clogging results in a decrease of the rainfall intensity and an increase of its 149 

spatial variability. For the present design, such inconvenience could be slow 150 

down by adding a water filter (Teeluk et al., 1998). Such an effect should be 151 

monitored, and, if significant, porous pipes can be easily replaced with new 152 

ones. While clogging occurs with porous pipes as with needles, it is much 153 

easier and faster to change the 25 porous pipes of the present design that 154 

the hundreds of capillaries of previous designs. 155 

Overall, the porous-pipe rainfall simulator allows to generate a continuous rain, 156 

with drops of significant size, velocity and kinetic energy, having a random 157 

distribution of the impact points, for a significant range of rainfall intensities, and a 158 

limited spatial heterogeneity over a square surface of 0.25 m². 159 

Potentially, the current design may be extended to provide rainfall over larger 160 

surfaces. This may be achieved by using longer or more numerous sections of 161 

porous pipes. As a reference, drop-former rainfall simulators exist for areas of 162 

0.06 m², using 49 capillaries (Kamphorst, 1987) to areas of 6 m², using 163 

4800 capillaries (Huang et al., 2016). We believe large drop-former rainfall 164 

simulators could advantageously use porous pipes instead of capillaries. 165 

4. Conclusions 166 

A rainfall simulator based on porous pipes was designed and tested. It can 167 

generate rainfall intensities between 24 and 75 mm/h. Rainfall intensity can easily 168 

be preset by choosing the water supply pressure. Rainfall kinetic energy 169 

(expressed in J.m-2.mm-1) and drop size do not depend on the rainfall intensity. 170 

The given advises will make easier its building and use. Compared to rainfall 171 



simulators using capillaries, design and maintenance are easier. Tested on a 0.25-172 

m² area, it could be expanded to larger surfaces. 173 

 174 
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For clarity, the sheet of expanded metal is not drawn. Not to scale. 234 
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 238 

Pressure 

 

(bar) 

Intensity 

 

(mm/h) 

Kinetic 

energy 

(J.m-2.mm-1) 

Coefficient 

of uniformity 

(%) 

0.25 23.9 ± 2.5 18 92 

0.50 36.0 ± 3.5 Not measured 93 

0.86 49.0 ± 5.2 23 92 

1.40 74.5 ± 6.9 23 92 

 239 

Table 1: Rainfall properties at different water pressures. 240 

 241 
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 258 

Fig. 1. Scheme of the rainfall simulator. 259 

For clarity, the sheet of expanded metal is not drawn. Not to scale. 260 



Fig. 2. Spatial variability of rainfall intensity at different water pressures. 261 

The manifold is located to the left. 262 




