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FMRI‑based identity classification 
accuracy in left temporal 
and frontal regions predicts 
speaker recognition performance
Virginia Aglieri1, Bastien Cagna1, Lionel Velly1,2, Sylvain Takerkart1 & Pascal Belin1,3*

Speaker recognition is characterized by considerable inter‑individual variability with poorly 
understood neural bases. This study was aimed at (1) clarifying the cerebral correlates of speaker 
recognition in humans, in particular the involvement of prefrontal areas, using multi voxel pattern 
analysis (MVPA) applied to fMRI data from a relatively large group of participants, and (2) at 
investigating the relationship across participants between fMRI‑based classification and the group’s 
variable behavioural performance at the speaker recognition task. A cohort of subjects (N = 40, 28 
females) selected to present a wide distribution of voice recognition abilities underwent an fMRI 
speaker identification task during which they were asked to recognize three previously learned 
speakers with finger button presses. The results showed that speaker identity could be significantly 
decoded based on fMRI patterns in voice‑sensitive regions including bilateral temporal voice areas 
(TVAs) along the superior temporal sulcus/gyrus but also in bilateral parietal and left inferior frontal 
regions. Furthermore, fMRI‑based classification accuracy showed a significant correlation with 
individual behavioural performance in left anterior STG/STS and left inferior frontal gyrus. These 
results highlight the role of both temporal and extra‑temporal regions in performing a speaker identity 
recognition task with motor responses.

Our auditory system allows us to perform speaker recognition i.e. to recognize the identity of a familiar person 
simply based on her voice, presumably relying on speaker-voice associations formed in the  past1 (as opposed 
to unfamiliar voice discrimination). Speaker recognition is, however, characterized by a considerable inter-
individual  variability2 with poorly understood neural bases. Several neuroimaging  studies3–10 have sought to 
identify potential cerebral correlates of inter-individual variability in voice recognition ability: if a measure of 
cerebral activity can be predictive of a participant’s behavioural performance level that would be important both 
theoretically and for potential practical applications. Nakamura et al.7 using positron emission tomography dur-
ing a speaker recognition task observed positive co-variations between task performance and cerebral blood flow 
in left frontal pole and left temporal pole. Andics et al.8 using fMRI during a speaker identification task observed 
that voice recognition performance co-varied with BOLD response in bilateral STS, right temporal pole and left 
amygdala. Schelinski et al.9 found, in healthy participants but not participants with autism spectrum disorder, that 
BOLD signal measured during a speaker recognition task in right STG correlated with behavioural performance 
at the task, but their analysis was restricted to temporal regions activated by the task.

The above studies examined correlations between regional indices of brain activity (mostly, fMRI -meas-
ured BOLD signal) and task performance. However, a more recent approach using multi-voxel pattern analysis 
(MVPA) compares the performance level of human participants at a given task with that of machine learning 
algorithms trained at the same task based on fMRI signal measured during the task. This approach is potentially 
more powerful as it probes the nature of information processing carried out in brain regions rather than their 
activity level. Bonte et al.10 applied this strategy to speaker recognition: they found that the accuracy of sup-
port vector machine (SVM) classifiers trained at the speaker categorization task, based on each participant’s 
fMRI signal measured in left superior temporal cortex (STC), explained a significant portion of the variance in 
behavioural speaker recognition level across participants. This pioneering result provides strong indication of the 
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involvement of left STC in speaker recognition; however, the study was conducted in a relatively small group of 
10 participants, encouraging confirmation in a larger sample; moreover the analysis was based on two large ROIs 
in temporal cortex, providing little neuroanatomical detail and leaving open the possibility that other areas, in 
particular in prefrontal cortex, may also predict behavioural scores. More recently, Ogg et al.3 found a significant 
correlation between instrument identification performance (but not speaker identification performance) and 
accuracy of SVM classifiers trained at speaker categorization in sound-sensitive regions.

Here we reasoned that the brain-behaviour relationship could potentially be better measured by sampling 
more equally the distribution of speaker identification scores in a larger group of participants, with comparable 
numbers of subjects in the extreme and middle parts of the distribution, rather than relying on a random selection 
procedure that would necessarily inflate the proportion of subjects with average performance compared to those 
with very high or very low scores. Hence, the aim of the current study was to analyse fMRI data collected during 
a speaker recognition task using MVPA methods (searchlight  analysis11) in order to investigate the distributed 
representational pattern of speaker identification processes, in a larger sample of subjects (N = 40) selected for 
their wide distribution of voice recognition abilities.

We first asked whether some sound-responsive cortical regions would yield above chance classification of the 
speaker identity by fMRI-based classifiers. We expected to replicate previous results in observing the involve-
ment of temporal areas, but wanted to further investigate the implication of prefrontal areas, as the only study 
so far having observed a correlation between fMRI-based classification and participant performance restricted 
its analysis to auditory cortical areas of the temporal  lobe10. Furthermore, in order to check that the regions in 
which speaker classification was higher than chance were actually classifying speakers’ voice independently of 
the actual word, a ‘generalization’ analysis was performed in which training and testing of the classifiers was per-
formed on different words. We then asked whether fMRI-based classification accuracy within sound-responsive 
cortical regions could predict individual differences in voice recognition abilities.

Methods
Subjects. The first step for subjects selection was to send an online version of the Glasgow Voice Memory 
 Test2 through social media and experimental psychology mailing lists. This test was periodically advertised until 
a performance distribution similar to the one previously  observed2 was obtained. Then, all 209 subjects that took 
the GVMT online were contacted to come to the laboratory for a remunerated experimental session in which 
they had to complete a speaker identification task (the term identification is here preferred since the task consists 
in a one-to-one association between a speaker and a finger press). Exclusion criteria included having an auditory 
impairment. Among these 209 subjects, 86 came to the laboratory for the first behavioural session (54 females; 
mean age ± SD = 24.9 ± 5.7). Prior to testing sessions, participants provided written informed consent, following 
the guidelines of the declaration of Helsinki and with the approval of the Comité de Protection des Personnes 
Sud Méditerranée I (ref. 16 78).

In order to try to select subjects with a flat distribution of voice recognition abilities, optimal for investigating 
the neural correlates of inter-individual variability in behavioural identification performance, the scores obtained 
at the identification task by the 86 subjects during the laboratory session were divided in four arbitrarily defined 
performance bins (see Table 1 for details on subjects’ selection). Then, we endeavoured to first recruit subjects 
belonging to the two extreme classes for the MRI session; then, the subjects belonging to the average classes were 
contacted. Eventually, 40 subjects (28 females; M ± SD = 25.3 ± 5.5, range = [18–41]) were successfully recruited for 
the MRI session. A French translation of the Edinburgh Handedness Inventory was administered before the MRI 
session (M ± SD = 0.78 ± 0.27, range = [− 0.1 1]; a score of 1 indicates strong right-handedness, while -1 strong 
left-handedness). The South Mediterranean Committee for experimental ethics approved the methodology and 
the experimental protocol used in the study.

Stimuli. Three French-Canadian female voices were selected among a high-quality database of vocal 
 recordings12. Original recordings were made in the multi-channel recording studio of Secteur ElectroAcoustique 
in the Music faculty of Université de Montréal. The speakers were instructed to perform multiple vocalizations 
(e.g. stories, words, non-verbal vocalizations, sing…). For this experiment, two short stories and 12 disyllabic 
French words (“français”, “allô”, “jeudi”, “lundi”, “mardi”, “neutre”, “partie”, “penser”, “pouvez”, “quatre”, “toussez”, 
“voyelle”) were selected by manually cutting them in Adobe Audition (© 2016 Adobe Systems Incorporated); 
residual background noise was then attenuated through the automatic healing procedure offered in Adobe Audi-
tion and energy of the stimuli was normalized through root mean square process using custom code in Matlab 
R2014B (The MathWorks, Inc., Natick, MA, USA). Table 2 shows a summary of basic acoustical parameters for 
the stimuli. Fundamental frequency (F0), formant dispersion (average difference between first four formants) 
and harmonics-to-noise ratio (HNR) have been extracted in  Praat13 for three sustained vowels [a, i, u]. F0 vari-

Table 1.  Selection of subjects for fMRI session. 1st row: upper and lower boundaries of each class of 
performance obtained in the laboratory testing session (no feedback session); 2nd row: number of subjects in 
the corresponding class; 3rd row: number of subjects selected for the fMRI session.

Score range—laboratory session [10 32] [32 54] [54 76] [76 98]

Number of subjects in the percentile 1 14 40 31

Number of subjects selected for fMRI 1 6 16 17
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ability (standard deviation of F0) has been also extracted for each word through the STRAIGHT  algorithm14 in 
order to obtain a measure of speakers’ F0 variability across the different words.

Experimental design: laboratory session. Subjects performed a speaker identification paradigm 
(inspired by the study of Bonte et al.10) built in  Psychtoolbox15–17 and running on Matlab R2014B. After ensuring 
that subjects understood the task, they were seated 60 cm from the screen (BENQ 2.52 × 21.92 × 14.28 inches). 
The sounds were delivered through headphones (Beyerdynamics DT770 pro, beyerdynamic GmbH & Co. KG, 
Heilbronn, Germany).

Learning phase. In this phase subjects had to familiarize with three speakers (see Supplementary Infor-
mation for details on speakers’ voices) by initially listening to two short stories per speaker (mean duration 
(sec) ± SD = 11.0 ± 0.8), while memorizing the association between the speaker’s voice and name printed on the 
screen. Speakers’ names were chosen arbitrarily in such a way to have no more than two syllables and start by 
the 3 first letters of the alphabet (Anne, Betty and Chloe). Subjects were instructed not to pay attention to stories’ 
content (identical across speakers) but rather to try to memorize the speaker’s voice and the association with her 
name. After story presentation, twelve disyllabic words recorded for each of the 3 speakers were delivered in a 
pseudo-randomized order created through Mix and  Match18, with the only constraint being not to exceed two 
repetitions in a row of the same speaker. After listening to a voice, subjects had to identify the correct speaker by 
pressing one of the three keys on a keyboard built appositely for the experiment (thumb = Anne; index = Betty; 
middle finger = Chloe). Immediately after subject’s button press, a feedback message was provided for both cor-
rect recognition (“Yes!” in green characters) and misidentification (“No! It was -name of correct speaker- in red 
characters); after a wrong answer, the misidentified sound was played while the feedback message was on the 
screen. Afterwards, the subject pressed a button to listen to the following voice. A 2-s interval separated key press 
and the following stimulus. No time restriction was applied on subject’s answer. Both stories presentation and 
learning phase were repeated twice, the two stories being delivered in the same order during the two sessions and 
words in a different pseudo-randomized order. Hence, during this phase, a total of 72 identification trials were 
presented (12 words * 3 speakers * 2 sessions).

Testing phase. Upon completion of the training session, subjects were asked to repeat the same task learned in 
the first two sessions but without receiving a feedback on their answer. Again, response time was self-paced. At 
the end of the testing session, the mean percentage of correct responses obtained in the two training sessions and 
in the testing session appeared on the screen.

Experimental design: fMRI session. Training outside scanner. On the day of the fMRI session par-
ticipants had to first complete a training session to further familiarize with the identification task. First, they 
were presented with one learning session as in the laboratory. Then, they had to perform two testing sessions 
(no feedback provided) while an audio recording of the EPI scanning noise was added at diminished amplitude 
(− 5 dB) as a background noise on the stimuli. Furthermore, subjects were instructed to keep their eyes closed 
while performing the two testing phases and to answer within 5 s following sound presentation to keep training 
session as similar as possible to MRI session.

fMRI acquisition. All the acquisitions were carried out in a 3  T Prisma MRI scanner (Siemens, Eerlangen, 
Germany) with a 64-channels head coil at the fMRI centre of the Institute of Neuroscience of La Timone in Mar-
seille, France. Both functional and structural images were acquired following guidelines of the Human Connec-
tome Project acquisition  protocol19,20. Scanning session started with the acquisition of a phase-reversed pair of 
spin echo images with the same geometry as fMRI data (Field of View = 240 × 240  mm2, slice thickness = 2.5 mm, 
TR = 677 ms, TE = 4.62 ms, encoding phase = anterior to posterior) that were used to calculate a field map for 
correction of B0 inhomogeneities.

During functional scanning, subjects completed the same identification task as during training (without the 
feedback condition) while they were lying down in the scanner equipped with Sensimetrics S14 MR-compatible 
insert earphones, connected to a Yamaha P-2075 power amplifier. Auditory stimuli were delivered at 85–95 dB 
SPL using a software developed for this study in the National Instruments LabVIEW 2014 environment; this 

Table 2.  Acoustical parameters of the stimuli presented in the task. F0 fundamental frequency, HNR 
harmonics to noise ratio, FD formant dispersion.

Anne (42 YO) Betty (19 YO) Chloe (56 YO)

Mean SD Mean SD Mean SD

Words duration (sec) 0.59 0.12 0.50 12.12 0.65 0.15

F0 (vowels) 175.68 5.60 230.25 19.92 254.39 48.07

F0 variability (words) 37.93 16.69 24.64 7.94 63.02 35.46

HNR (vowels) 15.19 5.84 19.10 1.56 18.57 4.86

FD (vowels) 1134.67 286 1095 95.99 1143.26 137.40
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software was driven by the MR pulses using a NI-PXI 6289 digital input/output hardware, which also allowed 
recording subjects’ responses, obtained by means of a digital ergonomic 5-keys keyboard.

Functional scanning for the identification task consisted of four functional runs, each including 36 trials (12 
disyllabic words * 3 speakers) in which participants had to identify the speaker by button press, as previously 
learned. Subjects were instructed to listen to the words with eyes closed and to recognize the speaker by press-
ing the corresponding button within the 5 s following voice delivery. In case of missing response during this 
time window, the following stimulus was delivered. The inter-stimulus interval (ISI), measured as the interval 
between the response instant (or the end of the 5-s answer window in case of missing response) and the delivery 
of the following stimulus, varied between 3 and 5 s (see Fig. 1); ISIs were generated according to an exponential 
distribution and randomized across the  runs21. Each run lasted 5 min and 62 s, resulting in total task duration 
of approximately 25 min.

After the identification task, participants also underwent one single run of an event-related voice localizer 
paradigm in which they were asked to close their eyes while simply listening to vocal and non-vocal sounds. 144 
sound stimuli of a fixed duration of 500 ms were delivered. There were six categories of sounds, each containing 
24 stimuli: vocal/verbal, vocal/non-verbal, vocal/emotional, non-vocal/animal, non-vocal/environmental and 
non-vocal/artificial. Most of the stimuli (95%) belonged to a database created for a previous  study22, while oth-
ers were downloaded from public databases free of copyright. A sequence of randomized ISIs of a duration that 
varied between 4 and 5 s separated each stimulus.

The order of the stimuli in both fMRI tasks was pseudo-randomized by an optimization process which allows 
maximization of BOLD  response23,24; four different orders, one for each run, were created for the identification 
task and kept constant across subjects while one single order was used for the localizer task.

Functional scans were acquired with a multi-band gradient echo-planar imaging (EPI) sequence with whole-
brain and cerebellar coverage (TR = 955 ms; multiband factor = 5; voxel size = 2 × 2 × 2  mm3; 60 slices).

The TE was of 35.2 ms, with a flip angle of 56 degrees and a field of view (FOV) of 200 × 200  mm2; matrix of 
acquisition was 100 × 100. After EPI images acquisition, a high resolution 3D T1 image was acquired for each 
subject (voxel size = 0.8 × 0.8 × 0.8  mm3, TR = 2400 ms, TE = 2.28 ms, FOV = 256 × 256  mm2). In total, 366 EPI 
volumes were acquired in each run of the identification task and 792 in the voice localizer task. Furthermore, a 
single-band reference image (SBREF image) was acquired without slice acceleration during the few seconds of 
reference scans before first stimulus delivery so that it could be used for motion correction and realignment of 
functional and structural images. Total acquisition time (field map, EPI sequences, T1) was of ~ 45 min.

At the end of the fMRI session, subjects were requested to answer different questions regarding the comfort 
in the scanner as well as their impressions on the identification task (e.g. difficulty, influence of the scanner noise, 
strategy to recognize speakers). Furthermore, they had to list all the words pronounced by the three speakers so 
that this measure could be correlated to the performance obtained at speaker identification.

The raw data, design for fMRI experiment (timing, events) and subjects’ responses (choice and RT) in the 
laboratory and during MRI session are available on-line (https ://openn euro.org/datas ets/ds001 771/versi ons/1.0.2; 
https ://zenod o.org/recor d/25910 38#.XrA0p Z4zap o)25.

Preprocessing of fMRI data. All preprocessing steps and model specification were performed in SPM12b 
MRI (r6080—Wellcome Department of Cognitive Neurology, University College London). The phase difference 
between acquisition encoding directions and the magnitude field map were used to compute a Voxel Displace-
ment Map (VDM) to correct for distortions of EPI images. At this point, the realigned SBREF image of the first 
run was coregistered to subject’s T1 (which was previously coregistered to an MNI template). BOLD images of 
the four runs were then realigned to the first scan, resliced and corrected for distortions using the VDM. After-
wards, BOLD images of all runs were coregistered to the realigned and MNI-coregistered SBREF image of the 
first run. In order to obtain a subject-specific template, subjects’ T1 images were segmented into the native tissues 
(white and grey matter), which were in turn iteratively coregistered with all other subjects to obtain the DARTEL 

Figure 1.  Identification task (fMRI version). In each trial, a French word was delivered (e.g. “Jeudi”) and 
subjects had to recognize the speaker by pressing one of three keys on a five-keys keyboard (“Response”) 
within a 5-s window; the following trial (e.g. “Pouvez”) was then delivered after an interstimulus interval (ISI) 
randomized between 3 and 5 s. One run was made up of 36 trials.

https://openneuro.org/datasets/ds001771/versions/1.0.2
https://zenodo.org/record/2591038#.XrA0pZ4zapo)
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template. These two steps were performed through the segmentation algorithm included in SPM12, which uses 
diffeomorphic registration to preserve cortical topology applying a membrane bending energy or Laplacian 
 model26. Normalization parameters (flow fields) were also created at this step and then used to normalize the 
realigned and unwarped BOLD images of the localizer task (on which univariate analysis were performed) to 
the DARTEL template and finally to the MNI space (affine registration). In the normalization step, carried out 
only for the images undergoing univariate analyses, a Gaussian smoothing kernel of 1 mm has been applied to 
avoid aliasing. A further Gaussian smoothing kernel of 4 mm was then applied to these normalized images. One 
subject was excluded from further analysis because more than 20% of the functional volumes in both tasks were 
characterized by rapid scan-to-scan motion based on changes in translation and rotation parameters higher than 
0.5 mm and 3 standard deviations from the mean, resulting in a total sample of 39 subjects.

Univariate analysis. In order to check that the contrasts voices vs non-voices and voices vs baseline were 
consistent with results obtained in previous fMRI studies investigating voice perception, as well as to obtain an 
explicit mask of sound-responsive regions specific to our sample, classical univariate analyses were carried out 
for both the voice localizer and the identification task. Normalised and smoothed EPI images were inserted in 
a subject-specific design matrix defining the first-level general linear model (GLM). For the speaker identifi-
cation task, the matrix contained one regressor per speaker modelling the duration of vocal stimulation. An 
additional regressor, modelled with duration of 0 s, accounted for subject’s button pressing. Voice localizer GLM 
contained 6 regressors (one per sound category). In both GLMs, six realignment parameters and twenty-six 
noise regressors resulting from the denoising procedure carried out with the Physio  Toolbox27 were also added. 
These twenty-six noise regressors included the components resulting from a Principal Component Analysis 
(PCA) on the segmentation of “noise ROIs” (12 for white matter and 12 for CSF) and the corresponding two 
average values. Finally, there was one constant term per run (one in the voice localizer, four in the identifica-
tion task). Voices, button press for the identification task as well as sound regressors for the voice localizer task 
were obtained by convolving boxcar functions representing the onsets and durations of stimulation blocks with 
the canonical hemodynamic response function (HRF). Before model estimation, each voxel’s time course was 
filtered through a high-pass filter at 128 s and auto-correlation was modelled using an auto-regressive matrix 
of order 1. After model estimation, the contrast between the three speakers’ voices and baseline was computed 
for the identification task and the contrasts between sound and baseline as well as between vocal or non-vocal 
stimuli and baseline for the voice localizer. To look at group results, the images of the first level contrasts of all 39 
subjects were inserted in one-sample t-tests to assess where BOLD signal change was significantly different from 
zero (p < 0.05, corrected for family-wise error (FWE) at the voxel level and p < 0.001 uncorrected for multiple 
comparisons to build a region of interest for MVPA analysis from voice localizer). Where of interest, significant 
clusters were then anatomically labelled according to the SPM Anatomy  toolbox28.

MVPA searchlight analysis. The GLM for the multivariate analysis of the identification task included 36 
single regressors (one per each word heard in a run) and one regressor for response (duration = 0 s). As for the 
univariate GLMs, in the multivariate model there were also six realignment parameters, twenty-six noise regres-
sors and one constant term per run. The model was estimated on non-normalized and unsmoothed images.

MVPA searchlight analysis was performed in native space images using Nilearn, a Python package that uses 
scikit-learn  library29. A whole brain searchlight was performed on single trial beta maps for each subject to map 
the classification accuracy of speaker identification by centring a spherical neighbourhood with a 12 mm radius 
(6 voxels radius, about 900 voxels per sphere) (similar to the choice of 10 mm in Correia et al.30) at each voxel 
of the subject-specific whole-brain mask and employing a linear Support Vector Machine (SVM—radial basis 
function kernel with soft margin parameter C = 1) on betas from all voxels contained in the sphere.

Since there were three classes that needed to be classified (multiclass problem), we performed a one-vs-one 
(OvO) reduction, in which the classifier learns to classify pairs of speakers in the training set (e.g. Anne vs Betty, 
Betty vs Chloe, Anne vs Chloe); then, when applying the classifier in the data set, the class receiving the high-
est number of predictions is assigned to the voxel. Since there were four runs, the cross-validation was of the 
type “leave-one-run out”, consisting in training the classifier on three runs and testing it on the remaining one.

This first step yielded one map representing the classification accuracy score per subject. Chance level (33%) 
was then subtracted from these maps, which were then normalized to the Dartel template and smoothed (Gauss-
ian smoothing kernel of 8 mm) before being inserted in a non-parametric permutation-based group analysis 
(with N permutation = 5000) (SnPM13; https ://warwi ck.ac.uk/fac/sci/stati stics /staff /acade mic-resea rch/nicho 
ls/softw are/snpm31) assessing in which regions classification accuracy was significantly higher than chance and 
correlated with behavioural performance. For a given voxel in MNI space, a distribution of accuracy values was 
generated by randomly adding or subtracting the value of each individual participant at each iteration (n = 5000, a 
common guideline is that 1000 permutations are sufficient to properly characterize the permutation distribution). 
The correct accuracy value obtained by adding all participant values is then compared to the distribution. Since 
the aim of the study was to understand in which sound-responsive regions speaker classification took place and in 
which of these regions there was a significant correlation with behavioural scores, an explicit mask of the regions 
that were significantly activated during auditory stimulation (at a liberal threshold of p < 0.001, uncorrected for 
multiple comparisons; Fig. 3) during the voice localizer task was applied to all multivariate group results. This 
analysis resulted in a group-level map of sound-responsive voxels showing significantly (p-FWE < 0.05 voxel-
level-corrected) above-chance fMRI-based identity classification accuracy.

We also performed a complementary, ‘generalization’ analysis using a ‘leave-one-word-out’ classification 
scheme. SVM classifiers were trained on data for 11 words from each speaker (33 stimuli × 4 runs) then tested 
on data for the remaining word (1 stimulus × 4 runs)—1 different word for each fold of a 12-fold cross-validation 

https://warwick.ac.uk/fac/sci/statistics/staff/academic-research/nichols/software/snpm
https://warwick.ac.uk/fac/sci/statistics/staff/academic-research/nichols/software/snpm


6

Vol:.(1234567890)

Scientific Reports |          (2021) 11:489  | https://doi.org/10.1038/s41598-020-79922-7

www.nature.com/scientificreports/

scheme. The searchlight analysis yielded no voxel with significantly (FWE-p < 0.05) above-chance accuracy at 
the group-level. We then performed a simpler region of interest (ROI) analysis in which training and testing 
was performed using fMRI data from all significant voxels of the group-level accuracy map instead of local 
spheres, yielding one accuracy value per participant. Comparison of accuracies between standard and leave-
one-word-out classification schemes was performed using a paired t-test; comparison with chance-level using 
a one-sample t-test.

Results
Behaviour. Behavioural results obtained in the laboratory and training sessions are reported in the Supple-
mentary Information file.

Identification scores obtained in the fMRI session (N = 40) are reported in Table 3 and their distribution is 
shown in Fig. 2. There was a main effect of speaker on both PC scores (F (2, 78) = 6.01, p = 0.003, η2 = 0.13) and 
reaction times (F (1.61, 62.81) = 6.23, p = 0.006, η2 = 0.14) while percentage of missing responses for different 
speakers were not significantly different (F (2,78) = 1.05, p = 0.35, η2 = 0.03) There was no main effect of run on 
PC scores (F (3, 117) = 1.60, p = 0.19, η2 = 0.04), nor on reaction times (F (2.60, 101.44) = 1. 20, p = 0.29, η2 = 0.03), 
nor on percentage of missing responses (F (3, 117) = 1.22, p = 0.30, η2 = 0.03), meaning that subjects were stable in 
their performance across the different runs. The interaction between run and speaker effects was not significant: 
the recognition rate specific for each speaker remained constant across runs (F (5.48, 213.73) = 1.14, p = 0.34, η2 = 
0.03), as well as the reaction times (F (6, 234) = 1.33, p = 0.24, η2 = 0.03) and the percentage of missing responses 
(F (6, 234) = 0.91, p = 0.50, η2 = 0.02). A post-hoc Tukey test revealed no significant differences between PC for 
Anne’s and Betty’s voices (p = 0.81), while Chloe’s voice was recognized significantly less accurately than both 
Anne’s (p = 0.004) and Betty’s voice (p = 0.02). As for reaction times, participants were significantly slower in 
recognizing Betty as compared to Anne (p = 0.006), while the other comparisons were not significant. Figure 2c 
shows the 3 speakers × 3 answers confusion matrix averaged across all runs and subjects. The diagonals of the 
matrix correspond to the values of Table 3, while off-diagonal cells indicate the pattern of errors: most errors 
consisted of confusion between Betty and Chloe.

Univariate analysis. The results of the univariate contrast voices > baseline obtained for the identification 
task show distributed activations in auditory regions as well as TVAs along the STS/STG but also in bilateral 
inferior frontal gyrus (IFG), bilateral precuneus, motor and premotor regions and bilateral cerebellum (Fig. 3 
and Table 4). As for the voice localizer, the contrast all sounds > baseline also resulted in the activation of bilateral 
auditory regions as well as prefrontal regions, while the contrast voices > non-voices highlighted bilateral TVAs 
along STS/STG (Fig. 3).

Table 3.  Behavioural results. Mean percent correct scores (PC) with relative standard deviation averaged and 
mean reaction times with relative standard deviations obtained in the fMRI session (averaged over the four 
runs).

PC identification Reaction time (s)

Anne 66.3 ± 20.0 1.2 ± 0.5

Betty 63.7 ± 16.6 1.3 ± 0.5

Chloe 56.5 ± 16.3 1.3 ± 0.4

Total 62.4 ± 16.1 1.3 ± 0.5

Figure 2.  Behavioural performance during the fMRI session. a. distribution of the scores obtained in the 
scanner (N = 40); b. mean performance across the four runs. Error bars represent 95% confidence interval. c. 
Confusion matrix of presented voices vs. answers. Colorscale indicates proportion of trials corresponding to 
each Presented voice-Answer pair. The sum of the 9 cells is 100%; random performance would be 11.11% in 
each cell; perfect performance would be 33.33% in each cell of the diagonal and zero elsewhere.
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MVPA searchlight analysis. Speaker classification accuracy by the SVM classifier was significantly higher 
than theoretical chance level (33%) for 12-mm spheres centred in voxels of multiple cortical areas, including 
left and right STG/STS, left supramarginal gyrus (SMG), right angular gyrus (AG), left IFG (triangularis) and 
left pre/post-central gyrus (Fig. 4 and Table 5). Variability of fMRI-based classification accuracy across voxels 
within selected clusters is shown in the histograms in Fig. 4. Figure 4 also includes confusion matrices yielded 
by the classifiers at each of the four locations. None of these fMRI-based confusion matrices correlated with the 
subjects’ average behavioural confusion matrix, although left IFG came close (rho = 0.52, p = 0.081 one-tailed; 
other rhos < 0.15 p > 0.35).

We next asked whether these areas would also yield above-chance classification accuracy in a more abstract 
classification scheme in which training and testing is performed on different words—the ‘generalization’  test32. 
In doing so, an SVM classifier was trained and tested in a ‘leave-one-word-out’ classification scheme, which is, 
tested on a different word based on BOLD signal from all voxels having yielded significantly (p < 0.05 FWE-
corrected) above-chance accuracy at the group-level. Classification accuracy significantly dropped compared 
to the ‘leave-one-run-out’ scheme in this more conservative test of recognition (t = 2.64, p = 0.01) but remained 
significantly above chance (Mean classification accuracy ± SD = 34.92 ± 4.34, p < 0.02).

Correlation between classifier’s and participants’ accuracy. Next we asked whether there would 
be sound-responsive regions in which fMRI-based classification accuracy would correlate with individual par-
ticipants’ speaker identification score during scanning, by means of a regression model with one covariate. This 

Figure 3.  Univariate random effects (RFX) analysis. First row: identification task, contrast voices > baseline; 
second row: localizer task, contrast sound > baseline (left) and voices > non-voices (right). All contrasts are 
shown at p < 0.05 FWE-corrected (voxel-level), extent threshold = 0  mm3. The group statistical map is here 
overlaid on an inflated render in SPM.

Table 4.  Random effects analysis for the identification task (contrast all voices > baseline) at p < 0.05 FWE-
corrected, extent threshold = 100  mm3. The 1st column of the table reports the MNI coordinates of local 
maxima (peaks separated by more than 8 mm); the 2nd column contains t-values estimating the contrast of 
interest (height threshold t (1, 38) = 6.15, p < 0.05 FWE corrected); the 3rd column reports relative cluster size 
in voxels; the 4th column contains the anatomical locations of the corresponding cluster. *Cerebellum is not 
shown in the render.

Coordinates (x y z) t Cluster size Anatomical label

58 − 4 − 6 18.04 4197 Right STG

− 58 − 6 − 2 17.08 3820 Left STG

− 30 22 2 16.64 412 Left Insula

12 − 30 − 4 16.44 5091 Parahippocampal gyrus

− 4 12 50 15.88 1981 Left middle frontal gyrus

− 36 − 18 62 14.44 3658 Left precentral gyrus (PrcG)

30 24 0 13.41 407 Insular cortex

− 28 − 60 − 24 12.17 431 Left cerebellum*

− 6 − 90 0 11.81 2109 Left calcarine gyrus

42 18 24 10.23 259 Right IFG (triangularis)

− 40 6 28 9.89 564 Left IFG (opercularis)

38 − 12 62 8.95 238 Right PrcG
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analysis performed across the 4 runs resulted in significant correlations (p-FWE corrected at voxel-level < 0.05, 
extent threshold = 10  mm3; Fig. 5) in left IFG (x, y, z: -40, 22, 8; t (1, 37) = 5.08; cluster size = 23) and left tempo-
ral pole (x, y, z: -50, 14, -18; t (1, 37) = 4.94; cluster size = 21), including voxels belonging to the group-specific 
TVAs (see green dashed contour in Fig. 5). However confusion matrices derived from fMRI-based categorisa-
tion correlated only weakly with the behavioural confusion matrix (Left temporal pole: rho = 0.167; one-tailed 
p-value = 0.326 n.s.; Left Inferior prefrontal gyrus: rho = 0.233 p = 0.266 n.s.).

Discussion
This study was aimed at clarifying the cerebral correlates of familiar speaker recognition (as opposed to unfa-
miliar speaker discrimination) as well as the link between behavioural and neural individual differences in voice 
perception processes. MVPA methods were applied to fMRI data acquired during a speaker identification task 
in a sample of 39 subjects previously selected on the basis of their widely distributed performance level at that 
same task. The results showed that a network of regions including bilateral TVAs and parietal regions (SMG) and 
left frontal and prefrontal regions yielded significantly above-chance speaker classification accuracy scores as 

Figure 4.  Maps of significant group-averaged above-chance speaker classificationaccuracy in sound sensitive 
regions. Upper row: in green, region of interest (ROI) used as explicit mask (voxels showing significant higher 
activity for sounds as compared to baseline in the voice localizer task at p < 0.001 uncorrected for multiple 
comparisons). Below: results of the group-level permutation-based random effects analysis showing the regions 
in which classification accuracy was significantly higher than chance (p-FWE < 0.05 voxel-level-corrected) in the 
region of interest. Green dashed contours indicate TVAs obtained in the sample (V > NV). The group statistical 
map is here overlaid on an inflated render in SPM and shown at uncorrected level (p < 0.00002) for illustration 
purposes. The histograms show the distribution of speaker classification accuracy scores across all voxels, for the 
clusters with more than 200 voxels. Green vertical lines represent median classification accuracy scores across 
voxels. Matrices represent averaged confusion matrices yielded by the classifiers at each cerebral location, with 
same convention as the behavioural confusion matrix of Fig. 2c.
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measured through a searchlight MVPA analysis. Interestingly, subjects showing higher fMRI-based classification 
accuracy within left anterior STG and IFG also obtained higher scores at the behavioural speaker identification 
task, as reflected by a significantly positive correlation  (R2 = [0.41 0.45]).

An extended network for processing speaker identity. FMRI-based speaker classification accuracy 
was significantly higher than chance in clusters along bilateral STG/STS and parietal regions, and left prefron-
tal cortex. “Voice patches” are regions along the STS/STG (anterior to posterior) well known to be involved in 
processing vocal stimuli, both during voice perception and speaker identification  tasks10,32–35. Here, we demon-
strated that the “voice patches” specific to our analysis do not only show preferential activity for vocal than non-
vocal sounds but they also contain information allowing significantly above-chance speaker identity classifica-
tion by the SVM. The largest cluster showing significant speaker classification accuracy was the anterior/middle 
portion of the right STG/STS, a region that consistently showed sensitivity to speaker  identity36–39.

Interestingly, regions leading to above-chance fMRI-based speaker classification were also observed in left 
frontal cortex (IFG), left post-central gyrus and bilateral parietal regions (SMG/AG). To our knowledge, this 
is the first study reporting the involvement of extra-temporal regions in a speaker classification task involving 
overt motor responses, as revealed by MVPA. Bonte et al.10 previously employed MVPA to unravel the regions 
classifying speaker identity and speech content, but their analysis was limited to the superior temporal cortex. 

Table 5.  Non-parametric random-effects analysis assessing fMRI-based SVM speaker classification accuracy 
at p < 0.05 FWE-corrected, extent threshold = 20  mm3. The 1st column of the table reports the MNI coordinates 
of local maxima (peaks separated by more than 8 mm); the 2nd column contains t-values assessing that 
classification accuracy scores across subjects was higher than 33% (height threshold t (1, 36) = 4, p < 0.05 FWE 
voxel-size corrected); the 3rd column reports relative cluster size; the 4th column contains the anatomical 
location of the clusters.

Coordinates (x y z) t Cluster size Anatomical label

− 46 − 36 48 7.67 94 Left inferior parietal lobule (IPL)/supramarginal gyrus (SMG)

34 − 56 52 7.30 233 Right superior parietal lobule/angular gyrus

− 48 − 14 50 7.27 92 Left postcentral gyrus

− 58 − 12 4 7.23 1809 Left STG

58 − 10 − 2 6.99 2591 Right STG

− 42 20 24 6.42 249 Left IFG (triangularis)

Figure 5.  Correlation of speaker classification accuracy with individual speaker recognition scores. 
Co-variation of speaker classification accuracy with identification scores in voice sensitive regions was 
computed in a permutation-based regression model with one covariate.  R2 = coefficient of determination of 
Spearman correlation coefficient. Confusion matrices are sown with the same convention as in Fig. 2c. Green 
dashed lines indicate TVAs obtained in the sample (V > NV). The group statistical map at an uncorrected 
threshold (p < 0.001) is here overlaid on an inflated render in SPM for illustration purposes.
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Here, the explicit mask used in the MVPA analysis took into account also voxels in frontal and parietal cortices, 
activated by contrasting sound to baseline in the voice localizer task.

Even if an uncorrected threshold was used to build this mask, IFG and PrcG previously showed sensitivity 
to voices at a stricter threshold during a block-design voice localizer paradigm in a larger cohort of subjects 
(N = 92), and they have been referred to as “frontal voice areas” (FVAs)40. In this study we showed that a portion 
of the left IFG which was less than 8 mm apart from the middle left FVA, significantly classified speaker identity. 
Left IFG seems also to be implicated in sound  learning41, tonal  rehearsal42 and in processing phonetic structure 
of  languages43,44. Hence, significant speaker identity classification accuracy could mirror phonological and mne-
monic rehearsal of voices (delivered as verbal stimuli). According to the dual-stream model for auditory language 
processing, left IFG triangularis belongs indeed to the dorsal stream, connecting STC to prefrontal regions and 
sustaining articulatory-based speech coding rather than sound-to-meaning  coding45,46.

Motor and somatosensory regions in the pre and post-central gyrus sustain speech production and vocal 
 imitation47,48 but they have also been linked to neural sensitivity to  voices40 and, more generally, to speech 
 perception30,49–52. In our study, the cluster showing significant speaker classification accuracy at the border 
between pre and post central gyrus was located approximately where the posterior frontal voice area was observed 
in Aglieri et al.40 (Euclidean distance < 8 mm) and about 10 mm from where orofacial movements sustaining 
speech are  encoded53, and could for instance mirror mental rehearsal of articulatory features associated to the 
words being heard. However, since subjects’ choice was performed through button press, it cannot be excluded 
that significant classification accuracy in this region reflects, to some extent, one-to-one mapping between 
speakers’ voice and finger tapping. Indeed, the present study did not aim to disentangle motor from auditory 
components of the speaker recognition task by separating in time auditory stimulus from motor response, or by 
using a controlled task requiring similar finger responses without speaker recognition. So the cortical regions 
highlighted by our analyses outside of auditory cortex probably do not represent a purely auditory, abstract 
representation of speaker identity but more likely a mixture of the auditory and motor components of the task 
to different unknown degrees.

The involvement of bilateral SMG in speaker classification seems to be in line with the observation of impaired 
voice identity recognition associated to lesions to right inferior parietal lobule/SMG54. Our finding of above-
chance speaker classification accuracy in right SMG seems hence to confirm the importance of this region in 
discriminating between different voices. According to the current results, speaker classification accuracy was 
significantly above-chance also in left SMG/AG, a region involved in memorizing and retaining  pitch55–58. Hence, 
it could be hypothesized that during the current task, left SMG/AG carried out speaker classification based on 
acoustical cues such as F0. However, further studies should clarify which acoustical cue drives such finding.

Behavioural and neural differences in speaker recognition process. The fMRI studies that previ-
ously investigated the relationship between behavioural and neural inter-individual variability in voice recogni-
tion abilities employed different experimental paradigms, yielding contrasting  results8–10,59. Watson et al.59 found 
for instance that unfamiliar voice recognition abilities correlated with sensitivity to undifferentiated sounds 
in right STG/STS but not with specific sensitivity to voices (as compared to non-vocal sounds). Andics et al.8 
observed that BOLD activity related to identity processing during an fMRI task positively correlated with iden-
tification performance for previously learned voices in different regions: bilateral STS, left amygdala and right 
temporal pole. In Schelinski et al.9, the ability of healthy participants at recognizing speakers’ voices learned 
through the experiment correlated with BOLD signal in right STG during performance of the task. Bonte et al.10 
found that classifier’s accuracy in discriminating between three speakers within left mid/posterior STS/STG 
increased with scores obtained at speaker identification. Our results are in line with this last study: higher voice 
identification abilities were associated with higher fMRI-based classification accuracy in left temporal pole. 
According to recent models of voice  recognition60, the anterior temporal pole is part of the extended system for 
voice processing where information about known individuals, gathered through different perceptual modalities, 
could be contained. Even if the voices presented in the current study were not personally familiar to the subjects 
nor they belonged to celebrities, they were learned through different sessions, which probably allowed building 
an internal representation of the three speakers.

Importantly, fMRI-based speaker classification accuracy in left IFG also correlated with behavioural scores, 
explaining nearly half the variance  (R2 = 0.45) in identification scores across participants. The highest classifica-
tion accuracy score was observed in left IFG opercularis, identified as the middle frontal voice area in Aglieri 
et al.40. That region was actually the only one in which the correlation between the behavioural and fMRI-based 
confusion matrices approached significance, suggesting it hosts a representation of speaker identity closer to 
behavioural outcome than in temporal regions. This region, together with IFG triangularis, which showed sig-
nificant fMRI-based classification accuracy, has a well-known role in speech  processing61,62. IFG seems to have 
a role in higher-level identity processing: it is involved in face  processing63 but also in cross-modal identity 
 processing64. As put forward by Maguinness et al.65, the IFG, together with anterior temporal pole, could consti-
tute the extended neural network of voice identity recognition; hence, the observation of a significant correlation 
between fMRI-based classification accuracy in voxels of this region and speaker identification scores supports the 
idea that inter-individual differences in voice recognition abilities could become evident in higher-level regions of 
the voice processing system, that possibly exert a top-down influence on auditory regions in the temporal cortex.

For the first time, we demonstrate that speaker classification accuracy within frontal regions can be related 
to behavioural differences in an online speaker identification task, at least when verbal stimuli are used. We 
recently reported correlations between behaviour and functional connectivity during a passive voice perception 
task, mostly between right frontal and temporal  regions40. On the contrary, all correlations here observed were 
left-lateralized, as in Bonte et al.10. Even if the left hemisphere has been more often related to speech-related 
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cues processing and right one to vocal  processing66–68, individual differences in speaker identification are tightly 
related to the sensitivity to certain phonetic aspects of voices, such as formants, phonetic units dependent on 
speakers’ vocal tracts. For instance, Von Kriegstein et al.69 observed that activation of posterior portion of the 
left STS/STG was associated to both speech comprehension and changes in vocal tract parameters. To further 
support the importance of speech-related cues in discriminating the different speakers in the current study, it is 
worth reporting that first formant (F1) seems to highly contribute in discriminating female voices, in addition 
to fundamental frequency (F0)12. Furthermore, as reported by some subjects in the debriefing questionnaire, the 
way of speaking of the three speakers (e.g. rapidity, accent, linguistic prosody) as well as the manner of articula-
tion, influenced their response. Hence, individual differences observed at this speaker identification task could 
depend on sensitivity to certain linguistic cues that are ecologically relevant for “telling speakers together and 
apart”70, in particular when F0 is particularly similar such as in the case of Betty’s and Chloe’s voices (see Sup-
plementary Information).

However, even if we missed to observe a brain-behaviour correlation in right temporal regions, where pitch 
encoding is considered to take  place68, it can be hypothesized that F0 was also an important acoustical cue for 
speakers’ recognition as indirectly demonstrated by the fact that Anne’s voice, whose F0 was the most different 
from the Betty’s Chloe’s, was the easiest one to recognize—and that subjects judged as more difficult discriminat-
ing Betty’s and Chloe’s voices (see Supplementary Information). Further studies could clarify which acoustical 
cues drive most individual differences in speaker recognition abilities and their neural correlates.
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