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Introduction
• Time-frequency analysis of multicomponent signals (MCS).
• MCS in real life:

• The SynchroSqueezed Transform (SST) [1] has two purposes:

– sharpen the time-frequency (TF) representation given by Short-Time Fourier Transform (STFT)
– reconstruct automatically the modes making up the signal.

• The goal of this research: put forward a generalization of SST using a new local estimate of instantaneous
frequency (IF)=⇒ achieve a highly concentrated TF representation for a larger class of MCSs + reconstruct
their modes with a high accuracy.

Multicomponent signal (MCS)
• Superposition of AM - FM modes: f(t) =

K
∑

k=1

fk(t) with fk(t) = Ak(t)e
i2πφk(t), for K ∈ N,

Ak(t) > 0, φ′k(t) > 0 and φ′k+1(t) > φ′k(t) for ∀t.
• Hypothesis: all fks are well separated in fre-
quency, i.e. |φ′k+1(t)− φ′k(t)| ≥ 2∆ for ∀t.

STFT
• Fourier transform (FT) of a signal f ∈ L1(R):
f̂(η) =

∫

R
f(t)e−i2πηtdt.

• A signal f ∈ L1(R) and a window g ∈ S(R):

V g
f (t, η) =

∫

R

f(τ)g∗(τ − t)e−2iπη(τ−t)dτ.

Reassignment methods
• Reassignment operators:

– Local group delay (GD):

τ̂f (t, η) = t−
1

2π
∂η

{

arg(V g
f (t, η))

}

.
– Local instantaneous frequency:

η̂f (t, η) =
1

2π
∂t

{

arg(V g
f (t, η))

}

• Standard reassignment (RM):

– Oblique mapping: (t, η) 7→ (τ̂f , η̂f ).
– Operator:

Rg
f (t, ω) =

∫ ∫

R2

|V g
f (τ, η)|2

× δ (ω − ω̂f (τ, η)) δ (t− τ̂f (τ, η)) dηdτ.
– Ideal TF representation of linear chirps.
– Non reconstruction.

• SST:

– Vertical mapping: (t, η) 7→ (t, η̂f ).
– Operator:

T g
f (t, ω) =

1

g∗(0)

∫

∞

0

V g
f (t, η)δ (ω − ω̂f (t, η)) dη.

– Ideal TF representation of pure waves.
– Reconstruction.

Toward to high-order SST (SSTN)

• Let f ∈ L2(R), frequency modulation operators q̃
[p,N ]
η,f of φ(p)(t)/(p− 1)! for p = 2, 3, 4 and N = 4 are:

q̃
[4,4]
η,f = G4

(

V t0...6g
f , V t0...3g′

f

)

,

q̃
[3,4]
η,f = G3

(

V t0...4g
f , V t0...2g′

f

)

− q̃
[4,4]
η,f G3,4

(

V t0...5g
f

)

,

q̃
[2,4]
η,f = G2

(

V t0...2g
f , V t0...1g′

f

)

− q̃
[3,4]
η,f G2,3

(

V t0...3g
f

)

− q̃
[4,4]
η,f G2,4

(

V t0...4g
f

)

,

where Gp

(

V t0...mg
f , V t0...ng′

f

)

is a function of V tlg
f for l = 0, . . . ,m and V tlg′

f for l = 0, . . . , n while

Gp,j

(

V t0...mg
f

)

is associated with coefficient q̃
[j,N ]
η,f in the computation of q̃

[p,N ]
η,f for p 6= j.

• IF estimate of order 4 is:

ω̃
[4]
η,f (t, η) = ω̃f (t, η) + q̃

[2,4]
η,f (t, η) (−x2,1(t, η)) + q̃

[3,4]
η,f (t, η) (−x3,1(t, η)) + q̃

[4,4]
η,f (t, η) (−x4,1(t, η)) .

– Exact IF estimate for a polynomial chirp of order 4.
– ω̃

[2]
η,f is obtained by neglecting q̃

[3,4]
η,f and q̃

[4,4]
η,f .

• Synchrosqueezing operator of order N (SSTN) is:

T g
N,f (t, ω) =

1

g∗(0)

∫

∞

0

V g
f (t, η)δ

(

ω − ω̂
[N ]
η,f (t, η)

)

dη.

Numerical results

Conclusion
• SSTN: a powerful tool for analysis of MCS con-
taining very strongly modulated AM-FM modes.
• Combination of a sharp representation (like re-
assignment) and a reconstruction (like classical
ridge analysis)
• An interesting application on gravitational-wave
signal.

Current and future works
• Theoretical analysis of SSTN when applied to
noisy signals and when the type of noise is non
Gaussian.
• Extension to 2 or 3 dimensions (with monogenic
SST).
• More applications for real-life signals (detection,
monitoring, etc.).
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