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In this paper, we identify various forms of geometric work carried out by student teachers who
were  asked  to  perform  a  geometric  task  for  the  estimation  of  a  land  area.  The  theory  of
Mathematical Working Spaces is used to analyze and characterize the work produced. This study
provides evidence that students developed forms of geometric work that are compliant with at least
two distinct geometric paradigms, one characterized by the utilization of measuring and drawing
tools, and the other by a property-based discourse on proof. Significantly,  a sizable number of
students  also  developed  work  forms  that  do  not  correspond  to  any  geometrical  paradigm.  A
broader purpose of this paper is to highlight three criteria born by the theory and shown to be
useful  for  the  description  and  evaluation  of  geometric  work:  compliance,  completeness,  and
correctness.

Keywords: Geometrical paradigms, Teachers training, Mathematical Working Spaces, Geometry
training, geometric work form.

1. A study of how pre-service teachers practice geometric work
This study is concerned with the mathematical and didactic knowledge that future teachers should
have in order to teach geometry to their students. It centers on student teachers’ geometric work and
expands on research begun earlier (Houdement & Kuzniak, 1999; Kuzniak & Rauscher, 2011). In
particular, Kuzniak and Rauscher (2011) proposed a classification of the solutions given by pre-
service teachers to a geometry task. That study examined the difficulties that future primary school
teachers encountered teaching geometry, often resulting from a deficient or dated knowledge of the
field. 

On-going  research  on  mathematical  and  didactic  knowledge  for  teacher  training  builds  on
Shulman's  work (1986) that  introduced the notion of  pedagogical  content  knowledge (PCK) to
complement subject content knowledge. Based on this idea, various refinements have been made
that delineate knowledge directly relevant in the teaching of mathematics. One of the most notable
is Ball’s proposal (Hill, Ball, & Schilling, 2008), developed around the notions of knowledge of
contents  and  students  (KCS)  and  knowledge  of  content  and  teaching  (KCT)  to  organize
mathematical knowledge for teaching (MKT). 

In  the  particular  case  of  geometry,  studies  have  exposed  the  many  difficulties  encountered  by
students.  Some studies,  using Van Hiele’s levels,  differentiate  profiles  in geometry thinking by
students (Mayberry, 1983; Guttierrez,  Jaime, & Fortuny, 1991). Without denying the interest of
these  studies,  we  have  already  criticized  this  approach  (Rauscher  &  Kuzniak,  2005),  which
overlooks the fact that the students we are discussing had already followed the entire curriculum
and had on occasion demonstrated skills far superior to those of their current Van Hiele’s level. We
agree with Swafford, Jones, and Thornton (1997, p. 481) who conclude their study by emphasizing
that Van Hiele levels have low reliability for adults who have been away from learning for years
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and whose performance is sensitive to knowledge recall, which is exactly the case for our students.
To overcome these criticisms, Manizade and Martinovic (2018) combine Van Hiele's levels and
PCK  and  SMK  (Spezialized  Mathematical  Knowledge),  which  leads  them  to  propose  student
profiles based on their PCK and their understanding of geometry. In the same vein, in a study with
content  closer  ours,  Chinnappan,  White,  and  Trenholm  (2018,  p.  145)  consider  construction
problems and conclude with these suggestions that we share: 

Our analysis suggests future research needs to consider (a) the particular characteristics of the
discipline of geometry and (b) the developmental knowledge trajectories of teachers of geometry
in order to better understand how teachers’ SMK influences and [is] influenced by PCK.

In a distinct area of research on geometry teaching, several studies have also focused on the use of
drawing tools, considering dynamic geometry software, and have shown how a teacher’s SMK is
essential  to managing effectively geometry teaching situations in all  their  complexity (Laborde,
Kynigos, Hollebrands, & Straesser, 2006).

In this context of on-going debates and high level of complexity of the subject matter, we intend to
contribute  to  a  better  understanding  of  geometry  teaching  training  by  focusing  the  study  on
geometric work in an educational context. Specifically, our objective is to identify the geometric
work forms that student teachers actually produce. We consider it an essential first step before being
eventually able to guide students' work and enable them to be more effective as geometry teachers.
In this study, a geometric task on the estimation of the area of a land parcel is assigned to student
teachers. The analysis of their geometric work is based on a previously used research framework
(Kuzniak & Rauscher, 2011) which has significantly evolved towards what is now referred to as the
theory  of  Mathematical  Working  Spaces  (MWS)  (Kuzniak,  Tanguay,  &  Elia,  2016).  More
generally, this paper also purports to highlight our analysis method and make explicit some criteria
for the description and evaluation of the geometric work produced by students.

2. Identifying and understanding the mathematical work through the lens of the MWS theory
The theory  of  Mathematical  Working Spaces  is  primarily  concerned  with  the  interpretation  of
mathematical work developed during the execution of mathematical tasks by students or teachers in
a specific educational setting (Kuzniak, Tanguay, & Elia, 2016).

2.1 On mathematical work
In the  theory,  “mathematical  work” must  be understood as  a  on-going production  process  that
combines syntactic and semantic elements to generate statements and practices applying to tasks at
hand. Mathematical work implies consideration of three aspects of its execution:

 The goal of work. This attribute helps us distinguish work from a simple activity. This is
done  by assigning  a  purpose  to  an  action,  clarifying  the  stakes  associated  with  it,  and
inscribing it in the long term by showing its  general relevance.  In this  study, the stakes
associated with the pursuit of that work are specifically mathematical. 

 Processes  of  the  work.  These  are  related  to  the  procedures  and  constraints  of  the
implementation on given tasks. The appropriation and the respect of the rules of functioning
are important points for the observation of the work.

 Results of the work. They should be valid and correct within the mathematical domain under
consideration.
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We will pay particular attention to two aspects: process and result. Two of the main constructs of
the  theory,  MWSs  and  geometrical  paradigms,  are  invoked  to  set  forth  criteria  on  which  the
characterization of the forms of work carried out by the students will be based.

2.2 Mathematical Working Spaces
A Mathematical Working Space  (Kuzniak, Tanguay, & Elia, 2016) refers to an abstract structure
organized in such a way as to enable individuals to conduct mathematical work operations with
problems in a specific domain (geometry, probability, etc.). In the case of school mathematics, these
individuals are generally not experts but students, more or less experienced.

Both the epistemological and cognitive facets of problem solving in mathematics are taken into
account to grasp the specificity of students’ performance. These facets are articulated in the MWS
diagram into two planes: an epistemological plane directly associated with the mathematical content
of the field of study (here geometry), and a cognitive plane related to the thinking of individuals
solving mathematical tasks.

Three components in interaction are characterized for the purpose of describing the work in its
epistemological  dimension,  organized  according  to  specifically  mathematical  criteria:  a  set  of
concrete  and tangible  objects,  referred to  as  representamen;  a set  of  artifacts,  such as drawing
instruments or software; and, a theoretical referential based on definitions, properties and theorems.

In close relation to the components of the epistemological level, three cognitive processes are taken
into account: visualization, which addresses the deciphering and interpreting of signs; construction,
which  refers  to  the  mode  of  reasoning  and  is  contingent  upon  the  artifacts  utilized  and  the
associated techniques; and proving, which is conveyed through validation processes and based on a
theoretical referential. 

Bridging the epistemological plane and the cognitive plane is part of mathematical work according
our perspective and can be characterized as a generating process (in the sense of generating specific
forms of reasoning, decision making,  etc.)  along three geneses,  i.e.,  semiotic,  instrumental,  and
discursive, corresponding to the components constitutive of the theory.

Fig. 1: The MWS diagram

In order to understand these intricate interrelationships, we use a diagram (Fig. 2) to identify the
work forms in terms of the type of generating processes they rely on. The diagram identifies three
vertical planes that correspond to the dimensions along which geometric work can unfolds, thus
allowing analysts to distinguish between semiotic-instrumental [Sem-Ins], instrumental-discursive
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[Ins-Dis], and semiotic-discursive [Sem-Dis] articulations (Coutat & Richard, 2011). The use of
these different vertical planes helps to specify the manner in which geometric work is carried out. 

Fig. 2: The three vertical planes in the MWS
The contribution of each genesis to the work process can be assessed by studying how certain
objects  of  the  epistemological  plane  operate  as  tools  that  will  be  semiotic,  technological,  or
theoretical, depending on which type of genesis of the MWS they relate to (Kuzniak, Nechache, &
Drouhard,  2016).  It  is thus possible to describe precisely the genesis  actually  mobilized by the
student.

When a single aspect of the work process, i.e. a single genesis or single vertical plane, is activated,
the work is said to be confined to one dimension or plane. Work can be confined but effective and
may remain relevant in certain cases and for certain tasks. When all the genesis MWS are in play,
work is said to be complete.  The degree of completion achieved can be used to to characterize
geometric work.

2.3 Geometrical paradigms
In geometry education, geometrical paradigms have been introduced by Houdement and Kuzniak
(1999) to clarify and organize the various and conflicting points of view prevailing in education
around  geometry.  Drawn from Kuhn (1966),  a  paradigm stands  for  the  entire  constellation  of
beliefs,  values,  techniques,  practices  shared  by  the  members  of  a  given  scientific  community.
According to Houdement and Kuzniak (1999), in an educational context, it is possible to identify
three geometrical paradigms named respectively Geometry-I, Geometry-II and Geometry-III and
we refer the reader to Kuzniak (2018) for a recent and synthetic presentation.

In what follows, we present the characteristics of geometric paradigms and the elements related to
area and area measurement that are relevant to the present research. The paradigm called Geometry-
I is concerned with the practical use of technology. In this geometry, valid assertions are generated
using arguments based upon perception, experiment, and deduction. Mechanical and experimental
proofs are acceptable and the effective area measurement of a figure is a primary consideration and
can be based on the actual constructed figure. The area estimation can also be based on a formula
and the values used for the calculation may also be obtained by a direct measurement on the figure.
This  approach  implies  a  reflection  on  the  approximation  and accuracy  of  measures  and  figure
constructions. The numbers used are mostly decimal numbers and fractions. 

The paradigm called Geometry II, whose archetype is classic Euclidean geometry,  is built  on a
model that may closely approach reality. Once the axioms are set up, proofs have to be developed
within the system of axioms to be valid.  But the process of axiomatization is not finished and
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certain notions remain intuitive, such as the concept of area, which is based on a notion of equality
not defined in the Euclidean tradition: two figures are considered to have the same area when they
have  the  same  space  content  (Hartshorne,  2000).  It  is  possible  to  verify  these  equalities  by
decomposing and reassembling the figure. It is also possible to use formulas, but these must be
justified in their generality. In general, direct measurement on the drawing is prohibited and the
numbers used are the real numbers constructible with ruler and compass.

Lastly, Geometry-III is usually not present in compulsory schooling, but it is the implicit reference
of mathematics teachers who are trained in advanced mathematics. In Geometry-III, the system of
axioms itself is disconnected from reality, but central. In the Geometry-III paradigm, the theoretical
question of area and measure of function area becomes the first issue. It follows that theoretical
bases are theorems on equi-decomposability and axioms of the measure on a set. Real numbers are
the numbers involved in this measure, which is more theoretical than practical. 

Identification of geometrical paradigms and their interplay contributes to the understanding of what
guides the work actually performed in a school setting and helps characterize the form of this work.
In the following, paradigms will be used to capture the diversity of ways of thinking and doing
exhibited by students in geometry. This will help us clarify the extent to which the work performed
complies with expectations.

2.4 Settings and issue
Our study is carried out in the context of the training of primary school (age 3 to 11) pre-service
teachers in France. From an institutional point of view, primary school teachers are now trained at
the university and must obtain a Master's degree in education.  The students participating in the
study are first-year Master’s students who are also preparing a selective competitive examination
which will allow them, after obtaining their diploma, to secure a position as school teachers for the
rest  of their  professional live,  if  they so desire.  The stakes of this  first  year are therefore very
important and the pressure that students are under is very high.

Most  of  these  students  have  graduated  in  literary  studies  and have  not  taken any mathematics
courses  after  completing  the  first  year  of  senior  high school  (age 16).  Moreover,  as  numerous
studies have shown (Section 1), they have difficulties in mathematics, especially geometry. They
are generally familiar with geometric properties and theorems, but they do not know how to use
them well because they lack sufficient mastery in this domain. 

In this  context,  students  are expected to  develop a personal geometric  work that  is  sufficiently
advanced to enable them to teach primary school pupils a geometrical content that tends towards the
Geometry-I paradigm, with figure construction and measure aided by drawings tools. Yet,  they
must be able to solve problems relevant to Geometry-II to succeed in the competitive examination.
This part depends on secondary school curriculum and it rests essentially on the mostly-mechanical
calculations and applications of the Pythagoras and Thales theorems, mainly to practice algebraic
computation techniques. Also, more emphasis is put on modeling activities. Lastly, this teaching
relies  on  triangle  and quadrilateral  properties  and area  estimation  for  the  formulation  of  some
formal  proofs  (Geometry-II)  or  the  construction  of  experimental  proofs  as  part  of  the  primary
school curriculum (Geometry-I). 
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However, the distinction between paradigms remains implicit to the extent that the French syllabus
is set up according  to class years, not geometric work forms. Typically, however, the tasks given to
them play on these two paradigms,  but that  is not explicit  and students need to articulate  both
paradigms by themselves.

In summary, our study purports to identify and characterize the geometric work forms that these
teacher students actually perform. To achieve this goal, we will observe how students tackle a task,
paying special attention to the use of tools and the form of genesis activated. The objective is to
assess the completeness of the work; the conformity of the work processes to certain paradigms that
we will specify; and finally the correctness of the results obtained. 

3. On the method of identifying the students' geometric work forms

3.1 The task given to the students and its implementation: Alphonse’s land
The task statement is given in the form of a text to be read.

Alphonse has just returned from a trip in Périgord where he saw a parcel of land in the shape of a
quadrilateral that had interested his family. He would like to estimate its area. To do this, during
his trip, he successively measured the four sides of the plot and found, approximately, 300 m,
900 m, 610 m, 440 m. 

He's having a hard time finding the area. Can you help him by showing him the method to be
followed? 

The task was implemented in two phases. The objective of the first phase was to conclude that there
was a lack of data to fix the shape of the quadrilateral. Next, information was given about the length
of one of the diagonals.

Alphonse asked a Périgord friend to help him and she sent him back only the length of one of the
diagonals: 630 m. 

The objective of the second phase was to explore the different possible shapes of the land parcel
(convex or  concave)  and  to  estimate  the  land  area  according  to  the  shape  of  the  quadrilateral
selected. 

During the first phase and after ten minutes of investigation, students were asked to reflect on their
approaches by answering two questions. Students were given five minutes to respond. 

1. If you did not have enough time to finish this part, can you briefly describe what you intended
to continue doing? 

2. What doubts or difficulties did you encounter in solving this exercise?

In posing these questions, we expected the students to explain their certainties, their doubts, and
their  difficulties  and blockages  in completing  the task.  They were then invited  to  discuss  their
solutions  and reflections  with  the  whole  group during  the  pooling  of  ideas  session.  The same
process was followed for the second phase.

In this article, we limit our report to the analysis of students' geometric work in solving Alphonse task during the first

phase, which was highly significant because almost all the students, in their search for the land area, spontaneously

added new data while failing to point out that necessary information was absent in the task statement. 
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3.2. Preview of expected task performance outcomes (A priori task analysis)
The task assigned to the students has the merit of potentially producing a wide variety of geometric
work forms because  it  is  not  linked to a  predefined instructional  situation  (Herbst,  Boileau,  &
Gürsel, 2018) such as constructing a figure, exploring a figure or doing a proof. In the  a priori
analysis, we have considered different possible procedures taking into account students’ knowledge
and institutional expectations for this level of training. This led us to consider the possible use of the
false and well-known theorem-in-action (Vergnaud, 2009) about the relationship between perimeter
and area: figures with the same perimeter have the same area (named TiA in this paper). The list of
possible procedure sequences follows:

P1.  After  reading  the  statement,  students  immediately  identify  the  lack  of  data  to  fix  the
quadrilateral shape and ask for a complement of information. Once they have the information,
they can move on to the second phase and/or give a P2a or P3 solution.

P2. Students begin with a construction of the figure to scale with drawing tools.

P2a. They succeed in constructing a quadrilateral then try, through measurement, to find
the area.

P2b. They spontaneously add data in constructing the figure and continue as in P2a.

P3. Students working freehand or with drawing tools, avoid all measurements.

P3a. They try to solve the problem by breaking up the quadrilateral into sub-figures and
notice the absence of necessary data. .

P3b. They construct several figures and find that there are several area values possible.

P4. Students resort to the theorem-in-action TiA. 

P4a. They start a P2a or P3b procedure by adding data.

P4b. They select a particular figure for their purpose, a quadrilateral as a rectangle or
square with the same perimeter from which they deduce the area.

P1 procedure can be validated  on the grounds of the property that  a quadrilateral  shape is  not
determined when only side lengths are provided. The P2 procedure is based on the quadrilateral
properties  taken directly  from the  figure  constructed  with  the  ruler  and compass.  The  work  is
compliant  with  Geometry-I  paradigm.  The  work  in  P3  procedure  conforms  with  Geometry-II
through its  rejection  of  any recourse  to  drawing tools  and the  priority  given to  the process  of
discursive genesis. As for the P4 procedure, it also seems to fit within the Geometry-II paradigm but
relies on a false theorem.

The  students  were  familiar  with  solving  problems  with  missing  data  and  warned  against  the
customary didactic contract that assumes that all data must be included in the task statement.

3.3 Data collection method
The study took place over a two-year period. Eighty-five students were enlisted at the end of the
second semester of the first year of the Master's program. The courses were given to four groups of
students by the second author and an experienced teachers' trainer, each of whom having taught to
two groups. The students carried out the task individually and were directed not to discuss their
work among themselves  and with  the teacher.  Their  written  productions  were collected  by the
teachers. 
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The classroom proceedings were taped through a voice recorder and two sessions were videotaped.
This  provided  us  with  a  record  of  the  discussions  that  took place  during  the  pooling  sessions
between the students and the teacher. All discussions were transcribed in their entirety. 

3.4 Data analysis method
The particularity of geometric work is that it is mainly a type of intellectual work that involves
significant  cognitive  activity.  Leplat  (2004)  points  out  that  since  cognitive  activities  are  not
observable, they must be inferred from visible actions.  According to this viewpoint, mathematical
actions are the real and observable traces of the subject's activity. We use cognitive analysis to
reconstruct and characterize the mathematical work performed by the students. It is based on the
collected  data  during the  resolution  of the  task.  We designed an original  data  analysis  method
inspired by Cognitive Task Analysis (CTA) (Darses 2001) and based on elements of the MWS
theory. CTA-methods are used in work psychology and have been developed for the study of the
cognitive activity of people performing complex tasks in production environment. Authors using
CTA methods emphasize the difficulties encountered both in describing the particular field in which
the  work  occurs  and  in  providing  and  developing  appropriate  analytical  tools.  In  the  field  of
mathematics, MWS theory associated with the notion of geometric paradigms provides us with a set
of appropriate tools to analyze this work.

Our analysis of geometric work forms starts with the observation of students’ performance and will
develop in three steps. The first  step is a top-down analysis  that seeks to identify the different
episodes  planned  by  the  student  to  achieve  the  prescribed  task.  In  this  view,  each  episode
corresponds to a sub-task self-prescribed by a student and includes the sequence of mathematical
actions used to solve the task. Mathematical actions are then described in terms of the cognitive and
epistemological components and processes of the MWS planes. The top-down analysis thus consists
of a “zoom in” on the students’ production in order to provide a detailed analysis in terms of MWS.
The grain size of the analysis depends on the grade of students who are performing the task. For
example, for primary school student-teachers, it is sufficient to consider mathematical actions such
as "drawing the height of a triangle ABC from B". Whereas, for primary school students, it may be
useful to specify the action "place the right angle of square on the line AC". Indeed, at this level of
education, this process is not necessarily routinized and mastered.

Starting from the results given by the top-down analysis, the second step is a bottom-up analysis
conducted to  provide a  synthetic  overview of the episodes  planned by a  student,  and infer  the
logical organization of his or her mathematical actions and thus uncover his or her cognitive path.
The analysis seeks to identify how the work generating processes interact within the MWS diagram.
This then allows us to understand what guided the student in the performance of the task.

In  a  third  step,  we  use  observations  from our  analyses  to  examine  the  extent  to  which  work
processes  are  compliant  with all  or  part  of  one of  the  geometrical  paradigms.  We furthermore
determine  whether  the work is  complete  and the degree to which it  is  confined to a particular
genesis  or  a  particular  plane. Finally,  we  evaluate  whether  the  results  given  by  a  student  are
mathematically  correct  or not.  The analysis  ends with a characterization of the geometric  work
forms that we have observed.
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4. The different forms of geometric work
We identified five forms of geometric work. Twenty-one student works out of 85 were set aside
because of manifest  breakdowns as a result of blockages and inconsistencies (such as using the
triangle area formula to evaluate the area of a quadrilateral or calculating the perimeter instead of
the area).

Five forms of work were identified, each corresponding to a type of geometric work encountered in
solving the task; they are:  Dissector, Surveyor, Explorer,  Constructor,  and Calculator.  They are
derived from an assessment of the  completeness of the work, its  compliance with a geometrical
paradigm or interacting paradigms, and the correctness of the results achieved from a mathematical
viewpoint. These categories are not intended as statements on a student’s profile. 

In what follows, we describe the five forms of work by reporting the actions actually undertaken by
students in connection with each of these forms. The examples given may have been produced by
different students.

4.1 Dissectors’ geometric work 
The solving method introduced by dissectors students (16 out 85) is based on the decomposition of
the figure into sub-figures for which they know the formula for area calculation. It is close to the P3
procedure of our a priori analysis. Of the 16 students, eight propose a triangulation and the other
eight decompositions combining triangles and quadrilaterals.

Two episodes  were  identified  through the  top-down analysis.  In  Episode-1,  the  student  uses  a
freehand drawing (Action-1) to dissect the quadrilateral (representamen) into simple sub-figures for
which the formula (theoretical referential) is known (Action-2).

Action-1.  Freehand  drawing  of  a
quadrilateral 

Action-2.  Dissection  of the quadrilateral  into relevant
sub-figures. 

Pauline:  He  could  try  to  decompose  the  figure  into
figures  of  which  we  can  calculate  the  area  (square,
rectangle, right triangle). 

Table 1. Dissectors' work top-down analysis – Episode-1

In Episode-2, students ponder which theoretical tools could help them determine what data will be
needed to calculate  the area of the figure.  To that  end, some at  once consider  resorting to the
possible application of the Pythagoras theorem or using formulas to calculate the area of the sub-
figures  obtained  after  dissection  (Action-3).  In  connection  with  this  action  and  based  on  the
decomposition  obtained,  some students  reach  the  conclusion  that  they  need  numerical  data  on
heights in order to progress towards a solution (Action-4). 
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Action-3.  Exploration  of  the  theoretical
referential to find the area.

Corine: Determine the area of the "square" and the area of
the  two  triangles  that  form  the  quadrilateral  using
Pythagoras or a 2 unknown equation.

Action-4. Identifying the data necessary to do the
calculations.
Pauline: He can separate his land lot into two triangles ABD
and BCD and estimate the area of the two triangles but he
needs the heights. 

Table 2. Dissectors' work top-down analysis – Episode-2 
Bottom-up analysis. In Episode-1, students project on the representamen various visualizations of
the decomposition of the quadrilateral into sub-figures with known area formulas. Thus the semiotic
genesis is supported by the properties. In the second episode,  visualization is associated with a
discursive exploration on possible use of Pythagoras theorem to calculate some of the values needed
to achieve the task. Discursive genesis is thus related to visualization of well-known sub-figures. 

Table 3. Dissectors' work - Bottom-up analysis
In  the  end,  the  efforts  by  students  did  not  result  in  a  successful  outcome  and  led  them to  a
predictable  dead-end because  some information  is  actually  missing.  However,  students  did  not
explicitly point out the lack of sufficient data. Only one student, Manon, expressed the need for
supplementary data.

Manon: In order to calculate the area of the land, Alphonse would have to measure one of its
diagonals. Thus, he could calculate the area of the two triangles. 

When the professor probed Manon about her response to the problem, she said she had a flash of
inspiration:

Manon: After that, I had a flash of inspiration. I thought that Alphonse had to measure one of the
two diagonals of the land, and so he has two triangles and adds them both. 

The use of the word inspiration indicates that the student was not immediately aware that necessary
information was missing. That realization eventually occurred within the 10-minute time period
granted to solve the problem.

In conclusion, the work is compliant with the  Geometry-II paradigm, in which construction and
measuring  tools  are  prohibited  as  means  of  proof.  But,  for  these  students, this  compliance  to
Geometry-II paradigm inhibits the heuristic potential that constructions with drawing tools allow for
exploring the existence properties of figures and their work is confined in the semiotic-discursive
plane (see Table 3). It  follows that  the work can be considered correct  even though it  remains
unfinished since the reason for the blockage,  i.e. the absence of sufficient data,  was not clearly
understood or explicitly formulated.
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4.2 Surveyors’ geometric work 
The method adopted by Surveyors (6 out to 85) follows closely procedure P2. It is based on area
calculations with some measurements taken from a drawing constructed to scale.

After top-down analysis, two episodes are identified. In Episode-1 (Table 5), students first draw
freehand a convex quadrilateral (representamen) (Action-1) and adding an assumption on the shape
of the quadrilateral. This assumption (Action-2) is formulated and then a particular quadrilateral is
constructed  to  scale  using  drawing  tools  (Action-3).  For  some  students,  the  construction  of  a
specific quadrilateral is justified by the theorem in action TiA that Ivana reformulates in this way
during the pooling session: “The shape of the land does not matter since the area remains the same
because the sides have the same measures”.

Action-1.  Freehand drawing

of a quadrilateral 

Action-2. Expression of a 
assumption for the construction of a 
particular figure.
Ivana: In fact I have constructed the
figure to have a right angle, and so I
could calculate  the area  of  the  first
triangle  by  using  Pythagoras
theorem.

Action-3. Construction of the figure with 
drawing tools.

Table 4. Surveyors' work - Top-down analysis - Episode-1

In Episode-2, the quadrilateral  area is calculated with certain measurements taken on the figure
(representamen) and other resulting from the use of a theorem. Different actions were carried out
depending on the shapes chosen by the students. For example, in the case of Ivana, we can point to
five actions described in Table 6.

Action-4.  Application  of  the  triangle  area  formula  to
calculate the area of the triangle ADC

Action-5:  Calculation  of  the  length  AC  by  applying  the
Pythagoras theorem in the triangle ADC 

Action-6: Drawing and measuring with a graduated ruler
the height of the triangle ABC from B.

Action-7.  Application  of  the  triangle  area  formula  for
calculating the area of triangle ABC

Action-8 (potential). Sum of areas and conversion in m²
I did not have time to finish my calculation and to convert
the result from cm2 to m2 

Table 5. Ivana's work - Top-down analysis - Episode 2 

The Episode-1 bottom-up analysis shows that instrumental and semiotic genesis are activated to
outline a particular quadrilateral according to elements of the referential such as the scale or the
shape of the quadrilateral. In Episode-2, the quadrilateral construction in relation to its visualization
may have suggested the use of the triangle area formula. This formula activates the instrumental
genesis for the calculation and measurement of the length AC and the height from B in the ABC
right triangle. This instrumental genesis is associated with a discourse on proof that justifies certain
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calculations such as that of the length of the segment [AC]) with Pythagoras theorem in the right
triangle ADC. It is also associated with the visualization for measuring and constructing the height
from B. The formula of the triangle area is a symbolic artefact that guides the students' geometric
work through the semiotic-instrumental (Actions 4 and 6) and instrumental-discursive (Action-5)
planes. 

Table 6. Logical organization of Ivana’s actions in episode-2.

In conclusion, surveyors’ geometric work form relies on an instrumental construction process that
promotes the use of drawing tools and formulas with measurement on drawings. The constructed
figure is used as a support for reasoning and proof. It is therefore compliant with the requirements
of  Geometry-I  paradigm.  Within  the  MWS  theory  (sec  2.2),  the  mathematical  work  can  be
considered to be complete since all the MWS geneses are mobilized. 

However, this geometrical work is not correct. It produces a faulty result since it is based on a
particular figure derived from contrived data and a false theorem-in-action. 

4.3 Explorers’ geometric work

In this form of geometric work (produced by 4 out of 85 students), students are looking for figures
that satisfy the required conditions, which leads them to construct several figures. The top-down
analysis identifies a single-episode with two actions. Action 1 encompasses the construction to scale
with ruler and compass (artifacts) of two quadrilaterals (representamen) that satisfied the conditions
of the statement. In Action 2, students visualize and explore the figures. Some of them conclude
that the area could take several values. 

Clothilde: For me, the quadrilateral could have several areas depending on how it is built.

Other  students  focus  on  construction  and  conclude  on  the  existence  of  several  quadrilaterals
satisfying the sides length conditions but do not refer to area.

Bottom-up analysis of the Explorers' work shows that the semiotic and instrumental geneses are
mobilized to produce drawings that allow them to explore different configurations and, for some of
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them, generate hypotheses about the areas  of the figures. These drawings seem to have a heuristic
role in the mathematical work produced. The exploration led students to contend that there may be
several areas for the same figure, but they do not justify their assertion. 

The geometric  work is  close to procedure P3b and is based on the semiotic-instrumental  plane
oriented by the discursive genesis. Compliant with Geometry-II paradigm, the work is complete
even there is a lack of explanations and references to properties.

4.4 Constructors’ geometric work 

This work (13 students) was summarized as a single episode devoted to the sole construction to
scale  of  a  quadrilateral  (representamen)  with  a  graduated  ruler  and  in  most  cases  a  compass
(artifacts)  (Action-1). The use of these tools makes it possible to adjust  the construction of the
fourth side guided by perception. The students then stop and abandon their pursuit (Action-2). 

The work of the Constructors focuses on figure construction. It unfolds in the semiotic-instrumental
[Sem-Ins] plane,  and leans  more forwards  on the instrumental  genesis  (Action-1).  In  Action-2,
students explain their blockage by their inability to provide an answer either because they do not
recognize  the  particular  shape  of  the  constructed  figure  or  because  they  do not  remember  the
formula for calculating the area of a quadrilateral. This suggests that they have tried to mobilize the
discursive dimension, without success.

In conclusion, it can be said that the work is compliant with Geometry-I paradigm and confined to
the semiotic-instrumental plane because they think that all problem resolution need to be based on a
specific figure or a formula. 

4.5 Calculators’ geometric work 
In  this  work  form that  involved  24 participants  students  developed  a  formula  or  a  calculation
diagram and then applied it to estimate the area of the land. We describe below the procedure used
by the twenty students who used a calculation diagram which enabled them to produce a result,
albeit misrepresenting the real figure.

Top-down analysis shows that the students planned the work in a single episode. They started by
constructing a trapezoid with two right angles (representamen) as union of a rectangle and a right-
angled  triangle  (Action-1).  They  calculated  the  values  for  the  rectangle  and  triangle  areas  by
applying the appropriate formulas (artifact) and reported the two values on the diagram (Action-2).
They deduced the area of the figure by summing the two values (Action-3). The diagram was used
by the students as an artifact to perform calculations using known formulas. 

Action-1.  Drawing  of  the  diagram
seen as the union of a rectangle and a
right-angled triangle

Action-2.  Calculation  of  the
areas  of  each  sub-figure  and
reporting  of  the  values  on  the
diagram. 

Action-3. Calculation of the figure 
area as the sum of the rectangle and 
triangle areas 

Table 7. Calculators' work - Top-down analysis  
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Within the bottom-up analysis, we observe that through a semiotic genesis, the right trapezoid is
considered as the union of a rectangle and a right-angled triangle (Table 7) which opens the path
towards a conversion of  the  figure into a  calculation  artifact.  The work is  then pursued in  the
instrumental genesis with a calculation and submission of the result, all carried out without any
reference  to  empirical  or  theoretical  criteria.  In  summary,  the  work starts  with  the  creation  of
artifact  on semiotic  genesis mode and is  concluded with a calculation using that artifact  in the
instrumental genesis mode. 

[Sem] → Artifact ---------------- > [Sem-Ins] 

To justify their procedure, some students explained that they constructed that figure to overcome
their blockage and answer the question. Indeed, the figure is a simple quadrilateral which comply
with the conditions on lengths inequality and for which they know how to calculate the area. As a
side comment, this work form tends to be more compliant with scholar expectations - producing a
result, waiting for external validation by the teacher – rather than with the geometrical perspective.
But, it is also possible to consider that it is confined in a the semiotic-instrumental plane where the
instrumental  genesis  is  totally  oriented  towards  a  calculation  without  any  measure  or  use  of
construction  using  drawing  tools.  In  that  sense,  it  conforms  to  Geometry  II  paradigm without
resorting to the discursive proof component.  Such interpretation may find support in the output
from the last four students who performed calculations without concern for empirical or theoretical
validation. They availed themselves of a formula for the computation of the area of a rectangle for
their calculation and transformed the initial figure into a rectangle to fit with the formula. They
obtained the area of the quadrilateral by taking the product of the averages of the opposite sides. 

Action-1. Freehand drawing of a quadrilateral Action-2. The Averages of the opposite sides

Action-3. Freehand drawing of the rectangle with the new

lengths                     

Action-4. The area of rectangle

 

Table 8. Margaux’s procedure 

They thus developed procedures close to P4 by resorting to formulas applicable after a semiotic reconfiguration of the

figure. We can also suppose an implicit use of the theorem in action TiA.

In conclusion, the work carried out could be seen as compliant to the Geometry II paradigm but it is confined to the

semiotic-instrumental  plane.  Additionally,  it  exhibits  the typical  inclination of  students  to  overcome blockages  by

falling back on calculations based on known formulas with the idea of being compliant with the traditional scholar

paradigms.
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4.6 Different geometric forms of work: A discussion
This study led us to identify five forms of geometric work, each characterized by their outcomes
assessed along three criteria: compliance of the work carried out with a given geometric paradigm;
degree of completeness; and correctness of the results achieved. 

Using these three criteria, we are able to evaluate the work actually produced by the students and to
propose a classification which we assume remains relevant beyond the particular task at hand. The
geometric  work forms of  Surveyors  and Constructors  meet  the expectations  of  the  Geometry-I
paradigm because the figure is constructed with drawing tools and serves as support for reasoning
and proof. In Surveyors’ case, work is carried out to completion through the mobilization of all the
MWS geneses.  For Constructor,  students’ work is  mainly  guided according to the instrumental
genesis mode in which it remains confined for lack of a semiotic or discursive avenue that would
enable them to push beyond the sole construction. 

The Explorers’, Dissectors' and Calculators' work forms are in compliance with the Geometry-II
paradigm. The Explorers’ work differs from Constructors by their heuristic use of constructions to
survey the variety of possible figures according to the constraints imposed. That is why their work
is viewed as compliant to the Geometry-II paradigm and complete. The Dissectors' form of work is
confined to the semiotic-discursive plane and is based on exploratory work based on decomposition
and rearrangement of figures but without the use of any drawing tools. In contrast, the working
form of Calculators is confined to the semiotic-instrumental plane and oriented towards calculations
with the creation of formulas and symbolic artifacts without any attempt to justify their statements. 

Calculators’ work form poses the problem of the exact nature of the paradigms involved in work
which concerns most of the students.  In general,  pre-service students produced geometric  work
using various methods that appear to be compliant with a given paradigm, but they also introduced
rules  and  practices  that  are  not  clearly  part  of  any  geometric  paradigms  but  rather  refer  to
expectations resulting from the academic practice of geometry. Almost all the teacher students think
that  all  the  geometric  shapes  they  are  asked  to  study must  have  some particular  outlines  and
properties.  And they  purposefully  assigned  specific  properties  to  the  quadrilateral  (right  angle,
parallel sides…). Consequently,  their work cannot be considered to be valid. This suggests that
there may be a sort of scholarly geometric paradigm which interferes with geometrical paradigms.

The geometric work forms characterization presented in this paper extends and complete the one we
were able  to  give  in  Kuzniak  and Rauscher  (2011),  which was essentially  based  on geometric
paradigms.  It  also furthers  the  a priori classification  of  Duval  (2005) which  mainly  takes  into
account the role of visualization in the type of iconic or non-iconic validation brought by junior
high school students. In his classification, Duval introduces four forms and distinguishes too forms
of  Constructors  and  Surveyors.  Our  Dissectors'  form is  close  to  what  he  calls  the  Inventors-
Tinkerers in that it relies on the search for properties with figure reconfigurations. The only form
that we have not clearly found in our present study is that of Botanists (to Duval), which is based on
the sole use of perception and is generally unproductive (Kuzniak and Rauscher, 2011). The present
study also takes into account the artifacts and numbers used in the geometric work. This is how we
have been able to highlight the categories of Explorers and Calculators. Moreover, unlike Duval's
study, our study is based on the actual work done by the students, which leads us to consider their
difficulties especially in relation to the discursive genesis as well as the possible bounces that allow
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them  to  achieve  the  task.  We  have  thus  shown  the  importance  of  the  school  paradigm  in
understanding the students' results. 

The influence of training on forms of geometric work needs also to be addressed. Kuzniak and
Rauscher (2011) shown that student’s use of the Geometry-I and Geometry-II paradigms depends
on the level of training. Pre-service teachers generally work more in Geometry I at the beginning of
their  training and in Geometry II  at  the end. Our study took place at  the end of the year after
significant reminders of properties and operating rules of Geometry-II. For us, this does not alter the
forms of geometric work themselves, which we consider stable, while the students' personal work is
prone to change during the training process. One of the major teaching objectives is precisely to
push this  personal  work  towards  forms  of  geometric  work  in  affordance  with  the  institutional
expectations. 

5. Conclusion and perspectives
This study identified and described five geometric work forms derived from MWS theory. It further
outlined three criteria for evaluating the work actually produced in each of these forms.

Compliance by a  work process to a  certain  paradigm indicates  the accordance  of  its  rules and
practices, which in this study are specific to Geometry-I or Geometry-II. This is the case for the role
and place of the figure, which may or may not serve as support for measurement or the exploration
of the different solutions. 

Completeness of the mathematical work requires mobilization of all forms of geneses in the MWS
and the associated vertical planes to avoid certain blockages and facilitate a rebound of the work.
For Dissectors, that would be achieved through the use of tools, such as drawing tools, to perform a
heuristic exploration work.

Correctness of the work ensures the mathematical accuracy of results not based on false theorems
in action or wrong constructions methods. However, some academic practices may occasionally
give  rise  to  a  “classroom”  paradigm  that  violates  certain  mathematics  rules  and  makes  the
mathematical work incorrect. 

Within the MWS theory, examination of these characteristics is based on a cognitive task analysis
methodology divided into three steps. Top-down analysis step reveals the sequence of episodes and
actions  undertaken  by  students,  while  bottom-up  analysis  seeks  to  unveil  the  operating  logic
developed during the realization of the task. This analysis is based on the different tools of MWS
theory, particularly its diagram. The third step start with the results from the top-down and bottom-
up analyses and characterizes the work according the three evaluation criteria. 

Beyond the field of geometry, we think that these three criteria, articulated with the tools of the
MWS theory and our method of analysis, would be useful to evaluate work produced by students in
other mathematical domains. Such studies would also be able to clarify the effect of the choice of
particular tasks on mathematical work form in various  institutional contexts. 

Furthermore,  we found that  the students produce geometric  work whose methods appear  to  be
creative and various. Yet,  their results are often wrong, which raises the question of the validity of
this work from a mathematical perspective. This suggests that students have developed practices
that conflict with the knowledge expected at this level of training.   How do we ensure that the
student are able to verify whether the work he or she produces is correct? Authors such as Balacheff
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(2013) place the notion of control system at the core of a mastered approach to geometric reasoning
based on semiotic tools, individual actions and problem classes to be solved. In the same vein,
Arzarello and Sabena (2011), also introduce the idea of control to account for the fact that students
make certain decisions about the selection and utilization of resources. According these authors, the
control  may  be  semiotic  or  theoretic  according  to  the  nature  of  the  resources  they  select  and
implement. In our case, it is possible to envisage controls that would be semiotic, technological or
theoretical depending on the type of tools of the epistemological plane used. These controls would
concern the validity of statements and adequacy of the different tools selected. 

In conclusion, it seems to us important to draw upon the results of this study and its description of
the forms of geometric work and devise methods and developments that would unlock students’
blockages and provide avenues for progress. Furthermore, it seems to us desirable to examine how
the three criteria applied in the study would be useful in assisting future teachers in examining their
work,  reflecting  on  their  mathematical  knowledge,  or  becoming  aware  of  their  shortcomings,
misconceptions, etc. This recommendation addresses the need to further provide students with the
control  means  to  master  their  geometric  work  forms  and make  them compliant,  complete  and
correct. Furthermore, we surmise that, beyond their experience of geometry work while in training,
these students will find these criteria very useful for their practice in teaching geometry by helping
them to combine geometrical and pedagogical knowledge.
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