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Abstract

Tackling new machine learning problems with neural networks always means optimizing nu-
merous hyperparameters that define their structure and strongly impact their performances.
In this work, we study the use of sensitivity analysis and, more specifically, the Hilbert-
Schmidt Independence Criterion (HSIC) for hyperparameter analysis and optimization.
Hyperparameter spaces can be complex and awkward, with different natures of hyperpa-
rameters (categorical, discrete, boolean, continuous), interactions, and inter-dependencies,
making it non-trivial to perform classical sensitivity analysis. We alleviate these difficulties
and obtain an analysis tool that quantifies hyperparameters’ relative impact on a Neural
Network’s final error. This knowledge allows us to understand hyperparameters better
and to make hyperparameter optimization interpretable and explainable. An HSIC based
explainable optimization algorithm illustrates the benefits of this knowledge. This method
yields competitive neural networks that are naturally cost-effective in FLOPs and the
number of parameters.

1. Introduction

Hyperparameter optimization is ubiquitous in machine learning, and especially in Deep
Learning, Neural Networks are often cluttered with lots of hyperparameters. Finding good
hyperparameters is mandatory in deep learning applications to real-world machine learning
tasks but can be fastidious for different reasons. i) The high number of hyperparameters
by itself makes this problem challenging. ii) Their impact on error changes very often
depending on the problem, so it is challenging to adopt general best practices and permanently
recommend hyperparameter values for every machine learning problem. iii) Hyperparameters
can be of very different natures, like continuous, discrete, categorical, or boolean, and
have non-trivial relations, like conditionality or interactions. All this leads to complex
hyperparameters spaces.
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Many techniques have been introduced to tackle this problem. Grid search or random
search (Bergstra and Bengio, 2012) uniformly explore the search space. The main difference
between the two methods is that hyperparameters values are chosen on a uniform grid for
grid search. These values are deterministic, whereas, for a random search, hyperparameters
values are randomly sampled from a uniform distribution in a Monte Carlo fashion. The
main advantages of random search over grid search are that it allows for more efficient
exploration of the hyperparameter search and that it is not constrained to a grid, so it
does not suffer from the curse of dimensionality (Bergstra and Bengio, 2012) - which is a
problem here since the hyperparameters can be pretty numerous. The standard costly part
of these two methods is that it requires training a neural network for each hyperparameter
configuration, so exploring the search space can be computationally very expensive.

Some methods aim at reducing the cost of such searches. For instance, Successive Halving
(Jamieson and Talwalkar, 2016) and Hyperband (Li et al., 2018) train neural networks in
parallel, like in grid search or random search, and stop their training after a certain number
of epochs. Then, they choose the best half of neural networks and carry on the training only
for these neural networks, for the same number of epochs, and so on. This procedure allows
testing more hyperparameters values for the same computational budget.

On the contrary, other methods are designed to improve the quality of the search with
more minor training instances. Bayesian optimization is based on the approximation of the
loss function by a surrogate model. After an initial uniform sampling of hyperparameter
configurations, the surrogate model is trained on these points and used to maximize an
acquisition function. This acquisition function, often chosen to be expected improvement
or upper confident bound (Shahriari et al., 2016), is supposed to lead to hyperparameter
configurations that will improve the error. Therefore, it focuses the computation on poten-
tially better hyperparameters values instead of randomly exploring the hyperparameters
space. The surrogate model can be a Gaussian process (Snoek et al., 2012), a kernel density
estimator (Bergstra et al., 2011) or even a neural network (Snoek et al., 2015).

Model-based hyperparameter optimization is not easily and naturally applicable to
conditional or categorical hyperparameters that often appear when optimizing a neural
network architecture. Such categorical hyperparameter can be the type of convolution
layer for a convolutional neural network, regular convolution or depth-wise convolution
(Chollet, 2016), and a conditional hyperparameter could be the specific parameters of each
different convolution type. Neural architecture search explicitly tackles this problem. It
dates back to evolutionary and genetic algorithms (Stanley and Miikkulainen, 2002) and has
been the subject of many recent works. For instance, Kandasamy et al. (2018) models the
architecture as a graph, or Pham et al. (2018); Tan et al. (2018) use reinforcement learning
to automatically construct representations of the search space. See Elsken et al. (2019) for
an exhaustive survey of this field. Yet, their implementation can be tedious, often involving
numerous hyperparameters themselves.

Previous methods are end-to-end algorithms that return the best neural network, and
the user does not have to interact with the algorithm during its execution. This lack of
interactivity has many automating advantages but can bring some drawbacks. First, these
methods do not give any insight on the relative importance of hyperparameters, whereas it
may be of interest in the first approach to a machine learning problem. These methods are
black boxes and not explainable. Second, one could have other goals than test the accuracy
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of a neural network, like execution speed or memory consumption. Some works like Tan et al.
(2018) introduce multi-objective hyperparameter optimization, but it requires additional
tuning of the hyperparameter optimization algorithm itself. Finally, there may be flaws
in the hyperparameters space, e.g. a useless hyperparameter that could be dropped but is
included in the search space and becomes a nuisance for the optimization. This aspect is all
the more problematic since some popular algorithms, like gaussian process-based Bayesian
optimization, suffer from the curse of dimensionality. We can sum up the drawbacks as
lack of explainability, difficulties in a multi-objective context, and unnecessary search space
complexity.

In this work, we tackle these problems proposing a sensitivity analysis applied to
hyperparameter search space. To this end, we select a powerful metric used for sensitivity
analysis, called Hilbert-Schmidt Independence Criterion (HSIC) Gretton et al. (2005), which
is a distribution dependence measure initially used for two-sample test problem (Gretton
et al., 2007). Once adapted to hyperparameter search space, HSIC gives insights into
hyperparameters’ relative importance in a deep learning problem. This analysis integrates
seamlessly with classical random search since a simple Monte Carlo sampling estimates
HSIC value.

Using HSIC in hyperparameters space is non-trivial due to their complex structure.
First, hyperparameters can be discrete (width of the neural network), continuous (learning
rate), categorical (activation function), or boolean (batch normalization). Second, some
hyperparameter’s presence is conditional to others (moments decay rates specific to ADAM
optimizer). Third, they can strongly interact (as shown in Tan and Le (2019): in some
cases, it is better to increase depth and width by a similar factor). The metric should be
able to compare hyperparameters reliably in such situations. We introduce solutions to
overcome these obstacles and to be able to apply HSIC in these complex situations that we
illustrate on simple examples. Once adapted to such complex spaces, we show that HSIC
allows us to understand hyperparameter’s relative importance better and focus research
efforts on specific hyperparameters. We also identify hyperparameters that have an impact
on execution speed but not on the error. Based on all this knowledge, we introduce ways of
reducing the hyperparameter’s variation range to improve the stability of the training and
execution speed. Finally, we propose an HSIC-based optimization methodology in two steps,
one focused on essential hyperparameters and the other on remaining hyperparameters. Its
efficiency is validated on real-world problems: MNIST, Cifar10, and a Physical Sciences
data set. In the last case, we obtain competitive errors with up to 500 less neural network
parameters (weights and biases) and FLOPs.
The main contributions of this paper are the following ones: i) Introduction of a new
approach to hyperparameter analysis based on sensitivity analysis; ii)Adaptation of a powerful
metric, HSIC, used in sensitivity analysis to the context of hyperparameter analysis; iii)
Illustration of the benefits that stem from the knowledge obtained with HSIC (explainability,
hyperparameters space reduction for cost efficiency and stability); iv) Construction of an
HSIC based explainable hyperparameter optimization methodology.

Sections 2, 3 present the formulation of the problem with concepts from sensitivity
analysis, the HSIC definitions and their advantages for hyperparameter analysis. Then, we
thoroughly study the application of HSIC to hyperparameters in Section 4. Specifically, we
fully characterize the solutions designed to overcome the aforementioned problems related
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to hyperparameters space and illustrate their efficiency on simple toy examples but also
more complex machine learning tasks. In Section 5, we showcase usages of HSIC for
hyperparameter analysis, and finally, in Section 6, we construct and validate an HSIC based
hyperparameter optimization methodology.

2. Problem Formalization

Let a neural network be described by nh hyperparameters X1, ..., Xnh with Xi ∈ Xi and
σ = (X1, ..., Xnh). We indicate f(σ) as the error of the neural network on a test dataset
once trained on a training dataset. The aim of hyperparameter optimization is to find
σ∗ = argmin

σ
f(σ). Even if its formulation is simple, neural networks hyperparameter

optimization is a challenging task because of the great number of hyperparameters to optimize,
the computational cost for evaluating f(σ) and the complex structure of hyperparameter
space. Figure 1 gives a graphical representation of a possible hyperparameter space and
illustrates its complexity. Specific aspects to point out are the following ones :

• Hyperparameters do not live in the same measured space. Some are continuous
(weights decay ∈ [10−6, 10−1]), some are integers (n layers ∈ {8, ..., 64}), oth-
ers are categorical (activation ∈ {relu, ..., sigmoid}), or boolean (dropout ∈
{True, False}).

• They could interact with each others. For instance batch size adds variance on the
objective function optimized by optimizer.

• Some hyperparameters are not involved for every neural networks configurations, e.g.
dropout rate is not used when dropout = False or adam beta is only involved when
optimizer = adam. In this case, we denote them as ”conditional”, otherwise we call
them ”main” hyperparameters.

As detailed in the introduction, classical hyperparameter optimization algorithms (ran-
dom search, Bayesian optimization, . . . ) tackle this problem quite successfully but suffer
from some drawbacks. These drawbacks can be summed up as lack of explainability, diffi-
culties in a multi-objective context and unnecessary search space complexity. In this work,
we alleviate these concerns by tinting hyperparameter optimization with hyperparameter
analysis. In other words, we construct an approach to hyperparameter optimization that
relies on understanding hyperparameter’s effects on the neural network’s performances.

One powerful tool to analyze the effect of some input variables on the variability of a
quantity of interest is sensitivity analysis (Razavi et al., 2021). Sensitivity analysis consists
in studying the sensitivity of the output of a function to its inputs. We could define this
function as f and its inputs as σ. Then, it would be possible to make hyperparameter
optimization benefit from characteristics of sensitivity analysis. Indeed, sensitivity allows
specifically:

• Analyzing the relative importance of input variables for explaining the output, which
answers the lack of explainability problem. We could explain and understand hyperpa-
rameters impact better.
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Figure 1: Example of hyperparameters space.

• Selecting practically convenient values for input variables with a limited negative
impact on the output, which answers the complexities in a multi-objective context
since we could, for instance, select values that improve execution speed with a limited
impact on the neural network error.

• Identifying where to efficiently put research efforts to improve the output, which
answers the unnecessary search space complexity problem since we could focus on
fewer hyperparameters to optimize by knowing which of them most impact the neural
network error.

Several types of sensitivity measures can be estimated after an initial sampling of ns input
vectors and their corresponding output values. The first type of metric gives information
about the contribution of an input variable to the output based on variance analysis. The
most common metric used for that purpose are Sobol indices (Sobol, 1993), but they only
assess the contribution of variables to the output variance. Goal-oriented Sobol indices (Fort
et al., 2016) or uncertainty importance measure (Borgonovo, 2007) construct quantities
based on the output whose variance analysis gives more detailed information. However,
computing these indices can be very costly since estimating them with an error of O( 1√

ns
)

requires (nh + 2) × ns sample evaluations (Saltelli, 2002), which can be prohibitive for
hyperparameter analysis. Another type of metrics, called dependence measures, assesses
the dependence between Xi and the output f(σ) (Da Veiga, 2013). It relies on the claim
that the more Xi is independent of f(σ), the less important it is to explain it. Dependence
measures are based on dissimilarity measures between PXiPY and PXi,Y , where Xi ∼ PXi
and Y = f(σ) ∼ PY , since PXiY = PY PXi when Xi and Y are independent. In Da Veiga
(2013), the author gives several examples of indices based on dissimilarity measures like
f -divergences (Csizar, 1967) or integral probability metrics (Müller, 1997). These indices are
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easier and less expensive to estimate (ns training instances instead of (nh + 2)× ns) than
variance-based measures since they only need a simple Monte Carlo design of experiment.

In this work, we focus on a specific dependence measure, known as the Hilbert-Schmidt
Independence Criterion (HSIC). The following sections are dedicated to the description of
HSIC and its adaptation to hyperparameter optimization.

3. Hilbert-Schmidt Independence Criterion

Hilbert Space Information Criterion (Gretton et al., 2005) (HSIC) is one of the dependence
measures used for sensitivity analysis (Da Veiga, 2013). It relies on a distance called
Maximum Mean Discrepancy (MMD) (Gretton et al., 2007). In this section, we describe its
construction and its advantages.

3.1 From Integral Probability Metrics to Maximum Mean Discrepancy

Let X and Y be two random variables of probability distribution PX and PY defined in X .
Gretton et al. (2007) show that distributions PX = PY if and only if EX [f(X)]−EY [f(Y )] = 0
for all f ∈ C(X ), where C(X ) is the space of bounded continuous functions on X . This
lemma explains the intuition behind the construction of Integral Probability Metrics (IPM)
(Müller, 1997).

Let F be a class of functions, f : X → R. An IPM γ is defined as

γ(F ,PX ,PY ) = sup
f∈F

(EX [f(X)]− EY [f(Y )]). (1)

The Maximum Mean Discrepancy (MMD) can be defined as an IPM restricted to a class
of functions FH defined on the unit ball of a Reproducing Kernel Hilbert Space (RKHS)
H of kernel k : X 2 → R. In Gretton et al. (2005), this choice is motivated by the capacity
of RKHS to embed probability distributions efficiently. The authors define µX such that
EX(f(X)) = 〈f, µX〉H as the mean embedding of PX . Then, γ2

k(PX ,PY ) can be written

γ2
k(PX ,PY ) = ‖µX − µY ‖2H.

=

∫ ∫
k(x1, x2)(pX(x1)− pY (x1))(pX(x2)− pY (x2))dx1dx2

= EXX′ [k(X,X ′)] + EY Y ′ [k(Y, Y ′)]− 2EXY [k(X,Y )],

(2)

where pX(x)dx = dPX(x) and pY (x)dx = dPY (x). After a Monte Carlo sampling of
{X1, ..., Xns} and {Y1, ..., Yns}, γ2

k(PX ,PY ) can thus be estimated by γ̂2
k(PX ,PY ), with

γ̂2
k(PX ,PY ) =

ns∑
j=1

ns∑
l=1

k(Xj , Xl) +

ns∑
j=1

ns∑
l=1

k(Yj , Yl)− 2

ns∑
j=1

ns∑
l=1

k(Xj , Yl), (3)

and γ̂2
k(PX ,PY ) being an unbiased estimator, its standard error can be estimated using the

empirical variance of γ̂2
k(PX ,PY ).

3.2 The kernel choice

Formula (2) involves to choose a kernel k. In practice, k is chosen among a class of kernels
that depends on a set of parameters h ∈ H. We therefore temporarily denote the kernel by kh.
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Examples of kernels are the Gaussian Radial Basis Function kh : (x, y)→ exp(− ||x−y||
2

2h2
) or

the Matérn function kh : (x, y)→ σ2 21−ν

Γ(ν)

(√
2ν ||x−y||η

)ν
Kν

(√
2ν ||x−y||η

)
, where h = {σ, ν, η}.

In Fukumizu et al. (2009), the authors study the choice of the kernel, and more importantly
of the kernel parameters h. They state that, for the comparison of probabilities PX and PY ,
the final parameter h∗ should be chosen such that

γ2
kh∗

(PX ,PY ) = sup
h∈H

γ2
kh

(PY ,PY ).

The authors suggest focusing on unnormalized kernel families, like Gaussian Radial Basis

Functions
{
kh : (x, y)→ exp(− ||x−y||

2

2h2
), h ∈ (0,∞)

}
, also used in Da Veiga (2013), for which

they demonstrate that γ̂2
kh∗

(PX ,PY ), defined as

γ̂2
kh∗

(PX ,PY ) = sup
h∈H

[
ns∑
j=1

ns∑
l=1

kh(Xj , Xl) +

ns∑
j=1

ns∑
l=1

kh(Yj , Yl)− 2

ns∑
j=1

ns∑
l=1

kh(Xj , Yl)

]
, (4)

is a consistent estimator of γ2
kh∗

(PX ,PY ). It is thus possible to choose h by maximizing

γ̂2
kh∗

(PX ,PY ) with respect to h. Therefore, in this work, we use Gaussian Radial Basis

Functions kernel. Once h∗ is chosen, γ̂2
kh∗

(PX ,PY ) approximation error can also be estimated

like in Section 3.1. It is important to note that both γ2
kh∗

(PX ,PY ) and optimal h can be

estimated in a O(n2
s) computational complexity, which is not expensive given usual values

of ns in hyperparameter optimization context. To simplify the notations, we denote kh∗ by
k in the following sections.

3.3 Hilbert-Schmidt Independence Criterion Definition (HSIC)

Let X ∈ X and Y ∈ Y, and G the RKHS of kernel k : X 2 × Y2 → R. HSIC can be written

HSIC(X,Y ) = γ2
k(PXY ,PY PX) = ‖µXY − µY µX‖G . (5)

Then, HSIC measures the distance between PXY and PY PX embedded in H. Indeed, since
X ⊥ Y ⇒ PXY = PY PX , the closer these distributions are, in the sense of γk, the more
independent they are.

3.4 HSIC for goal-oriented sensitivity analysis

In Spagnol et al. (2018), the authors present a goal oriented sensitivity analysis by focusing
on the sensitivity of f w.r.t. Xi when Y = f(X1, ..., Xnh) ∈ Y, with Y ⊂ R. The sub-space
Y is chosen based on the goal of the analysis. In the context of optimization, for instance,
Y is typically chosen to be the best percentile of Y . To achieve this, the authors introduce
a new random variable, Z = 1Y ∈Y. Then,

HSIC(Xi, Z) = P(Z = 1)2 × γ2
k(PXi|Z=1,PXi), (6)

so HSIC(Xi, Z) measures the distance between Xi and Xi|Z = 1 (to be read Xi conditioned
to Z = 1) and can be used to measure the importance of Xi to reach the sub-space Y with
f . Using the expression of γk given by equation (2), its exact expression is

HSIC(Xi, Z) = P(Z = 1)2
[
EXiX′i [k(Xi, X

′
i)] + EZZ′ [k(Z,Z ′)]− 2EXiZ [k(Xi, Z)]

]
. (7)
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It is estimated for each Xi using Monte Carlo estimators denoted by SXi,Y, based on samples
{Xi,1, ..., Xi,ns} from Xi ∼ dPXi and corresponding {Z1, ..., Zns}, defined as

SY,Xi = P(Z = 1)2

[
1

m2

ns∑
j=1

ns∑
l=1

k(Xi,j , Xi,l)δ(Zj = 1)δ(Zl = 1)

+
1

ns2

ns∑
j=1

ns∑
l=1

k(Xi,j , Xi,l)

− 2

nsm

ns∑
j=1

ns∑
l=1

k(Xi,j , Xi,l)δ(Zl = 1)

]
,

(8)

with m =
∑ns

k δ(Zk = 1) and δ(x) = 1 if x is True and 0 otherwise. We use this metric
in the following. In this section, we have mainly summed up the mathematics on which
the sensitivity indices are based and how they are used in practice in a sensitivity analysis
context. The following section is devoted to the application of HSIC in hyperparameter space.

4. Application of HSIC to hyperparameters space

HSIC has two advantages that make it stand out from other sensitivity indices and make
it particularly suitable to the hyperparameters space. First, Eq. (8) emphasizes that
it is possible to estimate HSIC using simple Monte Carlo estimation. In the context of
hyperparameter optimization, it could be possible to compute such indices after a classical
random search. Secondly, Using Eq. (6), HSIC allows to perform goal-oriented sensitivity
analysis easily, i.e. to assess the importance of each hyperparameter contributing to a
given Y. For hyperparameter analysis, Y can be chosen to be the sub-space for which
f(X1, ..., Xnh) is in the best percentile p of a metric (L2 error, accuracy,...), say p = 10%.
Then, the quantity SXi,Y measures the importance of each hyperparameter Xi for obtaining
the 10% best neural networks.

However, HSIC cannot be used as they are in hyperparameter analysis, but some issues
require specific treatment. Specifically, hyperparameters do not live in the same measured
space, they could interact with each other, and some are not directly involved for each
configuration. In the following sections, we suggest some original solutions to these issues.

To illustrate the performances of these solutions, we consider a toy example, the approx-
imation by a Fully connected neural network of Runge function r : x→ 1

1+15x2
, x ∈ [−1, 1]

which is a historical benchmark of approximation theory. We consider nh = 14 different
hyperparameters (see Appendix A for details). We randomly draw ns = 10000 hyperparam-
eter configurations and perform the corresponding training on 11 training points. We record
the test error on a test set of 1000 points. All samples are equally spaced between 0 and 1.
We are aware that training neural networks for 10000 different hyperparameter configurations
is not realistic, but in this special toy problem, it allows observing the asymptotical behavior
of HSIC estimation.

In Section 4.1, we introduce a transformation to deal with hyperparameters that do
not live in the same measured space. Then, in Section 4.2 we explain how to use HSIC to
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X1 X2

SX,Y 3.7× 10−3 4.8× 10−3

Table 1: SX,Y values for X1 and X2

U1 U2

SX,Y 4.8× 10−3 4.8× 10−3

Table 2: SX,Y values for U1 and U2

evaluate hyperparameters’ interactions. Finally, in Section 4.3 we deal with conditionality
between hyperparameters.

4.1 Normalization of hyperparameters space

Hyperparameters can be defined in very different spaces. For instance, the activation function
is a categorical variable that can be relu, sigmoid or tanh, dropout rate is a continuous
variable between 0 and 1 while batch size is an integer that can go from 1 to hundreds.
Moreover, it may be useful to sample hyperparameters with a non-uniform distribution
(e.g. log-uniform for learning rate). Doing so affects HSIC value and its interpretation,
which is undesirable since this distribution choice is arbitrary and only relies on practical
considerations. Let us illustrate this phenomenon in the following example.

Example Let f : [0, 2]2 → {0, 1} such that

f(X1, X2) =

{
1 if X1 ∈ [0, 1], X2 ∈ [0, 1],
0 otherwise.

Suppose we want to assess the importance of X1 and X2 for reaching the goal f(X1, X2) =
1 without knowing f . In the formalism of the previous section, we have Y = {1}. Regarding
its definition, X1 and X2 are equally important for f to reach Y, due to their symmetrical
effect. Let X1 ∼ N (1, 0.1, [0, 2]) (normal distribution of mean 1 and variance 0.1 truncated
between 0 and 2) and X2 ∼ U [0, 2]. We compute SX1,Y and SX2,Y with ns = 10000 points
and display their value in Table 1. Values of SX1,Y and SX2,Y are quite different, and we
could erroneously conclude that X2 is more important than X1.

This example shows that we have to ensure that SXi,Y and SXj ,Y can be compared in
order to say that hyperparameter Xi is more important than hyperparameter Xj . Indeed, if
Xi and Xj do not follow the same distribution or Xi 6= Xj , it may be irrelevant to compare
them directly. We need a method to obtain values for SXi,Y that are robust to the choice of
dPXi . To tackle this problem, we introduce a novel approach for comparing variables with
HSIC. Let Φi be the CDF of Xi. We have that Φi(Xi) = Ui, with Ui ∼ U [0, 1]. After an
initial Monte Carlo sampling of hyperparameter Xi which can be a random search, we can
apply Φi to each input point to obtain Ui corresponding to Xi with Ui iid, so living in the
same measured space. Yet, one must be aware that to obtain Ui ∼ U [0, 1], its application is
different for continuous and discrete variables:

• for continuous variables, Φi(Xi) is a bijection between Xi and [0, 1] so Φi can be applied
on draws from Xi.

• For categorical, integer or boolean variables, Φi(Xi) is not a bijection between Xi and
[0, 1]. Suppose that Xi is a discrete variable with p possible values {Xi[1], ..., Xi[p]},
each with probability wp. We can encode {Xi[1], ..., Xi[p]} by {1, ..., p}. Then, Φi(Xi) =

9
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∑p
j=1wj1[Xi≤j](Xi). When Φi is applied as is, Φi(Xi) is not uniform. To overcome that,

a trick is commonly used in Monte Carlo resolution of Partial Differential Equations
(Gillespie, 1976). One can simply use Ui =

∑p
j=1 U [

∑
k<j wk,

∑
k<j+1wk]δ(Xi = j).

As a result, Ui ∼ U [0, 1].

Finally, all we have to do is sampling Xi like in random search following the distribution
we want, and then apply Φi to obtain Ui. The corresponding HSIC estimation is SUi,Y.
It only involves Ui and Ui|Z = 1 and since Ui are iid, the comparison of different SUi,Y
becomes relevant. Coming back to the previous example, Table 2 displays values of SU1,Y

and SU2,Y. This time, the value is the same, leading to the correct conclusion that both
variables are equally important. Note that in the following, we denote SUi,Y by SXi,Y for
clarity but always resort to this transformation.

Figure 2: Comparison of SXi,Y for hyperpa-
rameters in Runge approximation problem.

Let us apply this methodology to Runge ap-
proximation hyperparameter analysis problem.
Note that in this toy example, hyperparameters
are sampled uniformly and the usage of Φi is
mostly motivated by the comparison between dis-
crete and continuous variables. Figure 2 displays
a comparison between SXi,Y for hyperparameters
of the Runge approximation problem, with Y the
set of the 10% best neural networks. For read-
ability, we order Xi by SXi,Y value in the legend
and the figure. We also display black error bars
corresponding to HSIC estimation standard error.
This graphic highlights that optimizer is by far
the most important hyperparameter for this prob-
lem, followed by activation, loss function

and n layers. Other hyperparameters may be considered as non-impactful, because their
SXi,Y values are low. Besides, these values are lower than the error evaluation, so it could
be only noise, and therefore these hyperparameters can not be ordered on this basis.

4.2 Interactions between hyperparameters

If SXi,Y is low, it means that PXi and PZ are similar (in the sense of HSIC). We could be
tempted to conclude that Xi has a limited impact on Y . However, Xi may have an impact
due to its interactions with the other hyperparameters. In other words, let Xi and Xj be
two variables, it can happen that SXi,Y and SXj ,Y are low while S(Xi,Xj),Y is high. This
point is illustrated in the next example.

Example For instance let f : [0, 2]3 → {0, 1} such that

f(X1, X2, X3) =

{ 1 if X1 ∈ [0, 1], X2 ∈ [1, 2], X3 ∈ [0, 1],
1 if X1 ∈ [0, 1], X2 ∈ [0, 1], X3 ∈ [1, 2],
0 otherwise.

In that case, let Y = {1}, ∀x ∈ [0, 2] we have pX2|Z=1(x) = pX2(x) and pX3|Z=1(x) =
pX3(x). Hence, according to equation 7 we have HSIC(X2, Z) = HSIC(X3, Z) = 0.

10
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However, we have

HSIC(X1, Z) = P(Z = 1)2

∫
[0,2]2

k(x, x′)
[
pX1|Z=1(x)− pX1(x)

]
×
[
pX1|Z=1(x′)− pX1(x′)

]
dxdx′

=
1

8

[ ∫
[0,1]×[0,1]

k(x, x′)dxdx′ +

∫
[1,2]×[1,2]

k(x, x′)dxdx′ − 2

∫
[0,1]×[1,2]

k(x, x′)dxdx′
]
,

so for non-trivial choice of k, HSIC(X1, Z) 6= 0. One could deduce that X1 is the only
relevant variable for reaching Y, but in practice it is necessary to chose X2 and X3 carefully
as well. For instance, if X1 ∈ [0, 1], f(X1, X2, X3) = 1 if X2 ∈ [1, 2] and X3 ∈ [0, 1] but
f(X1, X2, X3) = 0 if X2 ∈ [1, 2] and X3 ∈ [1, 2]. This is illustrated in Figure 3, which
displays the histograms of X1, X1|Z = 1,X3, X3|Z = 1, X3, X3|Z = 1, obtained from 10000
points (X1, X2, X3) sampled uniformly in the definition domain of f .

Figure 3: From left to right: 1 - Pairs of (X2|Z = 1, X3|Z = 1). 2 - Histogram of X1 and
X1|Z = 1. 3 - Histogram of X2 and X2|Z = 1. 4 - Histogram of X3 and X3|Z = 1.

Histograms are the same for X2, X2|Z = 1 and X3, X3|Z = 1 (uniform between 0 and
2), but different for X1, X1|Z = 1. Therefore, HSIC being a distance measure between X1

and X1|Z = 1, it becomes intuitive that it will be high for X1 and close to zero for X2 and
X3, even if X2 and X3 are important as well because of their interaction. To assess this
intuition, we compute SX1,Y , SX2,Y, SX3,Y and S(X2,X3),Y after simulating f for ns = 2000
points. We also computed S(X4,X5),Y, with X4 and X5 two dummy variables, uniformly
distributed, to have a reference for S(X2,X3),Y. The results can be found in Table 3. They
show that SX1,Y and S(X2,X3),Y are of the same order while SX2,Y, SX3,Y and S(X4,X5),Y

are two decades lower than SX1,Y, which confirms that SX,Y may be low while interactions
are impactful.

X1 X2 X3 (X2, X3) (X4, X5)

SX,Y 1.17× 10−3 8.11× 10−7 1.68× 10−6 3.04× 10−4 1.37× 10−6

Table 3: SX,Y values for variables of the experiment

Figure 4: SX,Y for each pair of vari-
able.

Additionally, we display the S(Xi,Xj),Y for each pair
of variable Xi and Xj on Figure 4. We can see that
for variables other than X1, S(Xi,Xj),Y is high only for
i = 2 and j = 3. This example shows that it is neces-
sary to compute SX,Y of joint variables to perceive the
importance of interactions between variables.
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The values are easy to interpret in this example be-
cause we know the behavior of the underlying function f .
In practice, SX1,Y and S(X2,X3),Y can not be compared
because (X2, X3) and X1 do not live in the same mea-
sured space (X2 × X3 and X1 respectively). Moreover,
like we see on Figure 4, S(Xi,Xj),Y is always the highest
when i = 1, regardless of j. In fact, if for a given variable
Xi, SXi,Y is high, so will be S(Xi,Xj),Y for any other variable Xj . Hence, care must be taken
to only compare interactions of low SX,Y variables with each others, and not with high SX,Y
variables. Coming back to Runge approximation example, Figure 5a displays the S(Xi,Xj),Y

for each pair of hyperparameters, and Figure 5b for each pair of hyperparameters, except
for the impactful hyperparameters optimizer, activation, n layers and loss function.

(a) (b)

Figure 5: (a) S(Xi,Xj),Y for each pair of hyperparameters. (b) S(Xi,Xj),Y for each pair of hyperpa-
rameters, except for optimizer, activation, n layers and loss function

Figures 5a and 5b illustrate the remarks of the previous section. First, if we only look
for interactions on Figure 5a, we would conclude that the most impactful hyperparameters
are the only one to interact, and that they only interact with each others. Figure 5b shows
that this conclusion is not true. Hyperparameter batch size is the 5-th most impactful
hyperparameter, and like we can see in Figure 2, is slightly above remaining hyperparameters.
It is normal that S(batch size,Xj),Y is high, with Xj every other hyperparameters. However,
S(batch size,n units),Y is higher, whereas n units is the 13-th most impactful hyperparameter.
This means that batch size interacts with n units in this problem, i.e. that when considered
together, they contribute to explain the best results.

4.3 Conditionality between hyperparameters

Conditionality between hyperparameters, which often arises in Deep Learning, is a non-trivial
challenge in hyperparameter optimization. For instance, hyperparameter ”dropout rate”
will only be involved when hyperparameter ”dropout” is set to True. Classically, two

12



Explainable Hyperparameter Optimization using HSIC

approaches can be considered. The first (i) splits the hyperparameter optimization between
disjoint groups of hyperparameters that are always involved together, like in Bergstra et al.
(2011). Then, two separate instances of hyperparameter optimization are created, one
for the main hyperparameters, and another for dropout rate. The second (ii) simply
considers these hyperparameters as if they were always involved, even if they are not, like
in Falkner et al. (2018). In that case, dropout rate is always assigned a value even when
dropout = False, and these dummy values are used in the optimization. First, we explain
why these two approaches are not suited to our case and then we propose a third approach
(iii).

(i) The first formulation splits the hyperparameters between disjoints sets of hyperparame-
ters whose value and presence are involved jointly in the training. In Runge approximation
hyperparameter analysis, it would mean to split the hyperparameters between two groups:
{dropout rate} and another containing all the others, since dropout rate is the only
conditional hyperparameter. This splitting approach is not suited to HSIC computation
because it produces disjoints sets of hyperparameters, while we would want to measure the
importance of every hyperparameter as compared to each other hyperparameter. As a result,
dropout rate could not be compared to any other hyperparameters.

(ii) In the second case, if we apply HSIC with the same idea, we could compute HSIC
of a hyperparameter with irrelevant values coming from configurations where it is not
involved. Two situations can occur. First, if a conditional variable Xi is never involved
in the hyperparameter configurations that yield the p-percent best accuracies (depending
on the percentile chosen), the values used for computing SXi,Y, i.e. Xi|Z = 1, are drawn
from the initial, uniform distribution Ui. Then, SXi,Y will be very low, and the conclusion
will be that it is not impactful for reaching the percentile, which is correct since none of
the best neural networks have used this hyperparameter. However, if Xi is only involved in
a subset of all tested hyperparameter configurations, and is really impactful in that case,
SXi,Y would be lowered by the presence of the other artificial values of Xi drawn from
the uniform distribution. In that case, we could miss its real impact. This phenomenon is
illustrated in the following example.

Example. Let f : [0, 2]3 → {0, 1} such that:

f(X1, X2, X3) =

{ B if X1 ∈ [0, 1], X2 ∈ [0, t]
1 if X1 ∈ [0, 1], X2 ∈ [t, 2], X3 ∈ [0, 1],
0 otherwise,

With B a Bernoulli variable of parameter 0.5 and t ∈ [0, 2] (so that SX2,Y is low). Let
Y = {1}. In that case, X1 plays a key role for reaching Y, and X3 is taken into account
only when X2 > t. In these cases, it is as important as X1 for reaching Y and we would like
to retrieve this information. Parameter t allows controlling how many values of X3 will be
involved. We evaluate f on ns = 2000 points uniformly distributed across [0, 2]3, first with
t = 1.

Figure 6a compares the histograms of X3 and X3|Z. Figure 6b compares histograms
of X3|X2 > t and of X3|X2 > t, Z. This shows that the distribution of X3|Z is different

13
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(a) (b) (c) (d)

Figure 6: (a) - Histogram of X3 and X3|Z (b) - Histogram of X3 and X3|X2 > t, Z.
(c) - SX,Y for X1; X2 and X3. (d) - SX,Y for X1|X2 > t; X2|X2 > t and X3|X2 > t.

if we choose to consider artificial values of X3 or values of X3 that are actually used by
f (X3|X2 > t). Figures 6c and 6d show that relative values of SX1,Y and SX3,Y are quite
different whether we chose to consider X2 > t or not, meaning that the conclusions about
the impact of X3 can be potentially different. To emphasize how different these conclusions
can be, we compare SX1,Y and SX3,Y for different values of t. The results are displayed on
Figure 7 (top row). Since the value of t controls how much artificial values there are for X3,
this demonstrates how different SX3,Y can be, depending on the amount of artificial points.
This experiment emphasizes the problem because in all cases, X3 is equally important for
reaching Y whereas for t = 1.8 we would be tempted to discard X3.

(i
i)

(i
ii
)

Figure 7: Top (ii): SX,Y for X1, X2 and X3 for different values of t. Bottom (iii): SX,Y for
X1|X2 > t, X2|X2 > t and X3|X2 > t for different values of t.

To sum up, this formulation brings important implementation advantages, because it
allows computing SXi,Y as if there were no conditionality, but carries a risk to miss important
impacts of conditional hyperparameters, and discard them illegitimately.

(iii) In this work, we propose a splitting strategy that produces sets of hyperparameters
that are involved together in the training, but are not disjoints, unlike (i). Let Jk ∈
{1, ..., nh} be the set of indices of hyperparameters that can be involved in a training
jointly with conditional hyperparameter Xk. We define GXk = {Xi|Xk, i ∈ Jk}, the set
of hyperparameters involved jointly in hyperparameter configurations when Xk is also
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involved. By convention, we denote the set of all main hyperparameters by G0. In Runge
problem, dropout rate is the only conditional hyperparameter, so we have two sets G0 =
{X1, ..., Xnh}\dropout rate and Gdropout rate = {X1|dropout rate, ..., Xnh |dropout rate}
= {X1|dropout = true, ..., Xnh |dropout = true}. It is then possible to compute SXi,Y
for Xi ∈ G0, identify the most impactful main hyperparameters, then to compute SXi,Y
for Xi ∈ Gdropout rate and to assess if dropout rate is impactful by comparing it to other
variables of Gdropout rate. On the example problem, we can compute SXi,Y only for X1,
X2 and X3 when X2 > t. This set would be GX3 (except that X2 is not categorical nor
integer - but in that case we can consider X̄2 = 1(X2 > t)). On the bottom row of Figure
7, SX1|X2>t,Y and SX3|X2>t,Y keep approximately the same values for all t, which is the
correct conclusion since when X3 is involved (i.e. X2 > t) , it is as important as X1 for
reaching Y. Coming back to Runge, Figure 8 displays SXi,Y for Runge approximation for
Xi ∈ Gdropout rate, compared to the first approach where we do not care about conditionality,
though in this specific case it does not change much of the conclusion that dropout rate is
not impactful.

(a) (b)

Figure 8: Comparison of SXi,Y without considering conditionality (a) and for variables Xi ∈
Gdropout rate (b)

In Runge example, we have only considered one conditional hyperparameter, dropout rate,
leading to only two groups G0 and Gdropout rate. For another, more complex example, we
could introduce additional conditional hyperparameters such as SGD’s momentum. In that
case, there would be two additional groups. The group Gmomentum, that contains hyperparam-
eters conditioned to when momentum is involved, but also G(dropout rate,momentum) that contains
hyperparameters conditioned to when momentum and dropout rate are simultaneously in-
volved. If the initial random search contains ns configurations, dropout rate and momentum

are involved in ns/2 configurations. HSIC estimation of hyperparameters of the groups
Gdropout rate and Gmomentum will be coarser but still acceptable. However, dropout rate

and momentum would only be involved simultaneously in ns/4 configurations, which may
lead to too inaccurate HSIC estimation for G(dropout rate,momentum). This happens because
dropout rate and momentum do not depend on the same main hyperparameter. Hence,
to avoid this problem, we only consider groups G with conditional hyperparameters that
depend on the same main hyperparameter. In our case, these groups are G0, Gdropout rate

and Gmomentum.
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4.4 Summary: evaluation of HSIC in hyperparameter analysis

In this section, we summarize the results of the previous discussions to provide a clear
methodology for evaluating HSIC of hyperparameters in complex search spaces in Algorithm
1.

Comments on Algorithm 1. Line 1: one can choose any initial distribution for hyper-
parameters. Line 2: this step is a classical random search. We remind that HSIC evaluation
can be applied after any random search, even if it was not initially conducted for HSIC
estimation. Configurations σi are sampled from σ = (X1, ..., Xnh) ∈ H. Line 3: this step
strongly benefits from parallelism. Line 4: the set Y is often taken as the p % percentile
of {Y1, ..., Yns}, but can be any other set depending on what we want to assess. Line 6
- 10: the evaluation starts with main hyperparameters because they are always involved.
Once most impactful main hyperparameters are selected, we assess the conditional ones.

Algorithm 1 Evaluation of HSIC in hyperparameter analysis

1: Inputs: hyperparameter search space H = X1 × ...×Xnh , ns.
2: Sample ns hyperparameter configurations {σ1, ...,σns}.
3: Train a neural network for each configuration and gather outputs {Y1, ..., Yns}.
4: Define Y.
5: Construct conditional groups G0, ....
6: for each group, starting with G0 do
7: Construct Ui for every Xi using Φi of section 4.1.
8: Compute SXi,Y := SUi,Y using (8).
9: By comparing them, select the most impactful hyperparameters.

10: Check for interacting hyperparameters.
11: Outputs: Most impactful hyperparameters and interacting hyperparameters.

5. Hyperparameter analysis using HSIC

Now that we are able to compute and correctly assess HSIC, we introduce possible usages
of this metric in the context of hyperparameter analysis. In this section we explore three
benefits that can be drawn from HSIC based hyperparameter analysis.

• Knowledge gain: HSIC allows analyzing hyperparameters, obtaining knowledge about
their relative impact on error.

• Stability: Some hyperparameter configurations can lead to dramatically high errors.
A hyperparameters range reduction based on HSIC can prevent such situations.

• Acceleration: We can choose values for less important hyperparameters that improve
inference and training time.

We illustrate these points through hyperparameters studies for the training of a fully
connected neural network on MNIST and a convolutional neural network on Cifar10. We
also introduce a less common benchmark which is the approximation by a fully connected
neural network of Bateman equations solution. Solving these equations is an important part
of many high-performance numerical simulations of several phenomena (neutronic (Bernède
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and Poëtte, 2018; Dufek et al., 2013), combustion (Bisi and Desvillettes, 2006), detonic
(Lucor et al., 2007), etc.). Approximating this solution with a light neural network could
accelerate these simulations whose execution time is often prohibitive. We believe that it is
a relevant illustration of the multi-objective need of hyperparameter optimization. Details
about the construction of Bateman equations data set can be found in Appendix B and
hyperparameters space and conditional groups G0, ... for each problem in Appendix A.

5.1 hyperparameter analysis

This section presents a first analysis of HSIC estimation for the three benchmark datasets:
MNIST, Cifar10, and Bateman equations. These evaluations are based on an initial random
search for ns = 1000 different hyperparameter configurations. The set Y is the 10%-best
errors percentile, so ns is taken sufficiently large for Ui|Z = 1 to be correctly estimated by
HSIC. Indeed, if ns = 1000, there will be 100 samples of Ui|Z = 1. This Random search was
conducted using 100 parallel jobs on CPU nodes for fully connected neural networks and 24
parallel jobs on Nvidia Tesla v100 GPUs for convolutional neural networks, so the results
for these configurations were obtained quite quickly, in less than two days.

Note that for each dataset, graphical comparison of SXi,Y for conditional groups G0, ...
is displayed in Appendix C, for conciseness and clarity.

5.1.1 MNIST

We train ns = 1000 different neural networks. The error is evaluated on a validation set
constructed by extracting 5000 points from the training set. We keep the test set for final
evaluations. We can see on Figure 9a that the accuracy goes up to ∼ 99%(1− error) which is
quite high for a fully connected neural network on MNIST. Figure 9a also displays the values
of SXi,Y for each hyperparameter Xi stacked vertically. Here, activation, optimizer,
batch size and loss function have significantly high SXi,Y. Hyperparameter n layers

also stands out from the remaining hyperparameter, while staying far below loss function

HSIC. There is one conditional group to consider, Gdropout rate, and dropout rate is found
not to be impactful.

Interestingly, neither the depth (n layers) nor the width (n units) are among the
most important hyperparameters. Notice that in the random search, we obtained a neural
network of depth 4 and width 340 which obtained 98.70% accuracy, while the best networks
(there were two) obtained 98.82% accuracy for a depth of 10 and a width of 791 and 1403,
respectively. Recall that the min-max depth was 1-10 and width were 134-1500. It means
that lighter networks are capable of obtaining very good accuracy. Another interesting
observation is that loss function does not have the highest HSIC, meaning that Mean
Squared Error allows obtaining good test errors which is surprising for a classification
problem.

We plot histograms of Ui and Ui|Z = 1 on Figure 10a for activation (top) and
weights reg l1 (bottom) with repeated sampling for categorical hyperparameters, like in
Section 4.1. Note that the first and the second hyperparameters have respectively a high
and low SXi,Y. We can see that for hyperparameters with high SXi,Y, Ui|Z = 1 (orange for
KDE, blue for histogram) is quite different from Ui (red for KDE, gray for histogram). On
the contrary, for hyperparameters with low SXi,Y there not seems to have major differences.
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(a) MNIST (b) Cifar10 (c) Bateman

Figure 9: (top) Histograms of the initial random sampling of configurations and (bottom) comparison
of SXi,Y for every main hyperparameters.

(a) MNIST (b) Cifar10 (c) Bateman

Figure 10: Representation of Ui|Z = 1 (orange for KDE and blue for histogram) and Ui (red for
KDE and grey for histogram), for hyperparameters Xi with high (top) and low (bottom) SXi,Y

5.1.2 Cifar10

We train ns = 1000 different convolutional neural networks. The error is evaluated on a
validation set constructed by extracting 5000 points from the training set. We keep the test
set for final evaluations in Section 6. After the initial random search, the best validation
error is 81.37%. Note that the histogram of Figure 9b is truncated because many hyperpa-
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rameter configurations led to diverging errors. Here, pool type, optimizer, activation,
learning rate and kernel size have the highest SXi,Y, followed by n filters. Half of
these hyperparameters are specific to convolutional neural networks, which validates the
impact of these layers on classification tasks for image data. The conditional groups are
listed in Appendix A. We do not show SXi,Y comparisons for every group for clarity of
the article and simply report that one conditional hyperparameter centered, which triggers
centered RMSPROP if this value is chosen for optimizer, is also found to be impactful.

The depth (n layers) is the less important hyperparameters. Notice that in the random
search, we obtained a neural network of depth 4 and width 53, with 3 stages (meaning that
the neural network is widened 3 times), which obtained 80.70% validation accuracy, while
the best networks obtained 81.37% accuracy for a depth of 6 and 48 but 4 stages. The
conclusion is the same as for MNIST: increasing the size of the network is not the only
efficient way to improve its accuracy.

We plot histograms of Ui and Ui|Z = 1 on Figure 10b for pool type (top) and n layers

(bottom) like in the previous section. The histograms of n layers are interesting because
even the histogram of Ui does not seem uniform. It may be explained by configurations
leading to out-of-memory errors or so long to train that 1000 other neural networks with
different configurations had already been trained meanwhile. It also explains why its HSIC
is so low. Still, the conclusions that n layers has a limited impact is valid since there is no
major differences between Ui and Ui|Z = 1.

5.1.3 Bateman equations

For Bateman equations, we use a training set of 100000 points and a validation set of 10000
points. Like for Cifar10, we keep a test set of 20000 points for final evaluations. The error
is evaluated on the validation set. Mean squared error goes down to 2.90× 10−5. Like for
Cifar10, the histogram of Figure 9b is truncated because many hyperparameter configurations
led to diverging errors. For this problem, learning rate, optimizer, activations and
n layer can be considered as impactful. Conditional groups are also listed in Appendix
A. Three conditional hyperparameters are important: beta 2, the second moment decay
coefficient of ADAM and NADAM, nesterov, that triggers Nesterov’s momentum in SGD
and centered, described previously.

HSIC for n layers is still the lowest of the significant SXi,Y and n units belongs to less
impactful hyperparameters. We perform the same analysis as for MNIST and Cifar10 and
quote that the best neural network has depth 5 and width 470 while another neural network
of depth 5 and width 62 reaches 3.74× 10−5 validation error.

We plot histograms of Ui and Ui|Z = 1 on Figure 10c for learning rate (top) and
bias reg l1 (bottom). Histograms of learning rate is interesting because this hyperpa-
rameter is continuous so the distribution Ui|Z = 1 seems more natural. This once again
illustrates the differences of Ui and Ui|Z = 1 for hyperparameters with high and low SXi,Y.

5.2 Modification of hyperparameters distribution to improve stability

Up to now, we only considered Y to be the 10% best error percentile, which is natural
since we want to understand the impact of hyperparameters towards good errors. But HSIC
formalism and our adaptation to hyperparameter analysis allow us to choose any Y. We
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saw in the previous Section that for Cifar10 and Bateman, histograms of Figure 9b are
truncated because many hyperparameter configurations led to diverging errors. It is possible
to understand why by choosing Y as the set of the 10% worst errors. Then, HSIC can be
applied to assess the importance of each hyperparameter towards the worst errors.

(a) SXi,Y, Y = 10% worst errors (b) Xi|Y, Y = 10% worst errors (c) Xi|Y, Y = 10% best errors

Figure 11: Top: Cifar10. Bottom: Bateman. (a) Comparison of SXi,Y when Y is the set of the 10%
worst errors. (b) Histogram of Xi|Y when Y is the set of 10% worst errors, with Xi = activations

for Cifar10 and Xi = optimizer for Bateman. (c) Histogram of Xi|Y when Y is the set of the 10%
best errors, with Xi = activations for Cifar10 and Xi = optimizer for Bateman.

Figure 11b shows SXi,Y comparisons, for Cifar10 and Bateman, when Y is the set of the
10% worst errors. In that case, SXi,Y measures how detrimental bad values of Xi can be
for the neural network error. For Cifar10, activation is shown to be the main responsible
for the highest errors. If we plot the histogram of activation|Y, we can clearly see that
sigmoid is a bad value in the sense that most of the worst neural network use this activation
function. If we come back to Y being the set of the 10% best neural networks, we see that
none of the best neural networks have sigmoid as the activation function. By itself, this
kind of knowledge is valuable because it improves our understanding of hyperparameter’s
impact. This also directly brings some practical benefits: in that case, we could reasonably
discard sigmoid from the hyperparameter space and therefore adapt the distribution of
activation to improve stability. The same reasoning can be applied to Bateman, with
Xi = optimizer, for adagrad and rmsprop optimizers.

Note that we could have drawn the previous conclusions by directly looking at histograms
as represented in Figure 11b and 11c. However, when the number of hyperparameters grows,
the number of histograms to look at and to visually evaluate grows as well and the analysis
can become tedious. Thanks to HSIC, we know directly which histograms to look at, and
how to rank hyperparameters when it is not visually clear-cut.
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5.3 Interval reduction for hyperparameters that affect execution speed

One common conclusion of SXi,Y values for the last three machine learning problems is that
one does not have to set high values for hyperparameters that affect execution speed, such
as n units, n layers, or n filters, in order to obtain competitive models. This naturally
raises the question of how to bias the hyperparameter optimization towards such models.
Multi-objective hyperparameter optimization algorithms have already been successfully
applied, like in Tan et al. (2018) for instance, but these algorithms are black-boxes and
involve tuning additional hyperparameters for the multi-objective loss function.

In our case, we can use information from SXi,Y to reduce the hyperparameters space
search in order to obtain more cost-effective neural networks. The most simple way to
achieve that goal is to select values that improve execution speed for hyperparameters that
have low SXi,Y values. For MNIST, it would mean for instance to choose n units = 128,
for Cifar10, n layers = 3 or for Bateman, n units = 32.

However, if all hyperparameters that affect execution speed are important, i.e. they
have high SXi,Y value, we may not be able to apply the previous idea. In that case, we
can use HSIC in another way to still achieve our goal. Most of the time, hyperparameters
value can be easily linked to good or bad execution time. A larger n units, n layers, or
kernel size will always hurt execution time. Suppose that Xi = n units ∈ [a, b] and that
SXi,Y is high, so that nunits is among the most important hyperparameters. Very often,
a too low value for n units can significantly hurt the accuracy. It is likely that SXi,Y is
high because a is too small. One could therefore compute SXi|Xi∈[a+c,b],Y for c ∈ [1, b− a],
starting with c = 1 until SXi|Xi∈[a+c,b],Y becomes low. Then, hyperparameter n units can
be replaced by n units|n units ∈ [a+ c, b], which has a low HSIC, and whose value can be
set close to a+ c like in the previous paragraph. This methodology is illustrated on Figure
12, where SXi|Xi∈[a+c,b],Y is plotted with respect to c.

(a) MNIST (b) Cifar10 (c) Bateman

Figure 12: SXi|Xi∈[a+c,b],Y w.r.t. c for (a) n layers in MNIST, (b) kernel size in Cifar10 and (c)
n layers in Bateman.

This plot highlights that in each case, SXi,Y decreases until it reaches a value that would
make the corresponding hyperparameter belong to the less important hyperparameters. It
suggests that we could set n layers = 3 for MNIST, kernel size = 3 for Cifar10 and
n layers = 4 for Bateman without affecting the error too much. Once hyperparameters
space has been reduced to improve neural networks execution time, it is possible to apply
any classical hyperparameter optimization algorithm.
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6. Two step hyperparameter optimization: focusing on impactful
hyperparameters

One of the most successful and widely used hyperparameter optimization algorithms is
Gaussian Processes-based Bayesian Optimization, that we denote GPBO by convenience.
However, this algorithm is known to struggle in too high dimensions. In the case of Cifar10,
choosing values for hyperparameters that affect execution time would still lead to a space of
dimension 20, which is quite large to apply GPBO.

In Song et al. (2007), the authors introduce the use of HSIC for feature selection and in
Spagnol et al. (2018), HSIC based feature selection is used in the context of optimization.
The idea is to compute SXi,Y for each variable involved in the optimization, and to discard
low SXi,Y variables from it. More specifically, the discarded variables are fixed to an arbitrary
value, and then the optimization algorithm is applied only in the dimension of the high
SXi,Y variables.

This methodology is particularly suited to hyperparameter optimization. In this work,
we have emphasized the ability of HSIC to identify the most important hyperparameters.
This allows performing relevant HSIC driven hyperparameters selection, which can overcome
the problem of optimization in too high dimensional hyperparameters space. We go farther
and present a two-step optimization. We do not stop to the optimization of most relevant
hyperparameters but also fine-tune less important hyperparameters in a second optimization
step. As a result, the problematic optimization in high dimension is split into two easier
optimization steps:

1 Optimization in the reduced, yet impactful hyperparameters space, which has reason-
able dimension. It allows applying GPBO despite the initially large dimension of the
hyperparameters space. At the end of this step, optimal values for the most impactful
hyperparameters are selected.

2 Optimization on the remaining dimensions. In our case, GPBO can be reasonably
applied in this space, but note that we might have hyperparameters spaces whose initial
dimension is so high that after the first step, the remaining dimensions to optimize
could still be too numerous for GPBO to be performed. In that case, other, less refined
but more robust hyperparameter optimization algorithms (like random search or Tree
Parzen Estimators (Bergstra et al., 2011)) could be applied, which would not be so
much of a problem since remaining hyperparameters are less impactful.

For the first step, values have to be chosen for less impactful hyperparameters that are
not involved in the optimization. In Spagnol et al. (2018), the authors choose the values
yielding the best output after the initial random search. Here, the value selection method
that aims at improving execution speed, introduced in Section 5.3, integrates perfectly
with this two-step optimization. Following this method brings two advantages. First, we
can obtain more cost-effective neural networks if we keep these values through the two
optimization step. Second, if we do not care so much about execution speed but only look
for accuracy, still fixing these values during the first optimization step allows to improve the
training speed and so global hyperparameter optimization time.

The rest of the low SXi,Y hyperparameters value can be set as those of the hyperpa-
rameter configuration yielding the best error. There is one last attention point: one has
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to be careful about interactions between low SXi,Y hyperparameters. If two low HSIC
hyperparameters Xi and Xj are found to interact, like discussed in section 4.2, and Xi has
an impact on execution speed, the value of Xj must be chosen so that value of the pair
(Xi, Xj) is close to a value yielding a good neural network error. The two-step optimization
is summarized in Algorithm 2.

Algorithm 2 Two-step Optimization

1: Inputs: hyperparameter search space H = X1 × ...×Xnh , ns
2: Apply Algorithm 1: ”Evaluation of HSIC in hyperparameter analysis”.
3: Perform interval reduction
4: Select values for less impactful hyperparameters that improve execution speed, taking

care of interaction.
// Step 1:

5: Apply GPBO to the most impactful hyperparameters.
// Step 2:

6: if goal = accuracy and execution speed then
7: Keep the optimal values of step 1 and the values of less impactful hyperparameters

that improve execution speed. Apply GPBO to the remaining dimensions.
8: else if goal = accuracy only then
9: Keep the optimal values of step 1. Apply GPBO to the remaining dimensions.

We evaluate this two-step optimization on our three data sets. For each of these, we
consider 4 baselines:

• Random search: The result of the random search of 1000 configurations plus 200
additional configurations for a total of ns = 1200 points.

• Full GPBO: Gaussian Processes-based Bayesian Optimization, conducted on the
full hyperparameters space, without any analysis based on HSIC. We initialize the
optimization with 50 random configurations and perform the optimization for 50
iterations (enough to reach convergence).

• TS-GPBO (accuracy): Two-Step GPBO described in Algorithm 2, with goal = accuracy.
Step 1 and 2 are run for 25 iterations.

• TS-GPBO (accuracy + speed): Two-Step GPBO described in Algorithm 2, with goal
= accuracy and execution speed.

For each of these baselines, the test error is reported (the metric is accuracy for MNIST and
Cifar10 and MSE for Bateman), as well as the number of parameters of the best models and
their FLOPs. Random search (ran using 100 parallel jobs for MNIST and Bateman and 24
for Cifar10) took between 2 and 3 days depending on the data set, full GPBO between 3
and 4 days and TS-GPBO between 3 and 4 days as well (2− 3 days for the initial random
search and 1 day for the two steps of GPBO). Time measure is coarse because not all the
training has been conducted on the same architectures (Sandy Bridge CPUs, Nvidia Tesla
V100, and Nvidia Tesla P100 GPUs), even within the same baseline, for cluster accessibility
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reasons. Nonetheless, these approximate time measures demonstrate that full GPBO and
TS-GPBO take approximately the same amount of time. This is explained by step 1 of
TS-GPBO which always chooses values for non-optimized hyperparameters that improve
execution speed and training time. As a result, step 1 is quite fast. Besides, experiments
show that step 2 usually converges faster, in terms of number of evaluations, than full GPBO
to the reported minimum, perhaps because the optimal values found during step 1 make
step 2 begin close to an optimum. The results of 5 repetitions (except for random search) of
each baseline can be found in Table 4.

Results show that except for Cifar10, TS+GPBO yields very competitive neural networks
while having far fewer parameters and FLOPs. For MNIST, TS+GPBO model has ≈ 66 and
3 times fewer parameters and FLOPs than full GPBO and random search. For Bateman
these factors are 482 and 380. This huge factor may be explained by an oversized initial
hyperparameter search space. Still, a reasonable size for the search space cannot be found
a priori and our method makes hyperparameter optimization robust to such bad a priori
choices. Note that for these cases, we only reported results of TS-GPBO (accuracy + speed),
because the results of this baseline were already very good and TS-GPBO (accuracy) did
not bring significant improvement. For the special case of Cifar10, TS-GPBO (accuracy)
and (accuracy + speed) both find a model which has 11 and 9 times fewer parameters than
random search and full GPBO. TS-GPBO (accuracy) finds a model which has ≈ 3 and
2 fewer FLOPs than random search and full GPBO while these factors are 10 and 8 for
(accuracy + speed). Full GPBO and TS-GPBO (accuracy) achieve comparable accuracy
but the standard deviation for full GPBO is 2.5 times higher than for TS-GPBO (accuracy),
which demonstrates the robustness of TS-GPBO (accuracy). Even if execution time is not
an explicitly desired output of TS-GPBO (accuracy), the first step of TS-GPBO, which
selects values that improve execution time, seems to bias the optimization towards more
cost-effective models, as the final number of parameters and FLOPs shows. All these good
results have been allowed thanks to information given by HSIC analysis. Hence, not only
TS-GPBO outputs good and cost-effective models, but it also outputs a better knowledge
of hyperparameters interaction in these machine learning problems, as opposed to random
search and full GPBO which are black-boxes.

7. Discussion and Perspectives

Hyperparameters modeling choice. HSIC is a powerful tool that is widely used for
sensitivity analysis as a dependence measure. Its application to hyperparameter optimization
required some work, especially regarding the complex structure of hyperparameters space.
To achieve this goal, some modeling choices have been made, such as the application of
ΦXi to map hyperparameter Xi to a uniform random variable. The good results obtained
in Section 6 not only validate the usage of information given by HSIC for hyperparameter
analysis, but also this modeling choice.

Automating Two-Step Gaussian Process-based Bayesian Optimization. In this
work, we presented methodologies for exploiting HSIC information that involved human
intervention. Indeed, someone has to actively decide which hyperparameter deserves to
be considered as more or less important. Nevertheless, one advantage of HSIC is that it
is a scalar metric. One could construct an HSIC based hyperparameter optimization by
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data set baseline test metric params MFLOPs

MNIST RS 98.36 436,147 871
- full GPBO 98.42 ± 0.05 10,271,367 20,534
- TS-GPBO (accuracy + speed) 98.42 ± 0.02 151,306 307
Cifar10 RS 81.8 99,444,880 1,832,615
- full GPBO 82.73 ± 1.45 71,111,761 1,441,230
- TS-GPBO (accuracy) 82.60 ± 0.58 9,604,539 650,269
- TS-GPBO (accuracy + speed) 79.34 ± 0.15 9,281,258 178,621
Bateman RS 1.99 ×10−4 1,259,140 2,516
- full GPBO 2.94 ± 0.42 ×10−4 1,588,215 3,173
- TS-GPBO (accuracy + speed) 3.49 ± 0.31 ×10−4 3,291 7

Table 4: Results of hyperparameter optimization for Random Search (RS), Gaussian Processes based
Bayesian Optimization on full hyperparameters space (full GPBO) and Two-Steps Gaussian Processes
based Bayesian Optimization (TS-GPBO). The mean ± standard deviation across 5 repetitions
is displayed for the test metric. For the number of parameters and FLOPs, the maximum value
obtained across repetitions is reported because it illustrates the worst scenario that can happen for
execution speed, and how much our method prevents it.

setting a threshold above which hyperparameters are considered as important, leading to
an end-to-end automatic, yet explainable hyperparameter optimization algorithm. Though
the idea of a threshold is used in Spagnol et al. (2018) its application to hyperparameter
optimization has not been studied in this paper and could be part of future works.

Other dependence measures. In this work, we used HSIC as a dependence measure.
Our derivations for its application to hyperparameter analysis still hold for any other
dependence measure sharing the same properties as HSIC, though studies of different
dependence measures is beyond the scope of this paper.

Global hyperparameter optimization speed up. We presented some ways of using
HSIC in hyperparameter optimization, but this paper mostly emphasized the possibility
to exploit it in order to find lighter models. We are aware that execution speed is not
always a goal for machine learning practitioners. Still, machine learning practitioners are
always concerned about training speed. The first step of TS-GPBO (accuracy) demonstrated
the possibility to use HSIC to improve training speed without hurting the final accuracy
so even if final execution speed is not a goal, TS-GPBO made it interesting to use HSIC
for that purpose. To go farther, it would even be possible to apply parallel GPBO like
described in Snoek et al. (2012), or to use Hyperband on the initial random search, since
HSIC computation only relies on the error of the p-% best neural networks.

Further execution time improvement. One advantage of execution time improvement
obtained thanks to HSIC is that it only relies on the conception of the neural network. There-
fore, additional improvement could be made by applying other techniques like quantization
or weights pruning.
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8. Conclusion

Hyperparameter optimization is a very important step of machine learning applications and
ordinarily only returns one optimal hyperparameter configuration, in a black-box fashion.
Using an approach based on sensitivity analysis, we show that we can make hyperparameter
optimization explainable. In particular, we adapt Hilbert Schmidt Independence Criterion,
a statistical dependence tool used in sensitivity analysis, to hyperparameters spaces that
can be complex and awkward due to the different nature of hyperparameters (continuous or
categorical) and their interactions and inter-dependencies. Their use for hyperparameter
analysis allows constructing new optimization methodologies, based on two-step Bayesian
optimization where each step is applied on a relevant subset of hyperparameters and other
hyperparameters values are chosen in principled ways. These methodologies allow finding
optimal values for hyperparameters that improve execution speed as well as test error.
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Adrien Bernède and Gaël Poëtte. An unsplit monte-carlo solver for the resolution of the
linear boltzmann equation coupled to (stiff) bateman equations. Journal of Computational
Physics, 354:211–241, 02 2018.

M. Bisi and L. Desvillettes. From reactive boltzmann equations to reaction–diffusion systems.
Journal of Statistical Physics, 124(2):881–912, Aug 2006.

E. Borgonovo. A new uncertainty importance measure. Reliability Engineering & System
Safety, 92(6):771 – 784, 2007.

François Chollet. Xception: Deep learning with depthwise separable convolutions. CoRR,
abs/1610.02357, 2016.

I. Csizar. Information-type measures of difference of probability distributions and indirect
observation. Studia Scientiarum Mathematicarum Hungarica, 2:229–318, 1967.
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Adrien Spagnol, Rodolphe Le Riche, and Sébastien Da Veiga. Global sensitivity analysis for
optimization with variable selection. SIAM/ASA J. Uncertain. Quantification, 7:417–443,
2018.

Kenneth O. Stanley and Risto Miikkulainen. Evolving neural networks through augmenting
topologies. Evol. Comput., 10(2):99–127, June 2002.

Mingxing Tan and Quoc Le. EfficientNet: Rethinking model scaling for convolutional neural
networks. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of
the 36th International Conference on Machine Learning, volume 97 of Proceedings of
Machine Learning Research, pages 6105–6114, Long Beach, California, USA, 09–15 Jun
2019. PMLR.

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, and Quoc V. Le. Mnasnet:
Platform-aware neural architecture search for mobile. CoRR, abs/1807.11626, 2018.

29
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Appendix A: Hyperparameters spaces

In this section, we describe hyperparameters spaces used for each problem in this paper.
Note that hyperparameter n seeds denotes the number of random repetitions of the training
for each hyperparameter configuration. If a conditional hyperparameter Xj is only involved
for some specific values of a main hyperparameter Xi, it is displayed with an indent on tab
lines below that of Xi, with the value of Xi required for Xj to be involved in the training.

Runge & MNIST

For Runge & MNIST, only fully connected Neural Networks are trained, and the width
(n units) is the same for every layer.

hyperparameter type values for Runge values for MNIST

n layers integer ∈ {1, ..., 10} same
n units integer ∈ {7, ..., 512} ∈ {128, ..., 1500}
activation categorical elu, relu, tanh or sigmoid same
dropout boolean true or false same
yes:dropout rate continuous ∈ [0, 1] same
batch norm boolean true or false same
weights reg l1 continuous ∈ [1× 10−6, 0.1] same
weights reg l2 continuous ∈ [1× 10−6, 0.1] same
bias reg l1 continuous ∈ [1× 10−6, 0.1] same
bias reg l2 continuous ∈ [1× 10−6, 0.1] same
batch size integer ∈ {1, ..., 11} ∈ {1, ..., 256}
loss function categorical L2 error or L1 error L2 error or crossentropy
optimizer categorical adam, sgd, rmsprop or adagrad same
n seeds integer ∈ {1, ..., 40} ∈ {1, ..., 10}

Table 5: Hyperparameters values for Runge & MNIST

Conditional groups: (see (iii) of Section 4.3) G0 and Gdropout rate
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Bateman

For Bateman, only fully connected Neural Networks are trained, and the width (n units) is
the same for every layer.

hyperparameter type values for Bateman

n layers integer ∈ {1, ..., 10}
n units integer ∈ {7, ..., 512}
activation categorical elu, relu, tanh or sigmoid
dropout boolean true or false
yes:dropout rate continuous ∈ [0, 1]
batch norm boolean true or false
learning rate continuous ∈ [1× 10−6, 1× 10−2]
weights reg l1 continuous ∈ [1× 10−6, 0.1]
weights reg l2 continuous ∈ [1× 10−6, 0.1]
bias reg l1 continuous ∈ [1× 10−6, 0.1]
bias reg l2 continuous ∈ [1× 10−6, 0.1]
batch size integer ∈ {1, ..., 500}
loss function categorical L2 error or L1 error
optimizer categorical adam, sgd, rmsprop, adagrad or nadam
adam:amsgrad boolean true or false
adam, nadam:1st moment decay continuous ∈ [0.8, 1]
adam, nadam:2nd moment decay continuous ∈ [0.8, 1]
rmsprop:centered boolean true or false
sgd:nesterov boolean true or false
sgd, rmsprop:momentum continuous ∈ [0.5, 0.99]
n seeds integer ∈ {1, ..., 10}

Table 6: Hyperparameters values for Bateman

Conditional groups: (see (iii) of Section 4.3) G0, Gdropout rate, Gamsgrad, Gcentered, Gnesterov,
Gmomentum and
G(1st moment,2nd moment)
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Cifar10

For Cifar10, we use Convolutional Neural Networks, whose width increases with the depth
according to hyperparameters stages and stage mult. The first layer has width n filters,
and then, stages− 1 times, the network is widen by a factor stage mult. For instance, a
neural network with n filters = 20, n layers = 3, stages = 3 and stage mult = 2 will
have a first layer with 20 filters, a second layer with n filters× stage mult = 40 filters,
and a third layer with n filters× stage multstages−1 = 60 filters.

hyperparameter type values for Bateman

n layers integer ∈ {3, ..., 12}
n filters integer ∈ {16, ..., 100}
stages integer ∈ {1, 4}
stage mult continuous ∈ [1, 3]
kernel size integer ∈ {1, 5}
pool size integer ∈ {2, 5}
pool type categorical max or average
activation categorical elu, relu, tanh or sigmoid
dropout boolean true or false
yes:dropout rate continuous ∈ [0, 1]
batch norm boolean true or false
learning rate continuous ∈ [1× 10−6, 1× 10−2]
weights reg l1 continuous ∈ [1× 10−6, 0.1]
weights reg l2 continuous ∈ [1× 10−6, 0.1]
bias reg l1 continuous ∈ [1× 10−6, 0.1]
bias reg l2 continuous ∈ [1× 10−6, 0.1]
batch size integer ∈ {10, ..., 128}
loss function categorical L2 error or crossentropy
optimizer categorical adam, sgd, rmsprop, adagrad or nadam
adam:amsgrad boolean true or false
adam, nadam:1st moment decay continuous ∈ [0.8, 1]
adam, nadam:2nd moment decay continuous ∈ [0.8, 1]
rmsprop:centered boolean true or false
sgd:nesterov boolean true or false
sgd, rmsprop:momentum continuous ∈ [0.5, 0.99]
n seeds integer ∈ {1, ..., 10}

Table 7: Hyperparameters values for Bateman

Conditional groups: (see (iii) of Section 4.3) G0, Gdropout rate, Gamsgrad, Gcentered, Gnesterov,
Gmomentum and
G(1st moment,2nd moment)
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Appendix B - Construction of Bateman data set

Bateman data set is based on the resolution of the Bateman equations, which is an ODE
system modelling multi species reactions:

∂tη(t) = Σr

(
η(t)

)
· η(t), with initial conditions η(0) = η0,

and η ∈ (R+)M , Σr ∈ RM×M . Here, f : (η0, t)→ η(t), and we are interested in η(t), which
is the concentration of each of the species Sk, with k ∈ {1, ...,M}. For physical applications,
M ranges from tens to thousands. We consider the particular case M = 11. Matrix Σr

(
η(t)

)
depends on reaction constants. Here, 4 reactions are considered and each reaction p has
constant σp. 

(1) : S1 + S2 → S3 + S4 + S6 + S7,

(2) : S3 + S4 → S2 + S8 + S11,

(3) : S2 + S11 → S3 + S5 + S9,

(4) : S3 + S11 → S2 + S5 + S6 + S10,

with σ1 = 1, σ2 = 5, σ3 = 3 and σ4 = 0.1. To obtain Σr

(
η(t)

)
, we have to consider the

species one by one. Here we give an example of how to construct the second row of Σr

(
η(t)

)
.

The other rows are built the same way. Given the reaction equations :

∂tη2 = −σ1η1η2 + σ2η3η4 − σ3η2η11 + σ4η3η11,

because S2 disappears in reactions (1) and (3) involving S1 and S11 as other reactants at
rate σ1 and σ3, respectively, and appears in reactions (2) and (4) involving S3, S4 and S3,
S11 as reactants, at rate σ2 and σ4 respectively. Hence, the second row of Σr

(
η(t)

)
is

[0, −σ1η1, 0, σ2η3, 0, 0, 0, 0, 0, 0, −σ3η2 + σ4η3],

with η(t) denoted by η to simplify the equation and ηi the i-th component of η. To construct
the training, validation and test data sets, we sample uniformly (η0, t) ∈ [0, 1]12 × [0, 5]
130000 times. We denote these samples (η0, t)i for i ∈ {1, ..., 130000}. Then, we apply a
first order Euler solver with a time step of 10−3 to compute f((η0, t)i). As a result, neural
network’s input is (η0, t) and neural network’s output is f((η0, t)).

33
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Appendix C - HSICs for conditional hyperparameters

MNIST

Figure 13: HSICs for Gdropout rate of MNIST hyperparameter analysis

Bateman

(a) Gamsgrad (b) G(1st moment,2nd moment) (c) Gcentered

(d) Gdropout rate (e) Gmomentum (f) Gnesterov

Figure 14: HSICs for conditional groups of Bateman hyperparameter analysis
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Cifar10

(a) Gamsgrad (b) G(1st moment,2nd moment)
(c) Gcentered

(d) Gdropout rate (e) Gmomentum (f) Gnesterov

Figure 15: HSICs for conditional groups of cifar10 hyperparameter analysis
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