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ABSTRACT

In this paper, we propose a novel end-to-end sequence-to-
sequence spoken language understanding model using an at-
tention mechanism. It reliably selects contextual acoustic fea-
tures in order to hypothesize semantic contents. An initial
architecture capable of extracting all pronounced words and
concepts from acoustic spans is designed and tested. With
a shallow fusion language model, this system reaches a 13.6
concept error rate (CER) and an 18.5 concept value error rate
(CVER) on the French MEDIA corpus, achieving an absolute
2.8 points reduction compared to the state-of-the-art. Then,
an original model is proposed for hypothesizing concepts and
their values. This transduction reaches a 15.4 CER and a 21.6
CVER without any new type of context.

Index Terms— spoken language understanding, neu-
ral networks, attention mechanisms, sequence-to-sequence,
transfer learning

1. INTRODUCTION

Spoken Language Understanding (SLU) systems extract se-
mantic contents mentioned in spoken sentences for task-
oriented dialogues, question answering, and other conversa-
tional applications.

Semantic contents are fragments of a domain application
ontology that can be defined with a frame language as de-
scribed in [1]. Frame structures are rich representations of
knowledge structures with important properties, such as type
models of slot fillers and inheritance of slot properties through
chains of frame-slot relations. With a frame language, a con-
cept is represented as a relation between a frame name (e.g.
ADDRESS), a frame property, often called slot, (e.g. city),
and a frame value, often called slot filler (e.g. Paris). Prop-
erties can be inherited through a chain of slots. Using this
semantic representation, speech acts such as request can be
defined as frames with slots filled by instances of frame struc-
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ture fragments. For the sake of simplicity, in the following,
slots and slot fillers are denoted as concept and value.

Concepts can be annotated with word sequences called
supports. Supports can be instantiated with hypotheses ob-
tained by an Automatic Speech Recognition (ASR) system as
described in [2, 3, 4, 5] or by direct transduction that gener-
ates instances of frame structures from acoustic features.

Supports are word spans expressed by a span of acoustic
features. Such a span may have variable duration and depends
on the speaker and other factors. If a value is mentioned, then
it is often included in a support. Spans of acoustic feature
supports may not be sufficient for unambiguously mentioning
a concept instance, even if they contain relevant semantic fea-
tures. This equivocation can be reduced by selecting relevant
spans of acoustic feature contexts using an attention mecha-
nism.

Human experience in understanding spoken sentences, es-
pecially in foreign languages, provides evidence that concepts
can be hypothesized from spoken language tokens without
thinking about, or even knowing, the exact spelling of some
relevant words. This motivates the use of a model based on
a transduction of acoustic into semantic content supports. In
this paper, an end-to-end (E2E) SLU architecture is proposed
in order to hypothesize fragments of frame instances with
acoustic features. It is applied on user turns of the French ME-
DIA corpus, corresponding to a complex negotiation dialogue
task (see Section 4.1). This task is particularly difficult since
a dialogue turn may contain a large variety of concept-value
instances, including repetitions and self-corrections with spe-
cific semantic relations between these contents.

A novelty of the proposed model is the introduction of an
attention mechanism that selects contextual acoustic features
in order to hypothesize directly concept symbols and their val-
ues. An initial architecture is first designed and tested in order
to hypothesize words and concepts. An enriched architec-
ture is then proposed in order to hypothesize concepts and de-
limiting their supports of underlying acoustic representations
while limiting the generation of character hypotheses only
for values. As a consequence, no human prior-knowledge is
needed to extract values from words of the concept support.
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The paper is organized as follows. Section 2 presents re-
lated works in the SLU domain. Section 3 presents our E2E
SLU architecture, while corpora, experiments and results are
described in Section 4. Finally, conclusions and perspectives
are given in Section 5.

2. RELATED WORK

Early speech understanding systems based on natural lan-
guage semantic parsers and artificial intelligence approaches
to beam search and knowledge representation are reviewed
in [6]. Further developments stressing comparisons of differ-
ent methods using a common annotated corpus, new parsing
techniques and statistical models are reviewed in [7]. Later,
advanced spoken language understanding systems with ad-
vanced statistical models and paradigms in various types of
applications are described in [1]. More recently, deep neu-
ral networks (DNN) for generating semantic domain, intent
and slot filler hypotheses were proposed using a pipeline
of automatic speech recognition and SLU models. These
architectures provided better or comparable results to those
obtained with previous architectures. Examples can be found
in [2, 3, 4]. Result examples and comparison using SLU
in negotiation dialogues are reported in [5]. Examples of
attempts to integrate ASR and SLU functions in end-to-end
(E2E) compact trainable DNN architectures are proposed in
[8, 9, 10, 11, 12, 13].

In this paper, a novel E2E SLU system is introduced and
tested on the French MEDIA corpus. It is motivated by the
evidence that the perception of spoken semantic entities and
relations is associated with the perception of word spans ex-
pressing semantic properties and their values. A basic archi-
tecture is introduced with attention on suitable acoustic con-
texts having relevance dependent on decoder semantic repre-
sentations. Then, a novel architecture is proposed in order
to detect acoustic spans expressing lexical features for clue
words of semantic entities and their values. This introduction
is motivated by explaining, with prior knowledge, frequent
errors observed in the annotated development set.

Recently, methods have been proposed to learn high-level
representations from surface acoustic features for speech-to-
speech translation [14, 15, 16, 17].

In this paper, we aim to use high-level representations
from surface acoustic features for speech-to-semantic trans-
duction.

In [18], relations in semantic knowledge graphs have been
used for inferring answers in question answering dialogues.

In this paper, application domain model relations, explicit
or inferred by inheritance, are considered for selecting use-
ful context for the interpretation of acoustic spans of domain
relevant concepts.

3. E2E SLU ARCHITECTURE

In this work, we use an encoder-decoder neural network. An
attention mechanism as described by [19] was designed in or-
der to align the input with the output. Hypothesizing spoken
phonemes with an ASR system may be difficult if a training
set of phonemes aligned with speech is not available. For this
reason, a first attempt using experience on character recogni-
tion is used in this paper. Acoustic to concept hypothesizing
through to phoneme is left for future work.

The input of the network are 40 dimensional MelFBanks
extracted with a Hamming window of 25 ms and 10 ms
strides. The system output is a sequence of characters pre-
dicting words, normalized values, or concept labels. Note
that each concept label is represented by one special charac-
ter (e.g. ǵ for the concept hotel-services).

Our attention based encoder-decoder architecture, de-
picted in Figure 1, is based on the Espresso recipe initially
developed for the WSJ ASR task, as described in [20].

Let X = (x1, ..., xTx
) be the vector of the input features

and Y = (y1, ..., yTy ) be the outputs of the model. Our model
computes the outputs Y from an input sequence X . The en-
coder first uses 4 2-dimensional convolutional blocks (each
convolution layer is followed by a batch norm). Then, 4 biL-
STM layers are used to obtain the encoder hidden states as:

Encoder(X) = (
←→
h1 , ...,

←→
hTx) (1)

The decoder uses 4 LSTM followed by 2 fully-connected lay-
ers and a softmax. The decoder states are computed using
the attention mechanism by aligning the encoder hidden states
and previous decoder hidden states, as:

Y = Decoder(Hatt) (2)

The attention mechanism is applied as described in [19]:

Hatt = (Hatt
1 , ...,H

att
Ty
) (3)

Hatt
i =

Tx∑
j

αij
←→
hj with αij =

exp(eij)∑Tx

k=1 exp(eik)
(4)

eij is the relevance of the acoustic representation
←→
hj and

the ith semantic output. Note that the encoder vectors
←→
h are

computed using only the information from the top-encoder
hidden states.

In order to improve the encoder-decoder performance, we
use an additional LSTM-based Language Model (LM) that
uses look-ahead word probabilities to obtain both word and
character probabilities ([20, 21]).

Shallow-fusion [22] score combination is performed in or-
der to take into account the output of the encoder-decoder
SLU system and the LSTM-based LM. During the decoding
phase with the beam search, hypotheses are scored using the
weighted sum of both the encoder-decoder model and the LM
scores.
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Fig. 1. E2E Encoder-Decoder SLU Model

4. EXPERIMENTS

4.1. Datasets

Our architecture is pretrained for ASR and then adapted to
SLU. Training is detailed in the next section while we briefly
describe the different corpora in this section.

For the transcription model, we use several French generic
broadcast news corpora described in [23], in addition to the
training sets of in-domain SLU telephone conversation cor-
pora: PORTMEDIA [24], MEDIA [25] and DECODA [26].
As a result, we obtained a training corpus of 414 hours for
ASR. Such a model needs a lot of audio data along with their
manual transcription even if a frame acoustic alignment with
words is not needed. The system will train itself to align each
output character with input acoustic features thanks to its at-
tention mechanism [27, 28, 29].

For the SLU models, only the 24 hours of MEDIA (M)
and PORTMEDIA (PM) training sets are used during train-
ing. These two corpora contain both telephone conversations
between two humans in the Wizard of Oz mode: one plays a
computer, the other a user who wants to obtain information
or make a reservation. MEDIA contains requests and lodging
booking in France and PORTMEDIA contains conversations
about theater shows during the french Avignon Festival. All
conversations are manually transcribed and user turns are se-
mantically annotated with concept labels, their supports and
the corresponding values. Considering the Table 1 example,
the concept label link-coref is supported by the word that an-
notated with the normalized value singular.

Turns of these datasets contain word spans expressing se-
mantic content mentions mixed with other spans that do not
express application domain contents. For this task, user turns
may express concepts such as logical AND OR connectors,
references to previously mentioned concepts and mentions to
entities relative to other entities. Furthermore, system turns

tend to solicit the user to provide useful information for com-
posing a state of the world to obtain a frame structure in an
application domain database.

In the experiments section, we will present SLU results on
the MEDIA corpus, split accordingly to the official training,
development (Dev) and test sets, containing respectively 727,
79 and 208 dialogues and 13k, 1.2k and 3.6k user utterances.
User transcripts are annotated using 76 semantic concepts,
along with their supports and the corresponding normalized
value.

4.2. Training and outputs

Inspired by the curriculum-based transfer learning procedure
for SLU proposed in [23]1, we first train a model for the ASR
downstream task. For that purpose, we use out-of-domain and
in-domain ASR data (as described in the previous section),
and then fine-tune using our in-domain corpora. This first
model is denoted as ASR model.

Thereafter, the model is retrained for the SLU task us-
ing all the in-domain SLU data (MEDIA and PORTMEDIA
train sets, denoted M+PM), and then fine-tuned with the tar-
get MEDIA data. The transition from ASR to SLU is made by
enriching the output with concept symbols. In contrast with
[23, 30], the last fully connected layer is just extended. As
a consequence, the model benefits entirely from its previous
training. This second model is denoted as AllWords-C model.

[30] showed that hypothesizing only words belonging to
concept support enhanced the SLU performance evaluation.
Thus, we introduce a third model that adapts the AllWords-C
model on the specific outputs: concepts and words from sup-
ports. A new character is then added to the last layer in order
to output a global character * instead of all out-of-concept-
support words. This third SupWords-C model is obtained with
transfer learning on these outputs.

Finally, a novel solution is introduced to perform a direct
transduction from acoustic features to concept-value pairs.
To do so, we re-adapt a last time the AllWords-C model in
order to output directly the normalized values and the con-
cept. In that case, characters no longer represent pronounced
words. They represent either one concept or one character of
a normalized value. This model is denoted as NormValues-
C model. In that last architecture, frame structure fragments
are obtained with a fully automatic E2E sequence 2 sequence
architecture.

All models and their output formats are summarized in
Table 1. Note that, for the sake of clarity, concepts are written
in full instead of their special character output.

4.3. Evaluation Protocol

The architecture shown in Figure 1 is used in order to gener-
ate outputs with different components, all evaluated according

1Unlike [23], we did not choose to train our model on the Named Entity
Recognition (NER) task.



ASR
ASR � ASR M+PM

is there a swimming-pool in that one

AllWords-C
ASR model � SLU M+PM � SLU M

is there a <hotel-services> swimming-pool
</hotel-services> in <linkref-coref> that

</linkref-coref> <objectbd> one </objectbd>

SupWords-C
AllWords-C model � SLU M*

* <hotel-services> swimming-pool
</hotel-services> * <linkref-coref> that

</linkref-coref> <objectbd> one </objectbd>

NormValues-C
AllWords-C model � SLU Norm M*
* <hotel-services> swimming-pool

</hotel-services> * <linkref-coref> singular
</linkref-coref> <objectbd> hotel </objectbd>

Table 1. Model (chain of training) and output for each pro-
posed configuration, based on the user utterance ”Is there a
swimming-pool in that one?”.

to the concept error rate (CER) and concept-value error rate
(CVER) metrics. Insertion, deletion, and substitution errors
are used to compute evaluation measures and to perform the
error analysis.

Normalized values, i.e. the slot fillers, needed for the eval-
uation in CVER, are obtained with a set of manually designed
regular expressions in AllWords-C and SupWords-C configu-
rations. Expressions are applied to the outputs of each con-
cept support, as in [12, 23, 30, 5]. Using the NormValues-C
outputs, these handmade rules are not necessary anymore.

4.4. Results

Table 2 summarizes the results obtained with the three con-
sidered architecture solutions, without and with LM, on the
MEDIA corpus on both the Dev and Test sets.

Without LM, the best CER results are obtained with
NormValues-C model, both for Dev and Test. This supports
the conjecture that concepts can be perceived without consid-
ering orthographic word transcriptions. As we could expect,
when CER are similar, best CVER are achieved using human
rules. Nevertheless, very encouraging results are observed,
notably on Dev, when the CER is lower than others. For the
sake of comparison, [23] state-of-the-art results related to the
use of an E2E approach without LM, are reported with 21.6%
CER and 27.7% CVER, showing an absolute gain of 6 points.

Unlike in [23] where best results are obtained with the
SupWords-C configuration, our architecture does not benefit
from this kind of representation. We suppose that this is due
to the architectural difference: Attention Mechanism (AM)
vs. biLSTM/CTC. In the latter, the star is used as a correspon-
dence to the input acoustic frame when predicting outside-

Dev Test
% CER CVER CER CVER

Without a Language Model
AllWords-C [23] – – 21.6 27.7

AllWords-C 18.1 22.5 15.6 20.4
SupWords-C 17.3 22.0 15.6 20.5

NormValues-C 16.0 21.9 15.4 21.7

With a Language Model
AllWords-C [23] – – 18.1 22.1

SupWords-C [23] – – 16.4 20.9
AllWords-C 16.1 20.4 13.6 18.5

SupWords-C 17.6 22.5 15.5 20.5
NormValues-C 16.1 22.0 15.4 21.6

Table 2. Results obtained on the MEDIA Dev and Test Cor-
pora by our models compared to the State of the art.

of-concept characters. In our AM system, such a star is not
necessarily needed, as the output sequence is not constrained
to have the same length as the input. The AM is designed to
directly select relevant acoustic spans.

Using word hypotheses and LM, the best 13.6% CER and
18.5% CVER are observed for AllWords-C, showing a gain
of 2 points using the LM and 2.8 points CER considering the
best [23] state-of-the-art result even without significant con-
tribution of the LM on NormValues-C and SupWords-C. This
can be explained by the LM weight, optimized on the Dev set,
which is close to zero. This needs further investigation.

A first analysis of detailed concept errors on Dev shows
that the most frequent ones are insertions and deletions of log-
ical connectors and co-references.

5. CONCLUSIONS AND PERSPECTIVES

An E2E SLU architecture is introduced, based on an encoder-
decoder model with attention mechanism focusing on acous-
tic representations, useful for generating hypotheses of words,
concepts or values. Several combinations have been investi-
gated using or not LM reaching better results than state-of-
the-art.

The results indicate that word knowledge can be a rele-
vant context for semantic interpretation, particularly if it is se-
lected by an appropriate attention mechanism. The solutions
evaluated in this paper are based either on word or value rep-
resentations using characters. In future work we also plan to
use two decoders, one that outputs each character (allWords-
C) and the other one which focuses on concept-value pairs.
This could, at least, improve our CVER without degrading the
CER using the NormValues-C representation. Finally, new
types of LM including semantic hypotheses will also be in-
vestigated in future work.
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