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Models of Social Influence: A Survey

David Oriedi, Zahia Guessoum, Cyril de Runz, Amine Ait Younes
University of Reims Champagne-Ardenne, CReSTIC Reims, France

Abstract

Ounline Social Networks (OSN) have become an integral part of human life in the world
today. Social media applications have permeated almost every aspect of our lives. The concept
of social influence has emerged from social networks and has brought with it stimulating
research interest areas like influence maximization, viral marketing and sentiment analysis.
Most researchers provide specific contexts for analyzing influence such as topics, opinions or
intensity of interactions. As a result many different views exist of what constitutes influence
on social network. In general, empirical social influence research has three phases: collection
of social network data, formation of a social graph out of the collected data and use of the
social graph to compute influence scores through specific metrics. While many surveys on
Social Influence exist, there is hardly a survey that has taken an approach that explores
various techniques and metrics that have been used particularly to abstract the social graph
and to calculate influence out of the social graph. In this survey, we review past and current
approaches that have been applied in each of these phases of social influence study over time.
We also review some attributes of social network data and preprocessing activities undertaken
to make such data suitable for social influence analysis. The review concludes with a summary
of current trends in social influence research, existing open issues for further investigation and
future opportunities for exploitation.
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1 Introduction

A Social Network is a group of people connected through a defined relationship. Online Social
Networks are social networks through which people interact over a communication network. In the
recent past, millions of people have been connected through online social networks, for example
friendship in facebook, following in Twitter or photo liking in Instagram. As a result, researchers
have shown a lot of interest in social network analysis. With a huge volume of data generated by
online social networks such as Twitter, Facebook and Google, a number of research areas have come
up such as influence maximization, sentiment analysis and viral marketing. There is rich literature
on scientific identification of influential users in an online social network. This is due to the vast
amount of data generated from social networks.

Research in Social Influence has various classic applications in everyday life including protection
against malware propagation[l], finding of Opinion Leaders[2], Sentiment Analysis[3], finding of
Expert Persons[4] and Influence Maximization[5, 6]. Apart from these application advantages, social
influence analysis on social network data reveals patterns to do with the behavior of people directs
public decision making and promotes national security and economic control [7].

According to Almgren and Lee[8], research on influence measurement has been largely done on
two fronts, namely prediction based measures and observation based measures. Prediction based



measures rely on network structural measures such as centrality measures to predict influential users
in a social network. On the other hand, observation based measures seek to quantify the amount
of influence attributed to users in the social network. However, social influence is usually viewed
as an end product of an information diffusion process. Banerjee et al.[9] have identified two major
diffussion models namely the Independent Cascade Model and the Linear Threshold Model. The
Independent Cascade Model traces individual propagation behaviour while the Linear Threshold
Model exhibits a collective diffusion behaviour. It is therefore important to view social influence
as a twin phenomena of information diffussion and aggregation of the effect of that diffussion as
it relates to particular network members of interest. There exists in literature several approaches
that have been developed by researchers in order to approximate node influence on social networks.
Since Social Influence analysis contexts vary from one author to another, many models have been
proposed to provide definitions and metrics for computation [10]. The common motivation in each of
these works is the need for models that are accurate, optimal, scalable and computationally efficient.
Nevertheless, as far as we know, there are still no surveys that have been done from the perspective
of the three major phases of social influence study i.e social network data collection, abstraction of
the social graph and quantification of influence scores from the social graph. Figure 1 summarizes
this framework of social influence research.

This survey reviews past and current approaches adopted by researchers in collecting social
network data, building the social graph through abstraction and determining influence scores for
members of the social network. The survey is divided into three parts:

We begin by exploring existing approaches through which influence analysis is done on the
social graph. Specifically, we identify metrics that have been used through literature to carry out
quantitative definitions and experiments on the social graph. The value of influence score for a
particular user on the network is determined by the kind of metrics used in measuring that influence
score. For example, an influence score based on the number of links to a node may not be the same
as an influence score derived from the number of retweets received by a user upon retweeting.

Secondly, we review several ways through which entities and relationships on the social network
can be abstracted into a social graph. The topology of a social graph is determined by the interacting
entities and relationship types extracted from the social network data. Most works in literature
abstract social network members as nodes on the graph and relationships as links between the edges.
The survey will review frequency of user interactions, similarity of user activity times, similarity of
user topics,user opinions and other common criteria for abstracting node relationships.

Thirdly, this survey explores a variety of ways through which social network data can be collected
and preprocessed for social network analysis. The bulk of social network data comes from offline
records of online interactions among social network users, online shopping, advertising, instant
messaging as well as mobile communications[10]. Another source of this data is data that comes
through live streaming from different social media applications such as Facebook or YouTube.

Finally, a summary of the survey will be provided including the current research trends in
influence analysis, identified open issues and opportunities for further research in influence analysis.
Figure 2 shows a summarized view of this survey.

The major contributions of this paper are summarized as follows:

o We take a Data-Social Graph-Influence Analysis approach of the review of the state of the art.
As far as we know, we are the first to take this explicit approach to reviewing the state of the
art literature. We therefore offer a broader and a clearer perspective on the phases of social
influence research.

e We approach the review from a perspective that helps a reader to identify the various approaches
available for adoption at different phases of social influence research. By doing this, we offer
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a clear view to the reader to be able to select appropriate methods for addressing the open
issues associated with each phase of social influence research.

o We identify specific strengths and weaknesses associated with the most common social influence
metrics of computation. We believe this forms a good basis for identifying unresolved open
issues and scaling up influence research further.

The rest of this paper is organized as follows. In Section 2, we give a detailed introduction of
Social Influence. In Section 3, we provide techniques available for quantitative analysis of influence
on the social graph and explore the applications associated with each. In Section 4, we explore the
specific metrics used in the abstraction of social network data into a social graph while discussing
the types of social graphs that are realizable for each approach. In Section 5, we review the options
available for obtaining and cleaning social network data for research. Finally in Section 6, we
conclude the paper and highlight some current open issues.

2 Definition of Social Influence

According to Merriam-Webster dictionary, Influence is the power or capacity of causing an effect
in indirect or intangible way. Social Influence refers to the way in which individuals change their
behavior in order to meet the demands of a social environment. Social Influence takes many forms
including conformity, peer pressure, obedience, leadership or persuasion. This shows that influence
takes many forms and therefore, the understanding of its analysis can vary from one context to the
other.

Influencers in a social network play important roles in everyday life these days. They have
special characteristics related to their individual activity, social background and connection with
other members of the network that give them crucial roles in scientific and business domains[11].
Kardara et al. [12] define influencers as prominent individuals that have special traits that enable
them to affect proportionately a large number of their peers with their actions. These traits are
related to their activity in the network, social background and their position in the network.

Peng et al. [7] define Social Influence as a relationship established between two entities for a
specific action. In such a relationship, one entity is said to influence another entity if the former is
able to alter the opinion or behavior of the latter through their own actions. On Social Network
platforms, this behavior change comes through interactive actions such as posts, shares or replies of
content. Sun et al. [13] describe Social Influence as a behavioral change of individuals affected by
others in a network. They observe that the strength of Social Influence depends on many factors
like relationship strengths, temporal effects, network characteristics and individuals in the network.

From these definitions, it is evident that influencers are always active on the network. Infact in
[13], it is suggested that most influencers have strong ties in their neighborhoods. According to [14],
the tie strength between two nodes depends on the overlap of their neighborhoods meaning that if
the overlap between nodes A and B is large, then the two nodes are considered to have a strong tie.

Some attributes of Social Influence as outlined by Peng et al. [7] include being dynamic, transitive,
measurable, subjective, asymetric and event sensitive. Of these properties, subjectivity is probably
more interesting because it shows why there has been a lot of effort from research to come up with
many influence measurement metrics and models. In fact, according to Riquelme and Gonzalez [10],
there is no agreement on what is meant by an influential user and hence new influence measures are
constantly emerging, each with different measurement criteria.



3 Influence Analysis Metrics

As has been mentioned, there are several metrics that are currently being used to carry out quantitative
analysis of influence on social networks. These metrics differ based on the definition of influence
that a researcher chooses to go by. According to [12], a metric of an influence model is the kind
of information that such a model takes into consideration when analyzing influence. The metric
determines the kind of network events or objects that are used in approximating Social Influence
and the relationships thereof.

In this section, we review the most common metrics that have been used in computing influence on
social networks. Table 1 shows a summary of these metrics and the datasets that they have been
used by various authors.

3.1 Centrality Based Metrics

Centrality Based models of influence mostly rely on topological metrics like the position of the node
in the network and and the network community structure [15]. The general assumption being that
if a node is located in an appropriate location in the graph then it could be an influential node.
They are mostly used for node-level ranking through centrality metrics [16]. Centrality metrics give
weight to the number of links that a node is incident to and the position of such a node in relation
to the immediate neighborhood or the global network.

For the analysis of influence, centrality measures reward nodes with higher number of links and better
positioning within the graph. However, it is important to note that the edge weight formation here
is not determined by the frequency of interaction events but rather just the existence of interactions.
In other words, the number of events between the nodes is not a major factor in forming node
relationships. Even then, they have been used in recent studies for baseline comparisons, like in
[17] and [18]. A major motivation for using local centrality metrics as opposed to the global ones is
that local metrics are less computationally expensive and therefore can be evaluated in a relatively
shorter time especially in large graphs [16]. We now review the major centrality measures that rely
on metrics from this category.

3.1.1 Degree Centrality

The Degree Centrality (DC') measures influence as calculated from the number of links incoming to
and outgoing from a node. If the graph is oriented, then separate values for degree centrality can be
computed based on the number of inbound and outbound links. The Degree Centrality of a node v,
is calculated as:

N
1
DCvi) = 57— Y aiy (1)
j=1

where IV is the number of vertices and a; ; = 1, if there exists a direct link between v; and v; s.t
i # j. According to this metric therefore, the more the number of links incident to a node, the
more influential a node is. Several works have distinguished between indegree and outdegree to
differentiate between measures based on incoming links and outgoing links respectively. The degree
centrality has the limitation of being able to consider only a node’s incoming edges irrespective of
the centrality of its neighbors [16]. This limitation makes it unsuitable for use in cases where a
node’s influence is evaluated against, the influence performance of its neighbors.



Table 1: Summary of Social Influence Metrics

Model

Metrics Used

Metric Category

Dataset

SoRec (Li et al, 2019) | Interaction frequency | semantic MIT reality Mining
data
SAIM (Azzouzi and | retweets,replies, likes | semantic twitter

Romdhane, 2018)

CIM (Almgren and | degree, interaction | centrality, semantic Flickr Group

Lee, 2015) frequency

CentralityIBM centrality measures centrality Facebook

(Arazkhani et al,

2019)

GT (Li et al., 2017) retweets semantic Sina Weibo, Flickr

OpinionRank (Zhou | user opinion opinion Epinions dataset

et al., 2009)

Huang’s model | user emotions, topic | semantic Weibo News

(Huang et al, 2014) similarity

TSR (Wang et al., | interaction frequency, | topic Sina Weibo

2016) topic similarity

PHYSENSE user opinions opinion Synthesised Graphs

(Sathanur et al,

2013)

ClusterRank  (Chen | followers, followees, | topological Delicious, SIM

et al., 2013) interaction frequency

Sheikhhahmadi’s reply, retweet, | semantic twitter

model mention

(Sheikhhahmadi

et al., 2017)

TDN (Zhao et | retweets, other | propagation Twitter-Higgs,

al.,2019) relationships Brightkite

Al-garadi’s model | interaction frequency, | propagation twitter

(Al-garadi et al.,, | propagation strength

2016)

LAIM (Wu et al, | node-node hop propagation NetHEPT, NetPHY,

2018) Epinions,  Amazon,
DBLP

Peng’s model (Peng | node-node entropy information entropy Cellular Network

et al., 2017) Data

Lu’s model (Lu et al., | topic similarity, | topic, activity | Sina weibo

2019) activity similarity similarity

ProfileRank (Silva et | content, interaction | semantic twitter

al., 2013) frequency

Socialrank (Yang et | forwarded contents, | semantic Sina weibo

al., 2012) created contents

Yulan’s model (Yulan | replies, retweets semantic Sina Weibo

and Ling, 2013)

AWI(Yin and Zhang, | retweets, retweet | semantic Sina Weibo

2012) willingness




3.1.2 Closeness Centrality

Closeness Centrality(CC) is a global metric that is able to show how fast a node is able to communicate
with others in the network [15]. A node with high Closeness Centrality value is an effective spreader
of information in the network [19]. The value of closeness centrality (C'C) for a node v; is calculated
using the formular:

CO() = — b 2)

Zj:l c(vi, vj)

where N is the global number of vertices and c(v;,v;) is a function that defining the distance
between nodes v; and v; s.t ¢ # j (i.e min, maz, mean, or median). Essentially closeness centrality
of a node measures the distance between that node and all other nodes in the network. Yang et al.
[19] however point out that Closeness Centrality is not suitable for common influence measurement
problems because it assumes that any flow on the network happens only through the shortest paths,
a situation that is only possible if there is prior knowledge of the network. This is rarely the
case for real-world spreading processes. Empirical experiments have shown that closeness centrality
underperforms with respect to local metrics in identifying influential spreaders [20].

3.1.3 Betweenness Centrality

Arazkhani et al. [18] describe Betweenness Centrality as the number of shortest paths that pass
through a node. Nodes with high betweenness centrality has capacity to facilitate interaction among
nodes in different partitions of the network. Betweenness Centrality (BC) for a node v; is given as:

2 itk Oii (Vi)
TN (3)
Zj:l Ti,j
where N is the number of vertices, 0; ; is the geodesic paths connecting v; and v; while O‘i’j(Vk)
represents the number of geodesic paths including Vj. Although betweenness centrality is key in
enhancing interactions among different segments of a network, it suffers from high computational
complexity since it calculates shortest paths between all pairs of nodes in the network [15].

BC(v;) =

3.1.4 Eigenvector Centrality

Eigenvector Centrality (EC) of a node is a global measure of the extent to which a node is connected
to important nodes. Li et al. [21] define global influence as the influence strength of a node v over
the whole network. This means that the EC of a node is proportional to a location near the most
significant nodes or communities in a graph. Given an adjacency matrix A = (a; ;), the eigenvector
centrality z; of a node 7 is calculated as:

|
T; = X Zk: ak,i Tk (4)

where A # 0. A major shortcoming of Eigenvector centrality is that it is possible to have zero
Eigenvector values for nodes that have no incoming links [15].

3.2 Topological Ranking Measures

Most Centrality Measures, except Eigenvector Centrality, assume that all nodes and links are the
same in terms of their importance. However, this is not usually the case. Topological Ranking



measures provide an opportunity to reward nodes that are more connected than others and also
improve the ranking of nodes that are linked to important nodes [7]. The metrics in this topological
ranking category are meant to address this major weakness of centrality measures. Specifically, the
metrics used here are the number of links to a node and the ranking score of a node at a particular
time. Additionally, nodes that have been in the network longer are rewarded compared to more
recent nodes.

3.2.1 PageRank

PageRank algorithm is a variant of Eigenvector centrality and is measured through PageRank
algorithm [22], which is used to calculate the importance of web pages according to the number
of links received by each. The importance assigned to a web page (or a node) is based on the count
and quality of links to a node. In PageRank algorithm, the links that are coming from nodes that
have high number of outgoing links are less important compared to those coming from nodes with
less outgoing links. The PageRank Centrality PR(v;) of a node v; is:

PR(v) = B+a Y 25PR(v;) (5)
JEW ()

where W (i) neighbors with ingoing links to node 4, k;’“t is the outdegree of node j if such degree
is positive. Otherwise k;“t =1 in case j is null.

The total influence is controlled through a dumping factor 3. The value 8 = (1 — «) indicates
that even if a page has no ingoing links, it will still get a small PR(v). There is no universal criterion
for choosing the value of the dumping factor [16]. However, Avrachenkov et al. [23] recommended
values around 0.5 instead of the original 0.85 [22] on the basis that higher values of 8 might lead to
a ranking that is highly sensible to small perturbations on the structure of the network.

There are several variants of PageRank Centrality in literature. For example, it has been used
to formulate topical models of influence such as InfluenceRank [2], OpinionRank [24], dynamic
OpinionRank [25] as well as TopicSimilarRank [26]. It has also been popular for use in user
interaction models such as in [27]. However, PageRank algorithm is not able to determine the number
of nodes that can be influenced by a vertex i.e the influence spread of a node v, neither can it compute
joint influence by a group of nodes|[28]. Moreover, it is static in nature and as a result exhibits
shortcomings when applied to real networks that rapidly evolve in time [16]. Finally, PageRank
algorithm is based purely on the number of incoming connections and is therefore inadequate for
predicting node influence based on social activity potential [29].

Some weaknesses of PageRank algorithm have been addressed through some of the variants. For
example, Li et al. [21], developed a model in which influence of one user over the other is associated
with a payoff value. The payoff is assigned a time delay that represents the time difference between
the choices made by users u and v respectively. For example, if node v adopts choice A at time t,,,
then node v will have the social payoff defined as follows:

Py (v,t,) = Z g (to — tu) + Z Co (b — tu) (6)
’U,ENA(,U) UENB(,U)
where Ny(,) and Np,) are the sets of neighbors of v who adopt choices A and B respectively
and a9 represents the case that user v made choice A while user v made choice B. After the
computation of node payoffs, they use PageRank algorithm to calculate global influence for each of
the nodes.



Zhang et al. [30] propose the use of various interactive social actions like retweets, comments
and followers to model influence. According to this work, each social action is associated with a
weight that reflects how important it is in the definition of an influence value. In this case, the
social action consideration provides the content based evaluation for influence. A summation of the
weighted social actions therefore provides content based notation for node influence. However, even
though the definition of influence by Zhang et al. is global, important metrics like the engagement
and propagation capacities have not been explicitly incorporated in this model. This makes the
model limited from a user interaction perspective.

3.2.2 LeaderRank

LeaderRank [31] is similar to PageRank with the exception of a ground node which plays a role similar
to that of the dumping factor in PageRank algorithm thereby making LeaderRank parameter free.
The ground node is connected to every node in the network through bidirectional links. A random
walk is performed on the resulting network. The LeaderRank score is given by the fraction of time
the random walker spends on a given node. The ranking process is implemented in the way of
random walk described by a stochastic matrix p with elements p; ; = «; j/k?** which represents the
probability of the next step of a random walker moving from node i to node j, with k9** being the
out-degree. An initial score of 1 is assigned to every node except the ground node. Thereafter, the
random walk step of LR is defined as the score of the node i at time t as follows:
N+L
Si(t+1)=">" ot it +1) (7)

j=1 "1

Lu et al. [31] have shown that LeaderRank is less sensitive to network perturbations and malicious
manipulations of the system. A major weakness of LeaderRank is that it does not take into account
the intensity of interactions that occur between users in a network.

3.2.3 ClusterRank

Chen et al. [32] argue that although PageRank and LeaderRank take into account the influence of a
node’s neighbors, they do not directly make use of the social interactions among the neighbors. In
other words, uncommon neighbors are likely to diffuse information further than common neighbors.
For such purposes ClusterRank becomes a better ranking measure. The ClusterRank of a node i is
given as follows:

Si = fle) S0 (kS 4 1) (8)

J€E;

where s; is the ClusterRank, f(c;) accounts for the effect of i’s local clustering, the term +1 results
from the contribution of j itself, k;’“t is the outdegree of j and I'; is the set of followers of 7. Although
ClusterRank takes advantage of local clustering to diffuse information further into the network, it
assumes same levels of influence among the nodes which is not always the case in real networks.

3.2.4 FollowerRank

One of the simplest popularity measures, known as FollowerRank, was proposed by Nagmoti et
al.[33]. This measure combines the number of followees and the number of followers as follows:



FollowerRank(i) = %; )

in which F'1 and F'2 are number of followers and the number of followees respectively. This metric
may not be accurate in cases where the number of followers is too high due to spammers. To mitigate
this, some authors like [34], use many followees and few followers. This is meant to punish spammers.

3.3 Semantic Metrics of Influence

The nature of social engagement on the social network platform is such that users exchange information
about various aspects of life that are of interest to them. The medium of this exchange is a set of
social actions such as posts, comments, likes or shares. These social actions play an important
role in enabling social network users to express themselves. Infact, Yang and Pei [28] suggest that
social actions are a good way to build the edge weight between two nodes and as a result express
the strength of the relationship between them. Given the crucial role played by social actions,
there has been a lot of research work dedicated to defining influence from the perspective of user
interaction semantics. In other words categorizing interactions such as likes, tweets, retweets or
mentions according to the influence weight they have. Most authors argue that the more frequent
these interactions are between nodes, the stronger the tie between them. A node receiving lots of
these interactions on their posts is also perceived to be more influential.

Semantics modeling is an abstraction of social actions that users in a network use to exchange
information (and the content thereof) with one another. Such social actions are ordinary posts,
shares, comments and likes.

Li et al. [35] use a combination of retweets, comments, mentions and keyword similarity to define
influence. An average of these metrics is used to represent influence. For the global approximation
of node influence, they use PageRank algorithm. In [8], a hybrid of both the context and the content
aspect of the network is used to define influence.

The content property of a network deals with the type and the semantics of interactions that take
place among the users in the network while the context aspect brings the topological attributes of the
network. For the interactive social actions both the comments and the likes have been considered.
Sheikhahmadi et al. [36] propose NeighborRank model that calculates influence based on the number
and the type of the social action in building the edge weight. To build an edge weight, they used all
three interactive metrics, i.e, following, retweets and comments. A weighted summation is used to
define the edge weight w(%, j).

In [10], active users are defined as those users that are able to maintain their participation in
the network in a manner that is constant and frequent for a period of time regardless of whether
they receive attention for their participation. Participation in this case means carrying out actions
that can be measured such as tweets, retweets, mentions and replies.

Although some authors, like Yin and Zhang [37] define activity in terms of users’ ability to see
tweets, it is difficult to tell if a user has seen a tweet unless they respond to through a reply, retweet,
like or mention. The main strength of metrics that rely on these responses is in the assurance
that these actions are a true reflection of what actually happens in the network in terms of user
interactions. The metrics reviewed in this section are derived from actual participation of network
members.

Azzouzi and Romdhane [27] propose a model that considers social actions such as retweets,
replies and favorites in twitter. They associate each social action with a weight in the range [0,1] to
differentiate the influence effect of each. According to this metric, the Influence W (u, u,) of a node
uy on another node u, is calculated based on the weighted summation of the social actions that

10



node u, has generated in response to u,. The influence value is calculated as shown in equation 10.
In the equation, Np, is the number of published contents by w,, Ng;(us, uy) is the number of social
actions a; performed by wu, on the published contents of w, and «; is the the weight associated a
type of social action.

St X Nog(ug, uy)
Npy

To calculate the influence of a node, this value is then incorporated into a personalized PageRank
algorithm as shown in equation 10.

W (ug, uy) = (10)

B W (uy, uz) x IP(uy) o [Followers(ug)|
IP(uz) = d Z Followees(u,) +d-d N (11)

uy € Followers(u,)

where d is the dumping factor, N is the number of nodes and IP is the Influence Power.

A new metric called Aquintance-Affinity Score (AA) is introduced in [10] which measures how
important a user is by gauging how well known are the users that are interested in him/her. The
metric is calculated for a user j as:

. . FHrepliesofitoj . F#Hmentionsof itoj
AA(j) = A(i) - A(i) -
() Z (®) #repliesof i + Z (@) #mentions of i

i€ERpP i€EE

\ Hretweetsof itoj
A4 -
+ Z @) #retweets of i

(12)
1€EERT

where Frp, Ey and Erp are the set of users who reply, mention and retweet the tweets of j
respectively. A(i) is called the Acquintance-Score of node i and is computed as follows:

_ F1+ M4+ RP3+ RT3
N n

with F'1 being the number of followers, M4 the number of users mentioning the author and RP3
the number of users who have replied the authors tweets. RT3 and n represent number of users who
have retweeted the author’s tweets and the number of considered user accounts respectively.

In [38], Yulan and Ling introduce user activity in PageRank algorithm by arguing that the original
PageRank algorithm does not take into account user activity and the duration of such activities.
Their proposal was based on the premise that since user activity levels are usually not the same on
a social network, relationship strengths cannot be the same. They introduced the parameter A = %
into the PageRank formular, with a representing the total number of posts by the user over a time
period T. Consequently, the modified PageRank formular, as presented in equation 10 is not only
ranking users but most importantly doing so based on their activity.

A7) (13)

PageRank(p;)

L)) (14)

PageRank(p;)) =d+ (1 —d)A Z
p; EM (i)
The parameter d is the dumping factor, L(p;) are the followees of p;, and M (p;) are the followers
of Di-
Yang et al. define a model called SocialRank in [39] that uses content forwarded(C) and content
created(C,.). They argue that influence score of users are dependent on the amount of content that

11



they either create or forward. According to this model, the influence of the created content depends
on the number of reviews and forwarding that it attracts, and they created a relationship between
the content created and the content shared.. The factor S is added to make created contents more
important than forwarded contents.

| LkeC.
P = { Bi k € Cf

In this relation, k represents content, 5, < 1 is the ratio of the score of the forwarded content and
created content.The value of S is then used as a major factor in the computation of node influence.

A model known as PHYSENSE, developed in [29], is anchored on the idea of activity potential.
Activity potential of a user i refers to the total probability of the user engaging in activity on a given
topic at a given time. According to this study, user activity is divided into intrinsic and influenced
activities. An intrinsic activity being an activity that shows that the user is not susceptible to
interpersonal influence and influenced activity is the state of choosing to be influenced by each of
the connections according to certain conditional probabilities. Intrinsic and influenced activities are
related as shown in equation (15):

Ph(t,w) = (1 — o) (Ph(t,w)) + i (PA (L, w)s) (15)

in which p%(¢,w) is the probability of user i engaging in an activity on topic w at time ¢ over
the online social network. p’ and p3 are the influenced activity potential and the intrinsic activity
potential respectively. «; is the probability of user ¢ choosing to post intrinsically (equivalent to
the lack of susceptibility to interpersonal influence) and is given as:

SA;

where T A;, SA; and T A; refer to the total, intrinsic (self) and influenced activity on the part of
user ¢ in the time interval of interest. User activity is measured as number of own tweets, replies,
mentions, retweets, shares, likes or comments. Edge weights are built based on high conversion rate
to the influenced activity rather than just the amount of activity i.e:

B CF;;
where C'Fj; is the fraction of tweets from user j retweeted or shared or liked or commented by user
i.

(17)

wij

A common concern for researchers investigating user interaction modeling is the high computational
overhead that comes with the re-computation of cumulative interactive social action effects especially
in dynamic networks [40]. It is for this reason that Zhao et al. [40], propose a streaming algorithm
that processes an interaction stream directly in a streaming fashion.

Secondly, as observed by Zhiyuli et al. [41], social networks are inherently hierarchical. This
means that the strength of influence along a path that connects any pair of nodes fades with
additional hops. This seems to partly challenge the transitive property of influence upon which
propagation of influence through user interactions depends.

12



3.4 Information Propagation Measures of Influence

These metrics are based on the propagative nature of information flow on social networks. They are
used to measure influence of nodes based on how well a node is able to activate other nodes through
information propagation process. As observed by Silva et al. [42], influence can also be viewed as
a measure of the ability to popularize information through diffusion. This is the context in which
the models in this section have been discussed. They have been extensively applied in the study of
marketing research [43], epidemiology [44] and behavioral research [45].

Al-garadi et al. [46] use the concept of propagation and engagement to quantify the activity
of a node within its neighborhood. According to Al-garadi et al, propagation is the ability of a
node to consistently post contents that compel its neighbors to share further down in the network.
Engagement power describes the ability of a user to share contents that evoke reactive tendencies
among the neighbors. To get the global influence value for each node, this model uses the k-shell
algorithm together with measures of content engagement and propagation ability. A node’s ability
to spread influence is determined using a combination of imprecision function and a recognition rate.

3.4.1 Independent Cascade Model

In the Independent Cascade model, each edge is associated with a probability of infection which can
be assigned based on frequency of infections, geographic proximity or historical infection traces[47].
An activated node infects its neighbor based on its infection probability assigned on the edge
connecting with the neighbor. In each step ¢ > 1, each node activated in step ¢ — 1 has a single
chance to influence its inactive out-neighbor v with an independent probability p,,. According to
the general cascade model, when a node u attempts to activate another node v, it succeeds with
probability p,(u, S), where S is the set of neighbors that have already tried to activate v and failed.
The independent Cascade Model is the special case where p,(u,S) is a constant p, ,, independent
of S[6]. The propagation process usually terminates when there are no more new nodes to activate.
However, there are concerns in literature that the Independent Cascade Model does not reflect the
real life propagation of information due to its reliance on randomly assigned values to represent node
to node influence.

3.4.2 Linear Threshold Model

Under the Linear Threshold model, a node v gets to select a uniformly random threshold influence
value 6, which is in the interval [0,1]. At each time step ¢, where H;_; represents the set of nodes
that have been activated at time ¢t — 1 or earlier, each inactive node becomes active on condition
that:

> blu,w) >0, (18)

wen™™ (v)NHy_1

where b(u,v) is the edge weight of the edge (u,v) and 7" is the set of incoming edges. Unlike
in the IC model, this model is able to incorporate negative influence effects in the propagation
process [9]. Although in most cases the diffusion probability is assumed, there are studies that have
proposed the computation of this probability [48, 49, 50]. Similarly, this model relies on probabilistic
appproximations of node to node influence and so does not accurately reflect real life formation of
influence which is based on actual user interactions.

13



3.4.3 Continuous Time Independent Cascade Model

The Continuous Time Independent Cascade model has a length distribution associated with each
edge [51]. During influence diffussion process, this model first samples a length 7, for each edge
(u,v) and then activates any vertex that can be reached from the seed set through a path whose
total length is no more than ¢. 7,, represents how long u takes to influence v. Accordingly, given
a seed set S and a time threshold ¢, the influence of S is the expected number of vertices activated
within time ¢ during the influence propagation started from S. Lin et al. [52] propose a hybrid model
that considers cumulative influence of all generated seed nodes in each iteration as opposed to what
Hill Climbing and Greedy algorithms do. Specifically, this work uses a variant of the LT model to
reduce the performance weaknesses of both the Hill Climbing and Greedy algorithm. According to
this model, to calculate the influence of a node u at the i*" iteration after successfully activating its
neighbor v, the following relation is used:

active(v) —inf(u)

val(u) = val(u) + (19)

active(v)
where val(u) is the present influence value of node u, active(v) is the threshold value of node v
assigned according to the LT model and inf(v) is the total influence attributed to node v. Wu et
al. [53] propose a model called LAIM that uses a local computation of influence to approximate a
global influence value for a node. The local computation of influence involves an iterative process in
which node influence values are calculated for each node at different neighbor levels denoted as A. In
other words, to determine a local influence value for a node u, a scope 7 < A is defined within which
the cumulative influence of the node u will be determined. This local influence value is then used
to approximate the global influence value. This model of propagation is based on time although it
does not address the issues associated with inactivity over a period of time or pheromone.

3.4.4 Majority Threshold Model

In an attempt to address the randomness of the values used to represent node to node influence
in both the Independent Cascade Model and Linear Threshold Model, this model is introduced to
provide a heuristic way of defining such a value. This model is proposed by Valente [54] and requires
that the threshold node influence be defined in terms of the number of neighbors that are already
influenced. In this case, that threshold is that half the neighbors must be influenced for a node to
be influenced.

3.4.5 Shortest Path Model

Kimaru et al. [55] introduce this model as a variant of the Linear Threshold model in which an
active node gets a chance to be activated only through shortest paths from the initially active nodes
at a given time, ¢t. That is:

- <u € Ao,v e V() \A0> dist(u, v) (20)

in which A denotes the set of active nodes at time ¢ = 0. In this way, there is some gain on the
amount of time taken to process the whole graph.

While diffusion models have been extensively adopted in influence analysis and maximization
research, using them in their original form to compute influence is NP-hard [6]. Research has
therefore concentrated on how these models can be made to be more optimally efficient [56, 57] and
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scalable in approximating influence in large networks [58, 59]. The other shortcoming associated
with this category of models is that they use assumed uniform probabilistic values to represent
influence values along vertex edges. This situation can easily lead to over estimation of influence[60].
Furthermore, while classifying them as theory-centric models, Li et al. [21] observe that this category
of models usually use randomly distributed parameters that are not learned from actual diffusion
data and are not therefore representative of real life situations.

To address the challenges that come with influence maximization in dynamic networks, Liging
et al. [61] propose an approach in which they greedily select the most influential node based on a
Power Law delay distribution. This algorithm incorporates the temporal factor by considering the
delayed influence propagation. Each node is associated with a distribution for the influence delays
which utilizes the Power Law delay.

3.5 Influence Spread Measures

Influence Spread is an influence measurement metric that returns the number of nodes that have
been activated or influenced by a node directly or indirectly. The activation process is based on
a process of propagation usually implemented through a diffusion model. In the context of social
influence research, influence spread is one of the outputs of information propagation process in the
social network [62, 63, 64].

Tt is important to clarify that a majority of empirical works on the determination of influence
spread (Influence Maximization) heavily rely on diffusion models some of which have been described
in Section 3.4. Additionally, there are diffusion models that do not necessarily approach information
diffusion from a probabilistic perspective. A case in point is [27], in which, instead of randomly
assigning edge or node influence thresholds, the authors use actual social actions between pairs of
users to generate such values.

In [65], node influence spread is calculated using Influence Spread Paths(ISP). An ISP is a path
that links nodes from the seed set S to other nodes in the graph under study. With a given seed set
and a social graph G = (V, E), a simple path p = (u1, us, us, ...uy) in graph G is an ISP iff u; € S
and u; ¢ S for i # 1 and k > 1.

For an ISP p, the length of p is Zi:ll length(e;) and the probability of p is Hf;ll prob(e;).
Further, the authors introduced a time constraint that requires the activation to occur within a time
limit, beyond which the activated node will not be considered as part of those contributing to the
influence spread of a node u € S. Thereafter, Depth First Search algorithm is used to get all ISPs
starting from S. The paths are then divided into disjoint sets based on their ending nodes. Finally,
activation probabilities for all nodes are summed together and returned as the expected influence
spread.

Azzouzi and Romdhane [27], while computing influence spread values for influential nodes in a
network, implement an Influence Breadth First Search tree. In their work, the authors generate the
seed set as opposed to having a seed set as the input.

To do this, a set of seed set candidates B, is generated from the graph based on the condition that
the influence power of such nodes must be greater than the average of the influence power of its zone
of influence, Iy, (u).

B={u:ueVAIP(u)> I (u)} (21)

where IP(u) is the Influence Power of node u. For each node u € B, an Influence BFS tree is formed
in which the root is node u. Eventually, redundant the number of trees generated is equal to the
size of set B. A ranking is then defined for each of the Influence BFS trees. The ranking is based
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on the individual ranking of the vertices in such a tree. The reader is welcomed to refer to [27] for
a better understanding. Equation 22 summarizes the ranking,

1
ank(T") = —— rank(u;, T" 22
Rank(T") |AU‘U;U (ui, T) (22)
in which A, is the set of vertices in the BFS tree. The tree with the least ranking is selected (and
by extension the seed node) since it has the quickest broadcasting of information from its root to
the rest of the nodes hence a better spreader of information.

In [66], a Mazimum Gap Selecting(MGS) algorithm is proposed to deal with the problem of
approximating influence maximization in dynamic networks. Given a network graph transition from
G° to G*, the MGS algorithm applies the Degree Discount Algorithm algorithm [67] on G° and G*
to determine influence spread performance gap for each of the nodes veG° as shown in the equation
below:

PG, =0,(S) —0,(So) (23)

in which ¢,(S) and 0, (5¢) represent influence spread values at time ¢ and time ¢ — 1 respectively.
The influence spread is computed by taking the sum of the indegree in the seed set S. Emerging
edges are built based on the time weight importance of network structures at previous time stamps
using the relation Tw(t) = e~ ?(T=t)  Influence spread measures have been very popularly used in
determining node influences. But they ignore a key element of influence namely the level of node
activity. This is what information entropy based metrics address.

3.6 Information Entropy Measures of Influence

Information Entropy provides a way to gauge the level of activity of a node based on how unpredictable
the information coming from the node is. It measures how unpredictable and disorderly sources of
information can be [68]. In other words, there is more information coming from an unpredictable
event or source than there would be from an event or source whose outcome is known. For a random
variable X made up of n symbols, each symbol x; with a probability P; of appearance, the Entropy
H of the source X is defined as:

Hy(X) = —E[logy P(X)] = Y Pilogs (;) =—> Pilog,P; (24)
i=1 ¢ i=1

where E denotes mathematical expectation and log, the logarithm to base b and the value of b is 2.
Shannon [68] argue that an information transmission system has five parts namesly the information
source, a transmitter, a channel, a receiver and an intended destination. Wang et al. [69] has argued
that effective nodes receive, comprehend and transfer information through a diffussion process along
social network structures. It can therefore be seen that there is a link between user activity and
entropy. Influence computation through information entropy is therefore based on how predictable
the events in the social network are and how this affects the stability of such a network over a period
of time. Ma et al. [70] formulate a measure of network stability using user behavioral stability
measure. They defined the entropy of a behavior of a network in terms of the ability of such a
network to remain stable or otherwise from the perspective of user behavior. The network stability
is expressed as a measure of the entropy of its user behavior as follows:

E=—-> PlogP;, Pi=d;» d, (25)
i=1 j=1
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where E is the entropy of behavior network and p; is the proportion of the degree d; of node i to
the sum of the degree of all nodes. For popular posts, there is lots of discussion by a large number of
users leading to several behavior types and therefore high entropy. A higher entropy value associated
with a node can therefore be interpreted as a high influence score on the node since the entropy
reflects the unpredictable intensity of interactions around the node.

In one of their recent works, Yang et al. [71] propose a heterogeneous definition of both direct
and indirect influence from a node. To quantify influence they used link entropy and interaction
entropy to represent the degree for a node ¢ and node interaction with its neighborhood respectively.
Equations (27) represents the link entropy, with Ni(l) being the degree of node 4, while equation (28)
shows interaction entropy with the variable M, representing an interaction matrix.

N®

RN o N PO
Ii - Zl N(l) loglo N(l) (26)
j= 7 7
W M (i) (i-5)
o : M, (i, ] M, (2,7
If = — L - lOg10 Pi - (27)
; ZkNill)Mpi (1K) Mpi (Z7l€)

As a result of these separate metrics, the total direct influence that node 7 has on its one-hop
friend nodes, DIZ-(Z) is then represented as:

pI® = orf" + g1 (28)
where @ and  denote the weight assigned to Iif(” and If(l) respectively and a+p=1

Similarly, Peng et al. [72] applied information entropy in determining influential users in a
smartphone network. They defined the edge weight as:

Wij(t) = min {Ci;(t), Cji(t)} ; (29)

where C;;(t) is the number of SMS/MMS sent from node i to node j after time duration ¢. The
entropy of friend nodes Iif(t) for a node 7 is then given as:

I (t) NZ(E) L L (30)
e = - —_— O —_—
' —~ Ni(t) MONi(1)

in which N;(t) = Zjvzl fij(t) and f;;(t) represents friendship between ¢ and j at time ¢.
For interaction entropy the interaction frequency among friend nodes is taken into consideration

as follows:
N; (t)

c Ci; (1) Ci; (1)
HOEEDY N.(t) 10910 =7710)
j=1 Zk:l Cik(t) Zk:l Cik(t)

The two entropy types are combined to give the total direct influence of i on its direct friends is
then given as DI;(t) = oI (t) + BIE(2).

(31)

In summary, this section has explored several metrics that have been adopted by various authors
in quantifying influence at the social graph level. It is imperative to understand that the metrics
used in computing influence on the social graph have a direct connection with the definition that has
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been adopted for influence. For example if influence has been interpreted to mean the followers of a
user, then its computation will be limited to the calculation of node degree. This cannot be the same
for a case where influence has been defined in terms of the frequency of interactions. The theoretical
definition of influence therefore determines the kind of metrics that are used in formalizing the model
for calculating influence.

4 Social Graph Formation Approaches

There are several techniques that have been used in literature in defining an abstraction methodology
for the building of a social graph from the social network data. The fundamental role of the
techniques used in this case is to provide a means of building the node to node edge weight and
representing the nodes themselves. Since the node attributes do not change much, a majority of
these metrics are mostly dedicated to the realization and maintenance of an edge w(i,j) between
nodes. Generally, the value of the edge weight reflects the strength of the relationship between the
nodes.

As expected, the existence of these different types of metrics translates into different interpretations
of node to node edge weights and different authors give definitions suitable for their research needs
and the format of data that they are using in their experiments.

4.1 Homophily

Homophily has been formally defined as the tendency of users in a social graph to associate with
others who are similar to them along certain attribute lines such as gender, race, occupation or
political views [73]. Usually, a pair of users can be described as homophilous if one or more of their
attributes match in a proportion greater than other relationships within that network.

Zardi et al. use static homophily to build edge weights between nodes based on the similarity
of node attributes such as age, gender education, occupation and families. For every similar pair of
attributes, the edge weight is increased by a factor « that represents the importance of that attribute
ie

w(i, j) = w(i,§) + (32)
where x represents a node attribute. Homophily provides an attribute based relationship building
among nodes in the network although this leaves out intensity of interactions among users.

4.2 Intensity of User Activity

In this case, intensity and frequency of interactions among network members is given prominence in
forming node relationships on the graph. This means that the strength of node relationships (edge
weights on the graphs) may increase or decrease depending on the frequency and intensity of their
interactions. Therefore network members that do not engage one another would have relatively
weaker relationship strengths compared to those that actively engage one another.

In [72], a network of smartphone communication is created out of Short Message Service (SMS)
exchanges. This work abstracts the graph based on the presence and intensity of the messages
exchanged among smartphone users to create both the nodes and the edges between them. The
relationship weights are denoted as W;;(¢) indicating that at a given time ¢ node 7 sent a message
to node j. Therefore, the more messages are exchanged between nodes ¢ and j, the more the edge
weight between them. In order to prevent possible spamming effects in this kind of weighting, a
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minimum value of the bidirected edge weights is considered, that is:
Wij(t) = min {Ci;(t), Cji(t) } (33)

where Cj;(t) denotes the number of messages sent from node ¢ to node j.

In [27] the number of tweet replies, retweets and favorites are used to define the strength of user
relationships forming the edge weights. Furthermore, the authors associated each of these actions
with a weight of importance. For example, a retweet carries more weight than a favorite. In this
way user whose tweets attract a lot of retweets scores higher influence than the one whose tweets
only attract favorites. This proposal is shown in equation 34.

St X Nog(ug, uy)
Npy

W (ug,uy) = (34)

In order to model model node relationships, Chen et al. [74] use both reply relationships and the
time at which users are making posts on the social network. A reply relationship is established if two
users reply to the same post. They were able to check the neighborhood similarity for both nodes
through Jaccard Similarity index. With the similarity index, the posting time and reply relationship,
the edge weight is built as follows:

w(u,v) = TlTTEUf:\)’ifT“ 7T
sim(u,v),ifT, =T,

where sim(u,v) is the Jaccard Similarity Index between the adjacent node set of nodes u and v.

4.3 Topic and Opinion Based Techniques

Online discussions are always on various topics that trend from time to time. A trending topic in
turn attracts lots of opinion expression from users. Since some users post and others air opinions,
relationships naturally develop. The abstraction of relationships in a network is based on the content
of topics shared by users. This abstraction relies on topic contents and the kind of interest that
such topics generate from the users. According to this approach, user relationships are tracked on
the basis of topical interest or the similarity of topic interests. According to [10], unlike most of
the other models that use only relational interactions among network members, this abstraction
approach models relationships by analyzing the content and similarity of the information shared
among the members of the network. The abstraction uses subject topics as their main approach to
graph abstraction.

Bogdanov et al. [75], proposed a model called genotype through which they were able to summarize
a user’s topic-specific footprint in the information dissemination process. In this model, a user’s topic
distribution is monitored based on their interest in Twitter’s topical hashtags. The genotype provides
a multi-dimensional feature space that summarizes the observable behavior of user u with respect to
different hashtag topics on a 1:1 basis. To determine an influential topic, an influence edge e;(u,v)
is defined between a followee u, who has adopted at least one hashtag h within a topic T; before the
corresponding follower v. A subnetwork N;(U, E;) for topic T; is extracted in which the weight of
the edges is determined by the number of hashtags adopted by the followee after the corresponding
follower within the same topic.
In [76], a model based on a variant of the IC' model is used to determine the activation probability
of nodes based on a user’s topic popularity ranking [77]. Topic popularity Twa between two users

19



can be calculated using the following equation:

. Huby, ,, )
TP,, = b+ H o J(u,veVitiet) (35)
max u

min

where Hub, , denotes the hub value of a user in topic t, Hub;,, is the maximum hub value of

xT
a user’s topics and Hubmm is the minimum hub value of a given user’s topics.

In addition, the authors define user intimacy which is the frequency of connection between two users
u and v. This relationship is expressed as follows:

Ru,v
Yict Ruv, + 200 R, Vi

where R, y, represents the connection time between the users u and V;, R,, denotes the
connection time between the users u and v, V denotes all the users and n denotes the size of
V. The topic activation probability Pfj is calculated by combining the user intimacy C,, , and the
topic popularity T P! _, as shown below:

u,v?

Cu,v -

(u,v,V; € V) (36)

Pl =Cy, x TP; - (Pfj [0,1]). (37)

ij

Lu et al. [78] believe that a user’s ability to spread information on the social network and
therefore become influential is dependent on that information being shared or forwarded by other
users. However, they also believe that influence is tied to topics and therefore varies depending on
the topics of interest. To this end, they propose two influence measurement metrics namely Topical
User Intimacy which measures the possibility that a user will forward some information on a given
topic and Social Circle Difference which is a measure of the scope to which information posted by
one user may be subsequently spread. These two metrics are put together in order to measure the
global user influence thus:

Wyv e = [N why o+ (1= A) - why, 1] - Social Divy, (38)

where wy, , is the topical influence of user v over user u on topic k. w; vk and w vk denote the
explicit 1nﬂuence and implicit influence of user v to user u on topic k respectlvely while SoczalDwuv is
the social circle difference. According to this work, the explicit influence between two users informed
by the topic distribution of the forwarded content, the forwarding scope and forwarding frequency.
On the other hand, implicit influence occurs when there is similarity in their topic interests and
activity times.

While formalizing a relationship between content producers and content readers, Herzig et al.
recognize that every user can play the dual role of an author and a reader or both. In this case,
relationships are created through citation, i.e during interactions, readers make reference to contents
generated by some other readers and vice versa. And so the nodes in the graph represent users, who
can be authors, readers or both. An edge e, shows that user u has cited content posted by user v.
According to this model, the influence of a user is measured by the ability to generate relevant and
unique content that can be exposed to as many readers as possible both directly and indirectly.

Modeling of node to node relationships based on opinions has also been popular. In doing this,
most authors recognize the evolving nature of opinions over a period of time. Xu et al. [79] model user
influence based on the evolving nature of opinion dynamics. To model this influence relationship,
they define an opinion distance, a measure that estimates how easily a node is influenced by its
neighbor. The smaller the opinion distance between node ¢ and node j, the higher the influence that
node 4 has over node j. The opinion distance at a time ¢ is expressed as df; = |2;(t) — z;(t)| where
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x;(t) and z;(t) are the opinions of node i and node j at time ¢ respectively. The opinion influence of
node ¢ over node j forms the edge weight between the two nodes at time ¢ and is therefore expressed

as:
,wt

s ij

w;; . 2?21 ng x 1 (39)
to_— 1
i = @
Liang et al. [80] however introduce a new dimension to opinion based influenced. They argued
that there are two opinion types associated with each node on the network namely expressed opinion
and innate opinion. An expressed opinion is an opinion that a node expresses to its neighbors in an
attempt to influence them while an innate opinion is an opinion that a node holds within itself. The

expressed opinion of a user is u can be represented as follows:

where w and w}; represents node i’s own opinion.

Yy = (1 — au) c 2y Oyt Z Yoy Wy " To,u (40)
veU0<i<(t—1)4

where w, ,, is the influence edge weight, r, ,, is the expressed opinion from neighbor v to v and z,
is the innate opinion. The factor «, € [0,1] indicates how much w is influenced by its neighbors
compared to how it is influenced by its own opinion. A large value of «a, shows that user u is
influenced more by opinions from its neighbors rather than by its own opinions and vice versa.

There are other works that have considered different opinion aspects including opinion uncertainty
[81], selective exposure to information when presented with several opinion sources [82] and PageRank
algorithm with opinion component [83].

In general, a recurring concern for topic based influence computation is the fact that most of the
models developed are text based. There are not many works that have investigated pictures and
videos that otherwise contain richer topical content [84].

4.4 Similarity of User Activity Times

Similarity of user activity is a graph abstraction idea in which relationship ties are formed based
on whether users engage on social interaction on the network at the same time or otherwise. This
similarity points to interest in the same activities at similar times and possible homophylic tendencies.

In [78], the authors believe that if two users u and v are active at the same time, they are more
likely to read each other’s post and therefore influence each other. Activity time similarity therefore
is a major metric that points at the existence of a relationship between two users in the network.
To measure this similarity, they use the cosine similarity for the comparison of the activity times
with AT, and AT, denoting the activity time distribution of users u and v respectively.

AT, .AT,
| AT || - | AT, |

The key thing to address in this metric is the possibility of coordinated spamming actions that may
appear as users engaging at the same time.

ActivitySimy, = sim(AT,, AT,) = (41)

4.5 User Interaction Approaches

The cases reviewed under this section are those that are used to create the social graph based on
user interactions irrespective of the intensity or the frequency of such interactions among users.
For example, if a user u replies to a tweet by another user v then a link relationship is created on
the graph between the two users. However, the strength of that relationship does not increase nor

21



decrease irrespective of how many more replies or less user u gives to user v. In the same way,
the representation of each user as a node on the graph is independent of any individual attributes
that may be associated with such a user. It therefore means that the edge weights throughout the
graph are assumed to be the same. This representation approach is what has been adopted by most
centrality based metrics of social influence.

In [85] node indegree and outdegree values are used to represent starters and followers. Starters
being bloggers who generate content and followers are the users that comment on and link to posts
generated by other users. The authors define the degree dega(ny) of a node n, in graph G as the
difference between its indegree and outdegree, that is:

dege(ny) = inDega(ny) — out Deg(ny) (42)

Agarwal et al. [86] propose a visualization of an influence graph (also called i-graph) based on the
idea of influence flow of a blog post among the nodes in a graph. To do this this, they model each
node as a single blog post characterized by four properties namely incoming influence ¢, outgoing
influence 6, number of comments v and length of the post A. The influence flow is then calculated
as:

le| 10|
InfluenceFlow(p) = wipy, I(pm) — Wour Z I(py,) (43)

m=1 n=1
where w;, and w,,; are the weights that can be used to adjust the contribution of incoming and
outgoing influence respectively. p,, denotes the blog posts that link to the blog post while p,, refers
other blog posts referred to by this blog post. The influenceFlow is a metric that measures the
difference between the total incoming influence of all inlinks and the total outgoing influence of all
outlinks of the blog post p. Based on this abstraction, the Influence attributed to a blog post is then

computed as:

I(p) = w(A) X (WeomTp + Influence Flow(p)) (44)

where Weomyp is a weight to regulate the number of comments -,,.
In [87], node link relationships are used to define a dominating set. A dominating set is a
collection of nodes that has a large positive influence over the network. Given a graph G = (V, E),

deg(v)
2

a node v is influenced by a set D if at least [ —‘ of its neighbors is in the influence dominating

set D. A set D is called a dominating set of G if each node not in D has at least one neighbor in
D. Therefore, a set P is called an influenced set of D if each v € P is influenced by D. These
relationships are used to define Time bounded Positive Influence Dominating sets which have major
applications in controlling the spread of negative publicity in social networks [88]. Although this
metric is good for representing positive influence on the network, it would be interesting to have a
way of abstracting both the positive and the negative relations at the same time.

4.6 User Behaviour Evolution

A lot of research on influence has been dedicated to static networks [28]. However there are not as
many works dedicated to the analysis of influence on dynamic networks. The very nature of real
social networks is such that the network evolves thereby affecting its structure and content over time
[89, 90]. Dynamic analysis of influence seeks to track such changes as the network continues to evolve
[28]. Infact, [21] argues that since the influence strength between two nodes u and v varies over time,
introducing time variable ¢ may lead to accurate descriptions of the influence strength between the
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two nodes. An evolving directed social network at time ¢ is defined as a graph G* = (V*, E'), where
V't is a node set and E! is a set of edges consisting of every pair of node in G* at time ¢. Yang et al.
[28] observes that incrementally tracking a set of influential vertices in a dynamic network is a key
problem.

Graph formation approaches provide ways of building the social graph either from simulations of
social network data or from real social network data. Basically, the building of the social graph has
two parts: The representation of the interacting objects within the social network - usually as nodes
- and the abstraction of the relationships between them including the temporal evolution associated
with that evolution. These two tasks are what put together a social graph.

5 Social Network Data

5.1 Social Network Data Collection

While a lot of research work on social influence is relying on social network data, little work in the
context of social network has been dedicated to addressing issues that surround social network data
acquisition and usage. When the data is intended for purposes involving semantic examination like
topic, opinion, or semantic analysis then care should be taken to clean the data before being used
for more reliable results. Social Network Data collection generally refers to the process of collecting
hyperlinks from web pages associated with seed URLSs from various servers[91]. Collection of online
social data is not exactly easy since the collection process tends to face some problems such as
the data being unstructured, heterogeneous, dynamic and bulky [92]. Additional challenges are the
fragmented nature of the data (dispersed), frequent changes in the data format, absence of universal
software interfaces for crawling and emerging legal hurdles regarding social network data usage [93].
Since social network users communicate freely by expressing their opinions, the data collected is not
always without some unwanted part. Jiang et al. [94] propose a framework for using social network
data. The steps include representation of social users, discovery of frequently connected friends and
tracking of friendships or friend recommendations.

5.2 Attributes of Social Network Data

Depending on the purpose for which the data has been collected, the target data has four attributes
which are content, structure, usage and user profile. Content describes the form in which the
data is available such as text, images, or video. The structure of the data is the technology of
representation like HTML or XML, usage is the purpose for which the data is being collected and
user profile represents the demographic information about the users of the web services. However,
Vutrapu et al. [95] suggest that any purpose for which social data is being collected must support
both the conceptual and mathematical modeling of such data through software. They provide two
perspectives to the use of social data namely notation - which is largely graph abstraction and
operational semantics, which is about modeling of social interactions.

5.3 Social Network Data PreProcessing

Given the challenges associated with social network data, it is always necessary that the collected
data undergoes a cleaning process to make it suitable for the role for which it has been collected.
This is why the data needs to undergo preprocessing. Sharma et al. [91] define Data preprocessing
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Figure 3: Social Network Data PreProcessing Phases [92]

as a process that represents data in a format that is best suitable for mining purposes. In particular,
when the data in question is intended for use in text related analysis such as influence analysis
through through topic, opinion or sentiment examination, it becomes crucial to clean such text to
ensure its suitability for use. One of the ways through which the suitability of data is ensured is data
preprocessing. As outlined by Gupta et al [92], the data preprocessing task has four phases namely
data collection, data cleaning, data reduction and data conversion. For a detailed explanation on
each of these phases, the reader can refer to [92]. Preprocessing of social network data is an important
stage in experiments that rely on social network data. This step is meant to clean the data and
make it suitable for a specific experimental activity. Fig 3 shows an overview of the phases for the
preparation of social network data for use.

Although the generic framework for preprocessing social network data suffices for most cases, the
heterogeneous nature of social network data still makes it difficult to achieve adequate cleaning for
all various sources of social network data. this is because social media applications serve different
needs and as a result attract different forms of data.

6 Conclusion and Recommendations

In this survey, we have provided a summarized categorization of various approaches that have been
adopted by researchers for building the social graph from social network data and analyzing the social
graph to determine the most influential members of a social network. We have reviewed specific
metrics and techniques in each of the phases of influence analysis namely social graph abstraction
and social graph analysis.

The review reveals that a majority of variables used to define user relationships in the social
network come from their mode of association such as social actions, similar topics, opinions, topological
links and frequency of interactions. These, and others form a basis for formalizing relationships
among network members and hence are used to provide frameworks for influence computation.
Furthermore, it is clear that the metrics that are used to compute influence on the social graph must
have their basis on the theoretical definition of influence for the identified context. In this way, it is
easier to show the reliability of the used metrics.

Social influence analysis cannot be performed without social network data. for this we have
provided a brief on the sources of such data. A majority of the reviewed literature reveal that
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social network data suitability may vary from one work to the other. However, such data undergoes
preprocessing to fit the role for which it has been collected.

Finally, in each of the identified phases of social influence study, we have identified challenges
associated with the techniques adopted and we have suggested, through appropriate citations, how
some of the challenges have been addressed in literature. However, one of the major challenges
that still stand out is the absence of a distributed approach to influence analysis. Since social
networks are large in size, this is a major area that needs to be addressed in future studies since
it will reduce challenges that come with insufficient computing power when analyzing influence on
networks with enormous sizes. Other challenges include the absence of ground truth data and metrics
for evaluation, differences in social data formats and varying scientific definitions for influence from
author to author.

We hope that these challenges form a good basis for the formulation of new research ideas for
future researchers in the field of Social Influence.
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