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HIGHLIGHTS 

• The prediction of the impact of CRT on LV function and outcomes is often difficult 

• CRT candidates are a highly heterogeneous population 

• Machine learning allows the analysis of a huge amount of clinical and imaging data 

• Machine learning can identify clusters of patients with different characteristics and prognosis 

• RV-derived features are important for the characterization of CRT-candidates 
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ABSTRACT  

Background 

Despite all having systolic heart failure and broad QRS, patients screened for cardiac 

resynchronization therapy (CRT) are highly heterogeneous, and it remains extremely challenging to 

predict the impact of the device on left ventricular (LV) function and outcomes. 

Objectives 

We sought to evaluate the relative impact of clinical, electrocardiographic, and echocardiographic 

data on the left ventricular (LV) remodeling and prognosis of CRT-candidates by the application of 

machine learning (ML) approaches.  

Methods  

193 patients with systolic heart failure undergoing CRT according to current recommendations were 

prospectively included in this multicentre study. We used a combination of the Boruta algorithm and 

random forest methods to identify features predicting both CRT volumetric response and prognosis. 

The model performance was tested by the area under the receiver operating curve (AUC). We also 

applied the K-medoid method to identify clusters of phenotypically similar patients.  

Results 

From 28 clinical, electrocardiographic, and echocardiographic-derived variables, 16 features were 

predictive of CRT response, and 11 features were predictive of prognosis.  

Among the predictors of CRT-response, 8 variables (50%) pertained to right ventricular (RV) size or 

function. Tricuspid annular plane systolic excursion was the main feature associated with prognosis. 

The selected features were associated with a particularly good prediction of both CRT response (AUC 

0.81, 95% CI: 0.74-0.87) and outcomes (AUC 0.84, 95% CI: 0.75-0.93). An unsupervised ML 

approach allowed the identifications of two phenogroups of patients who differed significantly in 

clinical variables and parameters of biventricular size, and RV function. The two phenogroups had 

significant different prognosis (HR 4.70, 95% CI: 2.1-10.0, p<0.0001; log-rank p<0.0001).  

Conclusions 
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Machine learning can reliably identify clinical and echocardiographic features associated with CRT-

response and prognosis. The evaluation of both RV-size and function parameters has pivotal 

importance for the risk stratification of CRT-candidates and should be systematically assessed in 

patients undergoing CRT.   
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Abbreviations 

 

ApR, apical rocking 

AUC, area under the curve 

BNP, brain-type natriuretic peptide 

CRT, cardiac resynchronization therapy 

EDV, end-diastolic volume 

ESV, end-systolic volume 

FAC, fractional area change 

GFR, glomerular filtration rate 

GLS, global longitudinal strain 

HFrEF, heart failure with reduced ejection fraction 

IHD, ischemic heart disease 

LAVi, indexed left atrial volume 

LBBB, left bundle branch block 

LV, left ventricle 

LVEF, left ventricular ejection fraction  

NYHA, New York Heart Association functional class. 

PAPs, estimated systolic pulmonary artery pressure 

RAP, right atrial pressure 

RAV, right atrial volume  

RV, right ventricle 

RVDA, right ventricular diastolic area 

RVSA, right ventricular systolic area 

RVLS, right ventricular free wall longitudinal strain 

SF, septal flash 
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TAPSE, tricuspid annular plane systolic excursion 

TRVmax, maximal tricuspid regurgitation velocity 
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INTRODUCTION 

Cardiac resynchronization therapy (CRT) is an established treatment for patients with heart failure 

and reduced ejection fraction (HFrEF) who have wide QRS and remain symptomatic despite 

optimized medical therapy1. Nevertheless, nearly 30% of patients undergoing CRT according to 

recommendations are not-responders to this treatment2, and some patients die from heart failure 

despite the initial improvement in left ventricular ejection fraction (LVEF) and cardiac remodeling34. 

CRT-response and the outcome rely upon several factors which include clinical characteristics, 

typical ventricular conduction disturbances5, and the evaluation of the specific electromechanical 

substrate responsible for LV discoordination67.  

The comprehensive integration and interpretation of this huge mass of heterogeneous data is difficult 

for the human brain and makes CRT an interesting field of application for personalized medicine8. 

Previous studies have shown that the application of machine learning (ML) algorithms to CRT can 

predict CRT response910 and prognosis11. Some of these studies were focused on the analysis of 

specific electrocardiographic data such as QRS morphology and duration11, on the computational 

analysis of strain derived-curves10, or on the unsupervised examination of strain curve dynamics, 

clinical and standard echocardiographic data9. Our study aimed to apply supervised and non-

supervised machine learning approaches to a comprehensive amount of commonly available clinical, 

electrocardiographic, and echocardiographic data to 1) evaluate the relative importance of each 

feature in the prediction of CRT-response and prognosis by a supervised machine learning approach 

and 2) to identify specific phenogroups of patients which are at increased risk of poor outcomes. 

 

MATERIALS AND METHODS 

Population 

209 patients with systolic heart failure undergoing CRT implantation according to current 

guidelines1 at Oslo University Hospital (Norway), Leuven University Hospital (Belgium), Rennes 
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University Hospital (France), Aalst OLV Hospital (Belgium), and Karolinska University Hospital 

(Sweden) between August 2015 and November 2017 were prospectively included in this 

observational, multicentre study. Sixteen patients were excluded from the final analysis because of 

study withdrawal (n=4), lead extraction due to infective endocarditis (n=1), and lack of fundamental 

echocardiographic data (n=11). As a result, 193 patients were included in the study. At the time of 

CRT implantation, all patients were receiving optimized medical therapy. Clinical data including 

age, sex, and treatments were collected for each patient. The functional status was assessed by the 

estimation of the New York Heart Association (NYHA) functional class. Ischemic heart disease 

(IHD) was defined as a history of myocardial infarction and coronary revascularization or 

angiographic evidence of multiple vessel disease or single-vessel disease with ≥75% stenosis 

of the left main or proximal left anterior descending artery12.  

All patients gave their written informed consent for study participation.  

The study was conducted following the “Good Clinical Practice” guidelines of the Declaration of 

Helsinki and was approved by the Regional Ethical Committees of every participating centre. The 

study was registered at clinicaltrials.gov (identifier NCT02525185).  

Echocardiography 

All patients underwent standard transthoracic echocardiography using a Vivid E9 and E95 

ultrasound system (GE Healthcare, Horten, Norway) equipped with an M5S 3.5-MHz transducer at 

baseline and 6-month follow-up. Two-dimensional, colour Doppler, pulsed-wave and continuous-

wave Doppler data were stored on a dedicated workstation for the offline analysis (EchoPAC, GE 

EchoPAC, GE Healthcare, Horten, Norway). Left atrial, left ventricular (LV) volumes, and left 

ventricular ejection fraction (LVEF) were measured by the biplane method, as recommended13.  

Right ventricular size and function were measured in the modified four-chamber view as 

recommended13. Tricuspid annular plane systolic excursion (TAPSE) was measured in the apical 4-

chamber view using M-mode echocardiography. Right atrial volume (RAV) was measured using 

the disk summation techniques in a dedicated apical four-chamber view14. RV fractional area 
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change (FAC) was measured as the percentage difference between RV diastolic and systolic area, 

divided by RV diastolic area. RV lateral strain was assessed by tracking the RV endocardium as 

indicated in recommendations14. Peak velocity of early (E) and late (A) diastolic filling were 

derived from transmitral Doppler recordings, and the E/A ratio was calculated. Pulsed-wave TDI-

derived early diastolic velocity were obtained at the septal and lateral mitral annulus and the mean 

value (e’) was used to estimate the E/e’ ratio. In the presence of tricuspid regurgitation, continuous 

Doppler was used to estimate the maximal tricuspid velocity (TRVmax). Inferior vena cava diameter 

and respiratory changes were used to estimate right atrial pressure (RAP)15. Systolic pulmonary 

artery pressure (PAPs) was calculated as [4*(TRVmax)2+RAP] as recommended15. Right 

ventriculoarterial coupling was assessed by the ratio between tricuspid annular plane systolic 

excursion and PAPs (TAPSE/PAPs)16.  

Assessment of LV dyssynchrony 

Septal flash (SF) and apical rocking (ApR) were visually assessed in Leuven by two 

experienced readers. In case of disagreement, a third reading was performed in Leuven by an 

independent expert to reach a consensus. Septal flash was defined as pre-ejection septal shortening 

or rapid leftward septal motion immediately after onset QRS and was assessed visually in apical 2D 

images or, when in doubt, with longitudinal strain or M-mode in parasternal views17. Apical rocking 

was defined as a transverse rightward motion of the apex immediately after onset QRS, followed by 

a leftward motion of the apex during ejection18. LV mechanical dyssynchrony was defined by the 

presence of SF and/or ApR.  

Cardiac resynchronization therapy  

CRT delivery followed a standard protocol. The right atrial and ventricular leads were 

positioned conventionally. The LV lead was inserted in a lateral or postero-lateral vein if possible 

and coronary venography was used to optimize lead placement. The device was programmed in 

conventional biventricular pacing and retested before hospital discharge.  
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Positive response to CRT was defined as a decrease in LV end‐systolic volume of ≥15%2. To 

optimize precision, all volumes were measured independently in three different centres (Rennes, 

Leuven and Oslo) and a majority decision was used in cases of disagreement on CRT-response. 

Outcome 

The outcome was a composite of heart transplantation, LV assisted device implantation or all-

cause death during follow-up.  

Baseline characteristics and machine learning approaches 

Twenty-two baseline echocardiographic variables, with <10% missing data were identified. 

After filtering correlated variables using a cut-off Pearsons’ coefficient>0.8, 18 variables, which 

included right and left ventricular function parameters, were selected. In addition to these 

echocardiographic data, the following variables were included in the machine learning (ML) 

algorithm: 1) clinical parameters: age, sex, NYHA class, IHD, ln NT-proBNP and glomerular 

filtration rate (GFR); 2) ECG-derived parameters, such as QRS duration and presence of typical left 

bundle branch block19; 3) dyssynchrony parameters and 4) CRT-volumetric response. 

Implementations of data analysis and machine learning methods were performed in R-studio 

(version 1.2.1335). 

Missing data were imputed using the MICE algorithm as described by Van Buuren et Groothuis-

Oudshoorn et al.20 (“mice” package) which allows imputing mixed datasets with continuous and 

categorical variables using Fully Conditional Specification (FCS) (Table 1S).  

Unsupervised machine-learning approach 

To identify clusters of phenotypically-similar patients, subjects were clustered using the 

partitioning around medoids (PAM or k-medoid) algorithm with Gower distance, which allows the 

analysis of datasets made of mixed-type data with numeric and categorical features (“cluster” 

package). Figure 1 shows an overview of the input data and the proposed data analysis. The final 

number of clusters was determined to maximize the silhouette index21.  

Supervised machine-learning approach 
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A feature selection phase was firstly applied by using the Boruta algorithm22 (“Boruta” 

package) to select the best predictors of CRT-response and outcome. According to this method, each 

original feature is compared to the randomly generated features created by the algorithm. A feature 

that contributes positively to the predictive model has a performance which is superior to the best 

random feature, indicated as “shadowMax”.  

The random forest (RF) method 23 (“randomForest” package) is a popular and versatile supervised 

ensemble learner method that is based on the training of a set of uncorrelated trees to estimate a target 

variable for classification or regression purposes. This method was then applied to a reduced feature 

set to build ensemble classifiers to predict CRT-response and outcome. Receiver Operating 

Characteristic (ROC) curves and the corresponding area under the curve (AUC) were estimated to 

evaluate the classification performance of the RF method proposed method.  

Statistical analysis  

The normality of data distribution was assessed using the Shapiro-Wilk test. When the 

hypothesis of normality was rejected, a Box-Cox transformation was performed. Results were 

rounded and expressed as mean ± SD. The differences between the phenotype groups were tested 

using a one-way ANOVA analysis. Categorical variables were expressed as percentages. Comparison 

between groups was performed using the χ2 test or Fisher’s exact test when appropriate. Statistical 

significance was considered as a two-sided p-value <0.05. We used Cox regression models to 

calculate between-group differences in outcomes and the Kaplan–Meier method to calculate survival 

curves.  

We used R statistical software (version 3.3.3) and SPSS (SPSS Version 20.0, IBM, Chicago, IL, 

USA) for statistical analysis.  

 

RESULTS 

The baseline characteristics of the population are depicted in Table 1. 
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The population had a mean age of 67 years. The majority of patients were males (70%), with a high 

prevalence (67%) of non-ischemic dilated cardiomyopathy. 168 (87%) patients had typical LBBB.  

CRT response 

At 6-month follow-up, successful  response to CRT was observed in 132 (68%) patients. After 

the application of the Boruta algorithm, 16 features were significantly associated with CRT-response 

(Figure 2A). Among all variables, 8 (50%) were obtained through the assessment of RV size or 

function. SF and ApR were the most important features, followed by IHD, E/e’ ratio, RAV, RV 

diameters and RV systolic area, LV end-diastolic diameter, RV free wall strain, TAPSE/PAPs ratio, 

QRS width, LV-end diastolic volume, LV end-systolic diameter, TRVmax and FAC. The model 

obtained by the application of the RF method to this ensemble of features showed an AUC 0.81 (95% 

CI: 0.75-0.87) for the prediction of CRT-response (Figure 3A).  

Predictors of prognosis    

During a median follow-up of 37 months, the primary endpoint occurred in 29 (15%) patients. 

There were 11 non-cardiac deaths, 16 cardiac-related deaths, one heart transplantation and one LV 

assist device implantation. 

The main features associated with the outcome are displayed in Figure 2B. The most important feature 

was TAPSE, followed by LV end-diastolic volume, LV end-systolic diameter, lnNT-proBNP, GFR, 

NYHA class, RV systolic area, LV-end-diastolic diameter, FAC, and LVEF, and RVLS.  

These variables showed high accuracy in the prediction of the primary endpoint, with an overall AUC 

of 0.84 (95% CI: 0.75-0.93) (Figure 3B) 

Clustering  

Clustering with the K-medoid method allowed the identification of two phenotypically 

different groups of CRT candidates. Phenogroup 1 included 122 patients, with a mean age of 67 years, 

and a higher prevalence of women.  

The baseline clinical and echocardiographic characteristics were imbalanced between the 2 groups.  
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Patients in phenogroup 1 had better kidney function, less dilated LV and a less restrictive filling 

pattern. LVEF was not different between phenogroups, but LV longitudinal function was better in 

Phenogroup 1. Also, patients in phenogroup 1 had less dilated RV and a significantly better RV 

function, with less impaired ventriculoarterial coupling. The prevalence of LV dyssynchrony was 

higher in phenogroup 1. Typical LBBB was more prevalent in phenogroup 1, but there was no 

significant difference in QRS width between the 2 groups. CRT volumetric response was highly 

prevalent in phenogroup 1 (Table 1).  

Regarding the primary endpoint, phenogroup 2 had a significantly worse prognosis compared to 

phenogroup 1 (HR 4.70, 95% CI: 2.1-10.0, p<0.0001; log-rank p<0.0001) (Figure 4).  

 

DISCUSSION 

 In this prospective, multicentric study, we have shown the feasibility and validity of the 

application of both supervised and unsupervised ML approaches to a comprehensive pattern of pre-

implantation clinical, biochemical, electrocardiographic and echocardiographic data obtained in 

everyday clinical practice in CRT-candidates. Our analysis allowed: 1) the identification of groups 

of features which are significantly associated with CRT response and prognosis; 2) the identification 

of two phenogroups of patients with specific characteristics and differential outcomes. We also 

demonstrated that 3) RV size and function parameters have pivotal importance in the prediction of 

CRT response and prognosis.  

Prediction of CRT-response 

 Current recommendations for CRT implantation rely upon the assessment of the 

symptomatic status of patients, LVEF and QRS width1. Nevertheless, 30-to-40% of patients who 

receive CRT according to guidelines are not-responders to treatment2. Kalsheur et al. have shown 

that the application of ML to CRT can provide a better classification of patients than the simple 

assessment of LBBB morphology and QRS duration11. Similarly, we were able to demonstrate that 

the application of the RF method to ECG data and the dynamic analysis of LV strain curves 
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significantly improves the prediction of CRT-response10. The relevance of imaging derived 

parameters in the selection of CRT candidates remains underestimated. In the current study, the 

application of supervised ML approaches was able to identify groups of features which are good 

predictors of CRT-response.  

In our study, SF, ApR and IHD, were the most important variables associated with CRT response. 

These results are in line with an increasing amount of data underscoring the relevance of the visual 

assessment of LV mechanical discoordination and ischemic cardiomyopathy in determining in CRT 

response24,25.  

Noteworthy, QRS width was not the most important feature associated with CRT volumetric 

response, and its predictive role was improved by several RV-derived parameters such as RV basal 

and median diameter, right ventricular systolic area, RVLS and RV arterial coupling estimated by 

the TAPSE/PAPs ratio. These results are particularly relevant because the role of the right heart in 

CRT response is still debated26,27,28,29, 30.  

Physiologically, the RV and LV are interdependent, because of the sharing of the interventricular 

septum, the pericardial space, and myocardial fibres. Several experimental studies have shown that 

20-40% of RV systolic pressure and flow results from LV contraction and 4-10% of left ventricular 

systolic pressure and stroke volume are due to right ventricular contraction. This systolic interaction 

is decreased by a stiff septum and increased by stiff ventricular free walls31. This relationship 

between the left and the right heart explains why RV dysfunction occurs in nearly 50% of patients 

with HF and reduced LVEF. On the other hand, RV failure might induce changes in LV geometry 

which cause an impairment in LV filling and decrease in cardiac output32. In the field of CRT, 

Storsen et al. have shown that LBBB causes an abnormal RV free wall motion which is reversed by 

CRT only in cases of preserved RV function. This pattern of activation might explain why RV 

failure is associated with a poor response to CRT33. 

Some small retrospective studies27,29 and a post-hoc analysis of the prospective Cardiac 

Resynchronization Therapy Modular Registry (CRT-MORE)30 have shown that TAPSE is a 
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predictor of CRT response. Compared with these previous studies, we performed a comprehensive 

analysis of RV function and we found that the ability of TAPSE to predict CRT-response was 

improved by the combination of both LV and RV-derived features. Our comprehensive model was 

able to predict CRT-response with an AUC of 0.81, which is superior to the value of 0.63 found for 

TAPSE alone in the CRT-MORE trial30. Despite this evidence, a large meta-analysis of different 

studies was not able to show a significant impact of RV performance on LV remodelling after 

CRT26. These discrepancies might be attributable to the fact that most of the published data have 

used only one or two parameters to assess RV function. Our study has the advantage of providing a 

multi-parametric assessment of the RV performance, including RV size, FAC, RV lateral strain and 

the TAPSE/PAPs ratio, which allow a comprehensive description of RV morphology and 

performance. The incorporation of these parameters into a model which includes the estimation of 

LV dyssynchrony, QRS width and LV size, improves the results compared to that achieved by 

analysis of single parameters and results in the identification of the model that best fits the primary 

clinical question. 

Prediction of prognosis 

 To identify prognostic predictors in patients undergoing CRT, we combined supervised ML, 

which allowed the identification of variables specifically associated with outcome, and unsupervised 

ML analysis, which allowed the stratification of our population in two distinct groups of subjects with 

different characteristics and outcomes.  

We found that TAPSE is the most important feature associated with outcome, followed by LV size, 

NYHA functional class, kidney function, FAC, LVEF and RVLS. The combination of these variables 

through the application of the RF method enhanced the appraisal of the likelihood of favourable 

clinical evolution after CRT.  

These results are strengthened by the clustering analysis. This agnostic approach allowed the 

classification of our population in two distinct groups of patients who represent different archetypes 
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of CRT-candidates. On one side, we have subjects with more advanced heart failure, as witnessed by 

a pronounced biventricular dilatation, a higher prevalence of RV dysfunction and kidney failure. On 

the other side, we have patients with less severe disease, higher prevalence of SF and ApR and a 

better prognosis.  

Our findings have several implications: 1) the presence of advanced heart failure features before 

CRT-implantation can significantly impact prognosis, independently from the result of CRT; 2) the 

assessment of RV function has pivotal importance in the risk stratification of patients.  

Previous studies have shown that RV dysfunction assessed by TAPSE is a prognostic determinant 

in HF patients, regardless of the degree of RV dysfunction16. In a post-hoc analysis of the CARE-

HF trial, Damy et al. have also demonstrated that baseline TAPSE is a predictor of outcome in 

patients undergoing CRT, together with baseline NYHA and NTproBNP28. Our results reinforce 

these data and put into perspective the importance of a comprehensive evaluation of HF patients 

receiving CRT, which should systematically include the evaluation of RV size and function. We 

need to underscore that the aim of the application of machine learning methods in the clinical field 

is not to identify the importance of a single parameter -such as TAPSE –, but to handle large 

datasets with complex interactions between variables to find the algorithm that best suits the clinical 

problem34. Another important finding of our study is that despite the prevalence of CRT-response 

being higher among patients with a better outcome, volumetric response to CRT was not the main 

feature associated with prognosis.  

This means that some patients who are considered CRT-responders can still experience a poor 

outcome, probably because of the presence of concomitant factors such as advanced HF, 

cardiorenal syndrome and RV dysfunction28. Whether the severity of HF and/or concomitant RV 

dysfunction before device implantation should influence the selection of CRT-candidates  requires 

further study and underscores the subtle relationship between outcome and response to treatment35. 

On one hand, it is evident that the dichotomization of CRT-candidates in responders and non-

responders according to volumetric remodelling is simplistic because there is a wide spectrum of 
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response to CRT, which goes from mild LV remodelling to complete functional recovery, and this 

progressive remodelling can take more than 6 months to settle. On the other hand, some patients 

might have such an advanced cardiopathy (eg severely dilated heart, biventricular dysfunction 

and/or cardiorenal syndrome),  that the success of CRT might not be sufficient to change the natural 

history of heart failure disease progression and the outcome36. These observations suggest that 

finding the good therapeutic window for CRT implantation has pivotal importance. By 

incorporating a large amount of data, ML might be useful for the characterization and identification 

of patients with different “risk profiles”, favouring the generation of pathophysiological hypothesis, 

and facilitating the tailored management of patients, which represent a significant step forwards 

personalized medicine.  

 

Limitations 

This study has several limitations. First, data are obtained from a medium-size population of 

patients undergoing CRT according to current recommendations. The availability of more data, 

including electrophysiological data obtained at the moment of CRT implantation and the analysis of 

a wider population might have strengthened and improved our results. Second, compared to 

previous studies2,5,11,28,30, our population displayed a lower prevalence of ischemic heart disease and 

a higher prevalence of typical LBBB. This means that our results should be applied with caution to 

patients with ischemic cardiomyopathy and or non-LBBB QRS morphology, who are known to 

present a lower rate of CRT-response. Third, we did not perform an external validation of our 

results, which limit their applicability and should represent an object of further research. Fourth, 

patients were followed-up for 37 months and a longer follow-up might have been useful to 

strengthen the value of our model for the prediction of events. Moreover, data on heart failure 

hospitalizations during follow-up are not available. This is an important adverse event that requires 

assessment in CRT recipients. 

Conclusions 
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The application of machine learning methods to a set of common clinical, 

electrocardiographic and echocardiographic data emphasize the importance of a multiparametric 

approach for both the identification of CRT-response and the prediction of prognosis after CRT. 

Our results underscore the importance of RV function on both CRT response and outcome and the 

pivotal role of the global assessment of heart function in patients undergoing CRT. Despite these 

interesting results, additional studies on a broader population will be necessary to fully validate and 

understand the clinical application of machine learning to CRT.  Although there remains much to 

understand, as demonstrated in our study, it is likely that application of ML-derived algorithms will 

allow the stratification of CRT-candidates to guide patients towards specific therapeutic approaches 

and additional focused clinical trials. 
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Table 1. Clinical and echocardiographic characteristics of the overall population and 

according to phenogroups. 

 Overall 
(n= 193) 

 

Phenogroup 1 
(n= 122) 

 

Phenogroup 2 
(n= 71) 

 

 
p-value 

Age, years 67±11 67 ±11 67±11 0.97 
Female sex, n(%) 57(29) 46(37) 11(15) 0.0019 
Ischemic heart disease, n(%) 64(33) 23(19) 41(58) < 0.0001 
NYHA class, n(%) 
I 
II 
III 
IV 

 
14(7) 

107(56) 
70(36) 

2(1) 

 
7(6) 

80(66) 
35(28) 

0 

 
7(10) 
27(38) 
35(49) 
2(2) 

 
 

lnNT-proBNP, pg/ml 6.13±1.61 6.07±1.62 6.23±1.62 0.51 
eGFR, ml/min 63±23 66±23 57±23 0.01 
QRS width, msec 167±21 166±19 169±25 0.80 
LBBB, n(%) 169(88) 113(93) 56(79) 0.01 
LV-EDD, mm 63±12 62±10 66±13 0.007 
LV-ESD, mm 52±13 51±13 55±13 0.024 
LV-EDV, mm 211± 86 202± 84 226± 88 0.04 
LV-ESV, mm 153±73 146±68 165±79 0.084 
LVEF, % 29±8 29±7 29±9 0.67 
LV-GLS, % -8.47±3.84 -9.12± 3.70 -7.36±3.84 0.002 
LAVI, ml/m2 47±17 45±16 50±17 0.03 
E/Ea 16± 9 15±7 19± 12 0.02 
RVBD, mm 41±8 38±7   45±8 < 0.0001 
RVMD, mm 31±8 29±7 35±7 < 0.0001 
RV lenght, mm 81±12 78±12 86±12 < 0.0001 
Tricuspid annulus, mm 36±7 34±7 39±7 < 0.0001 
RAV, ml 63± 34 52± 29 80±36 < 0.0001 
RVDA, cm2 22±7 20±5 26±7 < 0.0001 
RVSA, cm2 13± 6 10±4 16±7 < 0.0001 
FAC, % 44±12 48±9 38±13 < 0.0001 
TAPSE, mm 19±5 10±5 18±6 < 0.0001 
RVLS, % -20.04±6.12 -20.85± 5.03 -18.66± 7.47 0.030 
TRVmax, m/sec 2.41± 0.63 2.30± 0.63 2.58±0.60 < 0.0001 
RAP, mmHg 6.83±3.71 5.86± 3.24 8.49±3.91 < 0.0001 
PAPs, mmHg 31.60±12.88 29.00± 11.38 36.07±14.10 0.0002 
TAPSE/PAPs, mm/mmHg 0.80±0.86 0.92±1.02 0.60± 0.39 0.0002 
Septal Flash, n(%) 130(67) 117 (96) 13 (18) < 0.0001 
Apical Rocking, n(%) 123 (64) 112 (92) 11 (15) < 0.0001 
CRT responder, n(%) 132 (68) 108 (89) 24 (34) < 0.0001 

BNP, brain natriuretic peptide; CRT, cardiac resynchronization therapy; EDD, end-diastolic 

diameter; EDV, end-diastolic volume; ESD, end-systolic diameter; ESV, end-systolic volume; 
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FAC, fractional area change; GFR, glomerular filtration rate; LBBB, left bundle branch block; LV 

left ventricle; LVEF, left ventricular ejection fraction; NYHA, New York heart association 

functional class; PAPs, estimated pulmonary artery systolic pressure; RAP, right atrial pressure; 

RAV, right atrial volume; RV, right ventricle; RVBD, right ventricular basal diameter; RVDA, 

right ventricular diastolic area; RVLS, RV longitudinal strain; RVMD, right ventricular median 

diameter; RVSA, right ventricular systolic area; TAPSE, tricuspid annular plane systolic excursion; 

TRVmax, maximal tricuspid regurgitation velocity 
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Table 1S. Missing data  

  
Age, years 0% 
Female sex 0% 
IHD, n(%) 0% 
NYHA class 0.51 % 
lnNT-proBNP, pg/ml 13.98 % 
eGFR, ml/min 1.55 % 
QRSd, ms 0% 
LBBB, n(%) 0.51% 
LV-EDD, mm 2.07 %  
LV-ESD, mm 2.07 %  
LV-EDV, mm 0% 
LV-ESV, mm 0% 
LV-EF, % 0% 
LV-GLS, % 1.03% 
LAVI, ml/m2 0% 
E/Ea 6.21% 
RVBD, mm 3.10 % 
RVMD, mm 5.18 % 
RV lenght, mm 4.66 % 
Tricuspid annulus, mm 3.62 % 
RAV, ml 2.59 % 
RVDA, cm2 4.66 % 
RVSA, cm2 5.18 % 
FAC, % 5.18 %  
TAPSE, mm 2.59 % 
RVLS, % 16.06 % 
TRVmax, m/sec 21.24 %  
RAP, mmHg 22.27 % 
PAPs, mmHg 18.65 % 
TAPSE/PAPs, mm/mmHg 20.20 %  
Septal Flash, n(%) 0 % 
Apical Rocking, n(%) 0 % 
CRT responder, n(%) 0 % 
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Figure 1. Framework illustrating the machine learning applied methods  

Input data consists of clinical parameters, cardiac biomarkers, electrocardiographic data and 

echocardiographic variables (left panel). 

Unsupervised machine learning (right, upper panel): the k-Medoid clustering method was applied to 

predefined features to select cluster of similar patients.  

Supervised machine learning (right, lower panel): a feature selection phase was firstly applied by 

using the Boruta algorithm to select the best predictors of CRT-response or outcome. The random 

forest method is then applied to selected features to ensemble classifiers to predict CRT-response or 

outcome.  

 

BNP, brain natriuretic peptide; ECG, electrocardiogram; GFR, glomerular filtration rate; IHD, 

ischemic heart disease; LBBB, left bundle branch block; LA, left atrium; LV, left ventricle; NYHA, 

New York Heart Association functional class; RV, right ventricle, TRVmax, maximal tricuspid 

regurgitation velocity.  
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Figure 2. Feature selection for the response to CRT (A) and outcome (B) 

The Boruta algorithm was applied to select the best predictors of CRT-response and outcome.  
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Figure 3. Receiver Operating Characteristics curve analysis for the prediction of CRT 

response (A) and outcome (B)   

The random forest method was on the most important feature to build ensemble classifiers to 

predict CRT-response and outcome. Receiver Operating Characteristic (ROC) curves and the 

corresponding area under the curve (AUC) were estimated to evaluate the classification 

performance of the RF method proposed method.  
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Figure 4. Kaplan-Meier survival curve showing survival stratified by phenogroups 

The final number of cluster was determined to maximize the silhouette index. Two clusters were 

identified (left panel). The survival stratification of these two phenogroups is depicted in the right 

panel.  
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Central illustration.  

Application of machine learning methods to CRT-candidates allows the identification of 

phenogroup of patients with significant differently prognosis (upper panel) and the identification of 

specific features which are predictors of CRT-response and prognosis (lower panel). Parameters 

derived from the assessment of right ventricular size and function have pivotal importance in the 

risk stratification of CRT-candidates and should be systematically assessed before CRT-

implantation.  

CRT, cardiac resynchronization therapy; RV, right ventricle 
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