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Abstract We propose and analyze a new asynchronous rumor spreading pro-
tocol to deliver a rumor to all the nodes of a large-scale distributed network.
This spreading protocol relies on what we call a k-pull operation, with k ≥ 2.
Specifically a k-pull operation consists, for an uninformed node s, in contacting
k−1 other nodes at random in the network, and if at least one of them knows
the rumor, then node s learns it. We perform a thorough study of the total
number Tk,n of k-pull operations needed for all the n nodes to learn the ru-
mor. We compute the expected value and the variance of Tk,n, together with
their limiting values when n tends to infinity. We also analyze the limiting
distribution of (Tk,n − E(Tk,n))/n and prove that it has a double exponen-
tial distribution when n tends to infinity. Finally, we show that when k > 2,
our new protocol requires less operations than the traditional 2-push-pull and
2-push protocols by using stochastic dominance arguments. All these results
generalize the standard case k = 2.
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1 Introduction

This paper focuses on the dissemination of information from users to users
in a decentralized manner. Peer-to-peer (P2P) networks allow users or more
generally nodes to exchange information by relying on gossip protocols, also
called randomized rumor spreading protocols. Such protocols describe the rules
required for one or more pieces of information known to an arbitrary node in
the network to be spread to all the nodes of the network [5, 8]. Among the
different variants of randomized rumor spreading protocols, the push protocol
provides a single operation, called the push operation, that allows an informed
node to contact some randomly chosen node and sends it the rumor. The pull
protocol, on the other hand allows, through the pull operation, an uninformed
node to contact some random node to ask for the rumor. The same node can
perform both operations according to whether it knows or not the rumor,
which corresponds to the push-pull protocol.

One of the important questions raised by these randomized rumor spread-
ing protocols is the spreading time, that is the time needed for all the nodes
of the network to know the rumor.

Several models have been considered to answer this question. The most
studied one is the synchronous model. This model assumes that all the nodes
of the network act in synchrony, which allows the algorithms designed in this
model to divide time in synchronized rounds. During each synchronized round,
each node i of the network selects at random one of its neighbors j and either
sends to j the rumor if i knows it (push operation) or gets the rumor from j if
j knows the rumor (pull operation). In the synchronous model, the spreading
time of a rumor is defined as the number of synchronous rounds necessary for
all the nodes to know the rumor. When the underlying graph is complete, it
has been shown by Frieze [12] that the ratio of the number of rounds over
log2(n) converges in probability to 1 + ln(2) when the number n of nodes
in the graph tends to infinity. Further results have been established (see for
example [19, 24] and the references therein), the most recent ones resulting
from the observation that the rumor spreading time is closely related to the
conductance of the graph of the network, see [14]. Investigations have also been
done in different topologies of the network as in [2,4,11,22], in the presence of
link or nodes failures as in [10], in dynamic graphs as in [3] and spreading with
node expansion as in [15]. Another alternative consists for the nodes to make
more than one call during the push or pull operations [23]. This alternative is
of particular interest since it does not require any particular network structure.
The synchronous case has been tackled in [23] where the authors show that the
push-pull protocol takes O (log n/ log log n) rounds in expectation assuming
that nodes can connect to a random number of neighbors following a specific
power law during each single round.
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In large scale and open networks, assuming that all nodes act in synchrony
is a very strong assumption since it requires that all the nodes have access
to some global synchronization mechanism and that message delays are up-
per bounded. Several authors, including [1, 7, 16, 20, 25], suppose that nodes
asynchronously trigger operations with randomly chosen nodes. In [25], the au-
thors model a multiple call by tuning the clock rate of each node with a given
probability distribution. Some authors have focused on the message complex-
ity by optimizing the network structure [6, 8, 16, 21]. For instance, in [6], the
authors show that in a preferential attachment graph the spreading time of an
asynchronous push-pull protocol is O

(√
log n

)
. Another way of limiting the

number of interactions is by finely tuning the push and pull operations to take
advantage of both of them as achieved for example in [5, 9].

The pull algorithm attracted very little attention because this operation
was long considered inefficient to spread a rumor within a large scale net-
work [26]. It is actually very useful in systems fighting against message sat-
uration (see for instance [29]). The ineffectiveness of the pull protocol stems
from the fact that it takes some time before the rumour reaches a phase of
exponential growth. Conversely, the push protocol initiates the rumor very
quickly but then struggles to reach the last few uninformed nodes.

The objective of this paper is to push further this line of inquiry by present-
ing and studying a new pull protocol, called the k-pull protocol. This protocol
is characterized by successive operations during which an initiator node asks
for the rumor to a fixed number (k− 1) of other nodes in parallel. We propose
a Markov model and we introduce the random variable Tk,n representing the
total number of such an operation, also called pull operation, needed for all
the n nodes of the system to learn the rumor.

The remainder of the paper is organized as follows. In Section 2, we present
the asynchronous k-pull protocol. We prove in Section 3 that the mean number
of k-pull operations needed to inform all the n nodes of the system, assuming
that a single node initially knows the rumor, that is E(Tk,n), is equivalent
to n ln(n)/(k − 1). We also show that the variance of Tk,n is equivalent to
n2π2/(6(k−1)2). The distribution of Tk,n is analyzed in Section 4. A recurrence
relation is proposed to compute it and we provide bounds of this distribution.
We also prove in this section that the limiting distribution of (Tk,n−E(Tk,n)/n,
when n tends to infinity, is a double exponential distribution. Finally, we
prove, in Section 5 by using stochastic dominance argument, that when k ≥
3, our new protocol requires less interactions than the standard push-pull
protocol and also, as expected, less interactions than the standard push and
pull protocols. Moreover, this efficiency increases strictly with k. Section 6
concludes the paper.

2 The k-pull protocol and its model

We consider a complete network of size n in which each node may be asked for
a piece of information (pull operation). Nodes ask for a piece of information,
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i.e. the rumor, in an asynchronous way. The algorithm starts with a single
node informed of the rumor. At each discrete time t, a single uninformed node
s contacts k − 1 distinct nodes, chosen at random uniformly among the n− 1
other nodes. If at least one of these k − 1 contacted nodes knows the rumor
then node s learns it. Otherwise nothing happens. This is a k-pull operation.
We analyze the distribution of the number of k-pull operations needed for all
the nodes to be informed of the rumor, and we compare it to the standard
(i.e. k = 2) asynchronous push, pull and push-pull protocols. In order to avoid
mistakes, these standard protocols will be denoted by 2-push, 2-pull and 2-
push-pull. Note that it is the first time, to the best of our knowledge, that
such a protocol is analyzed in the case k > 2.

To analyze the k-pull protocol, we introduce the discrete-time stochastic
process Y = {Yt, t ≥ 0} where Yt represents the number of informed nodes
at time t. Stochastic process Y is a discrete-time homogeneous Markov chain
with n states where states 1, . . . , n− 1 are transient and state n is absorbing.
From the description of the protocol, we deduce that when the Markov chain
Y is in state i at time t, then at time t+ 1, either it remains in state i if none
of the k − 1 chosen nodes were informed of the rumor or it transits to state
i + 1 if at least one of the k − 1 chosen nodes were informed of the rumor.
We denote by P the transition probability matrix of Markov chain Y . The
non zero entries of matrix P are thus Pi,i and Pi,i+1, for any i = 1, . . . , n− 1.
Probability Pi,i+1 is given by

Pi,i+1 =

min{i,k−1}∑
j=max{1,k−n+i}

(
i

j

)(
n− 1− i
k − 1− j

)
(
n− 1

k − 1

) .

Indeed, given that Yt = i, i.e. when i nodes are informed of the rumor at time
t, we have Yt+1 = i + 1 if and only if, at time t + 1, the set of k − 1 chosen
nodes (i.e. k − 1 among n − 1) consists in j informed nodes (i.e. j among i)
and k−1− i non informed node (i.e. k−1− i among n−1− i), for all possible
values of j. Note that if i > n− k then we have Pi,i+1 = 1.

Probability Pi,i+1 is the probability that a random variable, with the hy-
pergeometric distribution with parameters i, k − 1, n − 1, is greater than or
equal to 1. It follows easily using the Vandermonde equality that, for any
i = 1, . . . , n− 1,

Pi,i+1 =


1−

(
n− 1− i
k − 1

)
(
n− 1

k − 1

) if i ≤ n− k

1 otherwise.
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Obviously, we get, for any i = 1, . . . , n− 1, Pi,i = 1− Pi,i+1, that is

Pi,i =



(
n− 1− i
k − 1

)
(
n− 1

k − 1

) if i ≤ n− k

0 otherwise.

We denote by Tk,n the random variable defined by

Tk,n := inf{t ≥ 0 | Yt = n}

which represents the spreading time, that is the total number of k-pull oper-
ations needed for all the nodes in the network to know the rumor.

The spreading time distribution can thus be expressed as a sum of inde-
pendent random variables Sk,n(i), where Sk,n(i) is the sojourn time of Markov
chain Y in state i. For all i = 1, . . . , n − k, Sk,n(i) follows a geometric distri-
bution with parameter pk,n(i), where

pk,n(i) = 1− Pi,i = 1−
k−1∏
h=1

(
1− i

n− h

)
, (1)

and Sk,n(i) = 1, for i = n− k + 1, . . . , n− 1. Thus Tk,n verifies

Tk,n =

n−1∑
i=1

Sk,n(i) = k − 1 +

n−k∑
i=1

Sk,n(i). (2)

In the next section, we analyze the mean and the variance of the spreading
time Tk,n and their asymptotic behavior when n goes to infinity.

3 Mean and variance of the spreading time

To analyze the asymptotic behavior of the mean and variance of the spreading
time Tk,n when n goes to infinity, we provide upper and lower bounds of the
probabilities pk,n(i), i = 1, . . . , n − k. We first need the following technical
lemma for which we introduce the functions Pk,n(x) defined for all x ∈ R, for
every n ≥ 3 and k = 1, . . . , n− 1, by

Pk,n(x) = 1−
k∏
h=1

(
1− x

n− h

)
.

Note that

pk,n(i) = Pk−1,n(i). (3)
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Lemma 1 For all x ∈ R, we have

d

dx
Pk,n(x) =

(−1)k+1k∏k
h=1(n− h)

k−1∏
h=1

(x− µh),

where, for all h = 1, . . . , k− 1, µh are positive real numbers such that n− (h+
1) < µh < n− h.

Proof Note that for all h = 1, . . . , k, we have Pk,n(n − h) = 1. Since Pk,n(x)
is a continuous function, it follows that there exists necessarily at least one
local extremum point, denoted by µh, in each interval (n − h − 1, n − h), for
h = 1, . . . , k−1. The point µh is therefore a root of the polynomial dPk,n(x)/dx.
Note also that since the polynomial 1 − Pk,n(x) has only simple roots, we
necessarily have µh 6= n− h− 1 and µh 6= n− h. Using the fact that Pk,n(x)
is a k-degree polynomial, we deduce that dPk,n(x)/dx is a (k − 1)-degree
polynomial. The number of extremum µh being at least equal to k − 1, this
implies that the µh are unique. We thus first deduce that

d

dx
Pk,n(x) = K

k−1∏
h=1

(x− µh),

where K is a constant. We conclude using the fact that the factor of term xk

in polynomial Pk,n(x) is equal to (−1)k+1/
∏k
h=1(n− h).

We are now able to get, in the following two lemmas, lower and upper
bounds of polynomial Pk,n(x).

Lemma 2 For all x ∈ [1, n− k], we have

Pk,n(x) ≤ kx

n− k
.

Proof From Lemma 1 and using the fact that Pk,n(0) = 0, we deduce that, for
all x ≥ 0,

Pk,n(x) =
(−1)k+1k∏k
h=1(n− h)

∫ x

0

k−1∏
h=1

(s− µh)ds =
k∏k

h=1(n− h)

∫ x

0

k−1∏
h=1

(µh − s)ds.

Since n− k < µk−1 < · · · < µ1, we get for all x ∈ [1, n− k],

Pk,n(x) ≤ kx∏k
h=1(n− h)

max
s∈[0,x]

k−1∏
h=1

(µh − s) =
kx∏k

h=1(n− h)

k−1∏
h=1

µh.

Since µh < n−h, for all h = 1, . . . , k−1, we conclude that, for all x ∈ [1, n−k],

Pk,n(x) ≤ kx

n− k
,

which completes the proof.
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We now turn to the lower bound of polynomial Pk,n(x).

Lemma 3 For all x ∈ [1, n− k], we have

Pk,n(x) ≥ kx

n+ kx
.

Proof We first prove by recurrence that, for all integers k ≥ 1 and for all
x ∈ [1, n− k], we have

(n+ kx)

k∏
h=1

(n− h− x) ≤
k∏
h=0

(n− h). (4)

Relation (4) is true for k = 1, since for all x ∈ [1, n− 1], we have (n+ x)(n−
1− x) = n(n− 1)− x− x2 ≤ n(n− 1). Suppose now that Relation (4) is true
at rank k. At rank k + 1, using (4), we get, for all x ∈ [1, n− k − 1],

(n+ (k + 1)x)

k+1∏
h=1

(n− h− x) = (n− k − 1− x)(n+ (k + 1)x)

k∏
h=1

(n− h− x)

≤ (n− k − 1− x)

[
1 +

x

n+ kx

] k∏
h=0

(n− h)

=

[
n− k − 1− (k + 1)

x2 + x

n+ kx

] k∏
h=0

(n− h)

≤ (n− k − 1)

k∏
h=0

(n− h)

=

k+1∏
h=0

(n− h),

which proves Relation (4). Using this relation, we obtain

1− Pk,n(x) =

k∏
h=1

(
1− x

n− h

)
=
n
∏k
h=1(n− h− x)∏k
h=0(n− h)

≤ n

n+ kx
.

This implies that Pk,n(x) ≥ kx/(n+ kx), which completes the proof.

The following theorem provides an equivalent of the mean spreading time
when n tends to infinity. Note that the mean spreading time E(Tk,n) is given
by

E(Tk,n) = k − 1 +

n−k∑
i=1

1

1− Pi,i
= k − 1 +

n−k∑
i=1

1

pk,n(i)
. (5)

Theorem 4 (Asymptotic mean spreading time) For every k ≥ 2, we
have

E(Tk,n) ∼
n−→∞

n ln(n)

k − 1
.
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Proof Combining Relations (3) and (5), we get

E(Tk,n) = k − 1 +

n−k∑
i=1

1

Pk−1,n(i)
.

Applying Lemmas 2 and 3, we obtain

k − 1 +
n− k + 1

k − 1

n−k∑
i=1

1

i
≤ E(Tk,n) ≤ n− 1 +

n

k − 1

n−k∑
i=1

1

i
. (6)

The fact that, for every k ≥ 0, we have

n−k∑
i=1

1

i
∼

n−→∞
ln(n)

completes the proof.

Concerning the variance of Tk,n, which is given by

Var(Tk,n) =

n−k∑
i=1

Var(Sk,n(i)) =

n−k∑
i=1

1− pk,n(i)

(pk,n(i))
2

=

n−k∑
i=1

1

(pk,n(i))
2 − (E(Tk,n)− k + 1) , (7)

we have the following asymptotic result.

Theorem 5 (Asymptotic spreading time variance)

Var(Tk,n) ∼
n−→∞

n2

(k − 1)2
π2

6
.

Proof Applying Lemma 3, we get, from Relation (7),

Var(Tk,n) ≤
n−k∑
i=1

1

(pk,n(i))
2 ≤

n−k∑
i=1

(n+ (k − 1)i)
2

(k − 1)2i2

=
n2

(k − 1)2

n−k∑
i=1

1

i2
+

2n

k − 1

n−k∑
i=1

1

i
+ n− k

∼
n−→∞

n2

(k − 1)2
π2

6

Using Lemma 2 and applying Theorem 4, we obtain

Var(Tk,n) ≥ (n− k + 1)2

(k − 1)2

n−k∑
i=1

1

i2
−E(Tk,n) + k − 1 ∼

n−→∞

n2

(k − 1)2
π2

6
,

which completes the proof.
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4 Distribution of Tk,n, bounds and asymptotic analysis

It is well-known, see for instance [27], that the distribution of Tk,n is given,
for every integer t ≥ 0, by

P{Tk,n > t} = αQt1, (8)

where α is the row vector containing the initial probabilities of states 1, . . . , n−
1, that is αi = P{Y0 = i} = 1{i=1}, Q is the matrix obtained from the
transition matrix P containing the transition probabilities between transient
states and 1 is the column vector of dimension n− 1 with all its entries equal
to 1. Note that the submatrix Q of the transition probability matrix P , is
upper triangular with a single non zero upper-diagonal, that is Qi,j = 0 for
all i = 1, . . . , n − 1 and j 6= i, i + 1. The computation of the distribution of
Tk,n can be easily done using the following recurrence relations. Let V (t) =
(V1(t), . . . , Vn−1(t)) be the column vector defined by Vi(t) = P{Tk,n > t |
Y0 = i}. From Relation (8), we have V (t) = Qt1. Since V (0) = 1, writing
V (t) = QV (t− 1) for t ≥ 1, we get for any t ≥ 1:{

Vi(t) = Pi,iVi(t− 1) + (1− Pi,i)Vi+1(t− 1), i = 1, . . . , n− 2
Vn−1(t) = Pn−1,n−1Vn−1(t− 1),

where the Pi,i have been obtained in Section 2. This backward recursion leads
to the computation of V1(t) = P{Tk,n > t}. It has been used for the drawing
of Figure 1.

In order to get bounds of this distribution, we follow the approach used
in [20]. We apply the bounds of the distribution of a sum of independent, but
not necessarily identically distributed, geometric random variables provided
in [18] to deduce bounds for the distribution Tk,n, both for all n (Theorem 6)
and when n tends to infinity (Theorem 7).

We denote by Hn the Harmonic series defined, for every n ≥ 1, by Hn =∑n
i=1 1/i and we introduce the function g defined, for all x > 0, by g(x) =

x− 1− ln(x).

Theorem 6 For any c ≥ 1, we have

P {Tk,n ≥ cE (Tk,n)} ≤ exp

(
− (k − 1)2 + (n− k + 1)Hn−k

n− 1
g(c)

)
.

For any c ≤ 1, we have

P {Tk,n > cE (Tk,n)} ≥ 1− exp

(
− (k − 1)2 + (n− k + 1)Hn−k

n− 1
g(c)

)
.

Proof It is easily checked from Relation (1) that, for every i = 1, . . . , n − k,
we have

pk,n(i) ≥ pk,n(1) = 1−
k−1∏
h=1

(
1− 1

n− h

)
=
k − 1

n− 1
.
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We can now apply Theorem 13 (see Appendix) and deduce that for any c ≥ 1,

P {Tk,n ≥ cE (Tk,n)} ≤ exp

(
−k − 1

n− 1
E (Tk,n) g(c)

)
.

Note that g(c) = c − 1 − ln(c) ≥ 0 for any c > 0. Using Relation (6), that is
E (Tk,n) ≥ k − 1 + (n− k + 1)Hn−k/(k − 1), we obtain, for any c ≥ 1,

P {Tk,n ≥ cE (Tk,n)} ≤ exp

(
− (k − 1)2 + (n− k + 1)Hn−k

n− 1
g(c)

)
,

which concludes the first part of the proof.
From Theorem 14 (see Appendix), we deduce that for any c ≤ 1,

P {Tk,n ≤ cE (Tk,n)} ≤ exp

(
−k − 1

n− 1
E (Tk,n) g(c)

)
.

Again, since g(c) = c − 1 − ln(c) ≥ 0 for c > 0, the same lower bound of
E (Tk,n) used for the case c ≥ 1, yields the second result.

When n tends to infinity, we obtain the following result.

Corollary 7 For every k ≥ 2, we have

lim
n−→+∞

P {Tk,n > cE (Tk,n)} =

{
0 if c > 1
1 if c < 1.

Proof First, note that g(c) = c− 1− ln(c) > 0 for any c ∈ (0, 1) ∪ (1,∞) and
that limn−→+∞Hn−k = +∞. Hence,

lim
n−→∞

exp

(
− (k − 1)2 + (n− k)Hn−k

n− 1
g(c)

)
= 0.

Applying Theorem 6 completes the proof.

One can observe that for any c 6= 1,

exp

(
− (k − 1)2 + (n− k)Hn−k+1

n− 1
(c− 1− ln(c))

)
∼

n−→∞
1/nc−1−ln(c)

which indicates that, for large values of n, the distribution of Tk,n becomes
closer to its mean at a speed of 1/nc−1−ln(c).
When c = 1, Corollary 7 does not allow us to figure out neither the existence
of limn→+∞P {Tk,n ≥ E (Tk,n)} nor its value. We deal with this case in a
more general situation which consists in analyzing the limiting distribution of
(Tk,n −E(Tk,n)) /n. We first need the following lemma.

Lemma 8 For every m ≥ 1 and n ≥ m+ k, we have

1

n2

n−k∑
i=m

Var(Sk,n(i)) ≤
n−k∑
i=m

1

i2
≤ π2

6
.
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Proof Since 1 ≤ i ≤ n − k, all the terms 1 − i/(n − h) in Relation (1) are
less than one. We thus have pk,n(i) ≥ 1 − (1 − i/(n − 1)) = i/(n − 1). Using
Relation (7), we get

1

n2

n−k∑
i=m

Var(Sk,n(i)) =
1

n2

n−k∑
i=m

1− pk,n(i)

(pk,n(i))2
≤ 1

n2

n−k∑
i=m

1

(pk,n(i))2

≤ (n− 1)2

n2

n−k∑
i=m

1

i2
≤ π2

6
,

which completes the proof.

Theorem 9 Let (Zi)i≥1 be a sequence of i.i.d. random variables exponentially
distributed with rate 1 and let W be defined by

W =
1

k − 1

∞∑
i=1

Zi − 1

i
.

We then have
Tk,n −E(Tk,n)

n

L−−→W as n −→∞

and, for all x ∈ R,

lim
n−→∞

P

{
Tk,n −E(Tk,n)

n
≤ x

}
= e−e

−(k−1)x−γ
,

where γ is the Euler-Mascheroni constant given by γ ≈ 0.5772156649.

Proof For each fixed i, we have limn−→∞ pn,i = 0. It follows that for every
x ≥ 0, we have

P{pk,n(i)Sk,n(i) > x} = P{Sk,n(i) > x/pk,n(i)}
= n(1− pk,n(i))bx/pk,n(i)c,

which tends to e−x when n tends to infinity. If Zi is a random variable expo-
nentially distributed with rate 1, we have shown that

pk,n(i)Sk,n(i)
L−−→ Zi as n −→∞.

Moreover since the (Sk,n(i))i=1,...,n−k are independent, the (Zi)i≥1 are also
independent.

Observing now that for each fixed i, we have, from Relation (1),

pk,n(i) = i

k−1∑
h=1

1

n− h
+ o(1/n),
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we obtain limn−→∞ npk,n(i) = (k−1)i. Defining Rk,n(i) = Sk,n(i)−E(Sk,n(i))
we obtain, since E(Sk,n(i)) = 1/pk,n(i),

Rk,n(i)

n
=
Sk,n(i)−E(Sk,n(i))

n
=
pk,n(i)Sk,n(i)− 1

npk,n(i)

L−−→ Zi − 1

(k − 1)i
as n −→∞. (9)

The rest of the proof consists in checking the hypothesis of the principle of
accompanying laws of Theorem 3.1.14 of [28]. Introducing the random variables
Vn and Vm,n defined by

Vn =
Tk,n −E(Tk,n)

n
=

1

n

n−k∑
i=1

Rk,n(i) and Vm,n =
1

n

m−1∑
i=1

Rk,n(i), (10)

we obtain, using the fact that E(Rk,n(i)) = 0 and that the Rk,n(i) are inde-
pendent,

E((Vn − Vm,n)2) = E

[ 1

n

n−k∑
i=m

Rk,n(i)

]2 = Var

(
1

n

n−k∑
i=m

Rk,n(i)

)

=
1

n2

n−k∑
i=m

Var(Rk,n(i)) =
1

n2

n−k∑
i=m

Var(Sk,n(i)).

Using now Lemma 8, we get

E((Vn − Vm,n)2) ≤
n−k∑
i=m

1

i2
,

that is

lim
m−→∞

lim sup
n−→∞

E((Vn − Vm,n)2) ≤ lim
m−→∞

∞∑
i=m

1

i2
= 0.

Using now the Markov inequality, we obtain, for all ε > 0,

P{|Vn − Vm,n| ≥ ε} = P{(Vn − Vm,n)2 ≥ ε2} ≤ E((Vn − Vm,n)2)

ε2
.

Putting together these results, we have shown that for all ε > 0, we have

lim
m−→∞

lim sup
n−→∞

P{|Vn − Vm,n| ≥ ε} = 0. (11)

Let us introduce the notation

Wm =
1

k − 1

m−1∑
i=1

Zi − 1

i
.
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Using (9) and the fact that the Rk,n(i) are independent, we have

Vm,n
L−−→Wm as n −→∞. (12)

The hypothesis of the principle of accompanying laws of Theorem 3.1.14 of [28]
are properties (9) and (12). We can thus conclude that

Vn
L−−→W as n −→∞.

To obtain the distribution of W , we recall that Louis Gordon has proved in [17]
that

−γ +

+∞∑
i=1

1− Zi
i

L
= ln(Z1),

where γ is the Euler-Mascheroni constant. Thus, by definition of W , we have

W
L
= −γ + ln(Z1)

k − 1
.

It follows that, for all x ∈ R, we have

P {W ≤ x} = P {ln(Z1) > −(k − 1)x− γ}

= P

{
Z1 > e−(k−1)x−γ

}
= e−e

−(k−1)x−γ
,

which completes the proof.

In particular, by taking x = 0 in Theorem 9, we obtain

lim
n−→∞

P {Tk,n ≤ E(Tk,n)} = e−e
−γ
≈ 0.5703760017,

which solves the case c = 1 of Corollary 7.

5 Comparison of the pull, push and push-pull protocols

In this section, we compare the spreading time of the k-pull protocol with
the standard 2-push-pull, 2-pull and 2-push ones. We summarize in Table 1
some characteristics of the spreading time distribution of each protocol. The
notation

∑n−1
i=1 G(pi) represents the sum of independent random variables ge-

ometrically distributed with parameter pi for the i-th variable. Note that the
spreading time distributions of the 2-push and 2-pull protocols are the same.
In addition, the mean spreading times of all the standard protocols (2-push,
2-pull and 2-push-pull) are the same.

In this section, we denote by T push2,n , T push−pull2,n and T pullk,n , for k ≥ 2, the
spreading time associated with respectively the 2-push, 2-push-pull and k-pull
protocols. As recalled in the introduction, in the 2-push protocol, an informed
node contacts some random node and sends it the rumor (i.e. triggers a push
operation), while in the 2-pull protocol, an uninformed node contacts some
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Tk,n distribution E
(
Tk,n

)
2-push-pull

∑n−1
i=1 G

(
2i(n−i)
n(n−1)

)
(n− 1)Hn−1 ∼

n−→∞
n lnn

2-push
∑n−1

i=1 G
(

n−i
n−1

)
(n− 1)Hn−1 ∼

n−→∞
n lnn

2-pull
∑n−1

i=1 G
(

i
n−1

)
(n− 1)Hn−1 ∼

n−→∞
n lnn

k-pull k − 1 +
∑n−k

i=1 G
(
pk,n(i)

)
(5) ∼

n−→∞
n ln(n)/(k − 1)

Table 1 Spreading time distributions of the 2-push-pull, 2-push and k-pull protocols.

random node and asks for the rumor (i.e. triggers a pull operation). Finally,
in the 2-push-pull protocol, the same node can perform both push and pull
operations according to whether it knows or not the rumor.

To compare the spreading time distributions of each protocol, we use
stochastic dominance tools. We recall the following definition (see for in-
stance [13]).

Definition 10 (Stochastic dominance definition) Let X and Y two in-
dependent real random variables.

a) X strictly stochastically dominates Y if for all x, we have

P{X > x} > P{Y > x}. We then write X
s.t.
� Y .

b) X stochastically dominates Y if for all x we have

P{X > x} ≥ P{Y > x}. We then write X
s.t.
� Y .

Comparing the spreading time distributions of each protocol amounts in
comparing sums of geometric distributions. We thus first start by the following
lemma which is used to prove the next theorem.

Lemma 11 (Stochastic dominance for geometric distributions) Let G1

and G2 be two independent geometric random variables with parameters g1 and
g2 respectively. If g1 > g2 then G1 is strictly stochastically dominated by G2.

Proof Since g1 > g2, we have (1 − g1)` < (1 − g2)` for every integer ` ≥ 1.
Hence,

P {G1 > `} = (1− g1)` < (1− g2)` = P {G2 > `} ,

which implies that G1 is strictly stochastically dominated by G2.

Theorem 12 For all n ≥ 4 and 2 ≤ k ≤ n, we have

T pullk,n

s.t.
≺ T pullk−1,n

s.t.
≺ . . .

s.t.
≺ T pull3,n

s.t.
≺ T pull2,n

L
= T push2,n

and

T pull3,n

s.t.
≺ T push−pull2,n .
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Proof We first show that pk,n(i) > pk−1,n(i) for all i. For all i = 1, . . . , n− k,
we have

1− pk,n(i) =

k−1∏
h=1

(
1− i

n− h

)
<

k−2∏
h=1

(
1− i

n− h

)
= 1− pk−1,n(i)

which implies that for all i = 1, . . . , n− k, pk,n(i) > pk−1,n(i). If i = n− k+ 1,
pk−1,n(n− k + 1) < 1 and pk,n(n− k + 1) = 1.

Applying Proposition 11, we deduce that G(pk,n(i))
s.t.
≺ G(pk−1,n(i)) for all

i = 1, . . . , n− k. Summing for i = 1 to n− k + 1, we have

n−k+1∑
i=1

G (pk,n(i))
s.t.
≺

n−k+1∑
i=1

G (pk−1,n(i)) .

Adding the quantity k − 2 to both terms and since pk,n(n − k + 1) = 1, we
obtain

T pullk,n

s.t.
≺ T pullk−1,n

s.t.
≺ . . .

s.t.
≺ T pull2,n .

Note that from Table 1, the random variables T pull2,n and T push2,n have the same
distribution.

We turn now to the second part of the proof by comparing of the param-
eters of both distributions T pull3,n and T push−pull2,n , that is p3,n(i), which is the

parameter of the i-th geometric distribution of T pull3,n , with 2i(n−i)/(n(n−1)),

which is the parameter of the i-th geometric distribution of T push−pull2,n . For all
i = 1, . . . , n− 1, we have

p3,n(i)− 2i(n− i)
n(n− 1)

= 1−
2∏

h=1

(
1− i

n− h

)
= 1−

(
1− i

n− 1

)(
1− i

n− 2

)
− 2i(n− i)
n(n− 1)

=
i(n+ i(n− 4))

n(n− 1)(n− 2)
.

It is obvious that n + i(n − 4) ≥ 0 for n ≥ 4. Hence, we deduce from
Lemma 11 that for all i = 1, . . . , n− 1,

G (p3,n(i))
s.t.
≺ G

(
2i(n− i)
n(n− 1)

)
.

Summing for i = 1, . . . , n − 1, we conclude that T pull3,n

s.t.
≺ T push−pull2,n , which

completes the proof.
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Fig. 1 Stochastic dominance illustration. Applying the recursion detailed in Relation 8, we
compute the distribution P

{
Tk,n > t

}
for the 2-push, 2-push-pull and k-pull protocols. The

total number of nodes has been set to n = 100.

Theorem 12 shows that the k-pull protocol requires significantly less oper-
ations than the other standard protocols.

Figure 1 illustrates the fact that T pull2,n (or equivalently T push2,n ) and T push−pull2,n

cannot be stochastically ordered. Indeed, this figure shows that there is a
threshold instant t(n) such that

P{T pull2,n > t} < P{T push−pull2,n > t} for t < t(n)

P{T pull2,n > t} > P{T push−pull2,n > t} for t > t(n).

In this figure, for which we have n = 100, the threshold instant t(100) is equal
to 530. This phenomenon can be explained as follows.

On the one hand, for i = 1, . . . , bn/2c − 1 we have p2,n(i) = i/(n − 1) <
2i(n− i)/(n(n− 1)) and for i = bn/2c we have p2,n(i) = 2i(n− i)/(n(n− 1)).
It follows from Theorem 12 that

bn/2c∑
i=1

G(p2,n(i))
s.t.
�
bn/2c∑
i=1

G
(

2
i(n− i)
n(n− 1)

)
.

This means that the time needed for bn/2c nodes to learn the rumor is stochas-
tically smaller when using the 2-push-pull protocol instead of the 2-pull pro-
tocol.
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On the other hand, for i = bn/2c + 1, . . . , n − 1 we have p2,n(i) > 2i(n −
i)/(n(n− 1)). It follows from Theorem 12 that

n−1∑
i=bn/2c+1

G(p2,n(i))
s.t.
≺

n−1∑
i=bn/2c+1

G
(

2
i(n− i)
n(n− 1)

)
,

which means that the time needed for all the n nodes to learn the rumor,
starting initially with bn/2c + 1 nodes knowing the rumor, is stochastically
smaller when using the 2-pull protocol instead of the 2-push-pull protocol.

6 Conclusion

In this paper, we have proposed a new rumor spreading protocol that allows
each node to asynchronously interact with k − 1 other nodes during each
operation. We have analyzed its limiting behavior when the number of nodes
goes to infinity and we have shown that it generalizes the standard (i.e. k = 2)
pull protocol and improves it when k > 2. Further research would allow us to
manage competing rumours more finely. For instance, the initiator of the k-
pull operation might take advantage of this interaction scheme to decide which
rumors to learn when different rumors are allowed to compete. Such a problem
has a great impact in the context of blockchain protocols. Another interesting
research direction would be to generalize the 2-push and 2-push-pull protocols
to the corresponding k-push and k-push-pull protocols.

7 Appendix

Let X1, . . . , Xn be n independent geometric random variables with possibly
distinct parameters, i.e. such that Xi ∼ G(pi) with pi ∈ (0, 1]. Let X =
X1 + · · ·+Xn, µ = E(X) and p∗ = mini=1,...,n pi. We then have the following
results which have been proved in [18].

Theorem 13 For any p1, . . . , pn ∈ (0, 1] and any λ ≥ 1,

P{X ≥ λµ} ≤ e−p∗µ(λ−1−ln(λ)).

Theorem 14 For any p1, . . . , pn ∈ (0, 1] and any λ ≤ 1,

P{X ≤ λµ} ≤ e−p∗µ(λ−1−ln(λ)).
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