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ABSTRACT

Contrast-enhanced medical images offer vital insights
for the accurate diagnosis, characterization and treatment of
tumors, and are routinely used worldwide. Acquiring such
images requires to inject the patient intravenously with a
gadolinium-based contrast agent (GBCA). Although GBCAs
are considered safe, recent concerns about their accumula-
tion in the body tilted the medical consensus towards a more
parsimonious usage. Focusing on the case of brain mag-
netic resonance imaging, this paper proposes a deep learning
method that synthesizes virtual contrast-enhanced T1 images
as if they had been acquired after the injection of a standard
0.100 mmol/kg dose of GBCA, taking as inputs comple-
mentary imaging modalities obtained either after a reduced
injection at 0.025 mmol/kg or without any GBCA involved.
The method achieves a competitive structural similarity index
of 94.2%. Its asymptotic performance is estimated, and the
most important input modalities are identified.

Index Terms— Brain MRI, gadolinium-based contrast
agents (GBCA), low-dose imaging, virtual enhancement.

1. INTRODUCTION

Gadolinium and biomedical imaging. Gadolinium-based
contrast agents (GBCA) are routinely used in biomedical
imaging. An approximate 40% of all magnetic resonance
imaging (MRI) sessions in Europe and the United States
rely on GBCAs to diagnose, characterize or monitor lesions
that would remain otherwise poorly visible [1, 2]. In neu-
roimaging, contrast-enhanced T1-weighted imaging is the
cornerstone modality for the detection and precise delin-
eation of brain glioma and metastases, which cause each year
hundreds of thousands of deaths worldwide [3, 4]. GBCAs
are considered safe, with less than one patient in 100,000
that experiences an adverse reaction [1]. However, the linear
sub-category of GCBAs has been withdrawn from European
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Fig. 1. Proposed deep learning approach for the synthesis of
contrast-enhanced brain images.

markets in 2017 on the suspicion of abnormal accumulation
of gadolinium [5]. Gadolinium has also been identified as
a possible trigger of the rare nephrogenic systemic fibrosis
disease in patients with renal insufficiency [6]. Macrocyclic
GBCAs remain recommended if not systematic in a large
number of situations in order to achieve the best diagnosis
performance, but recent guidelines suggest to aim for a more
parsimonious usage, especially in the case of chronic disease
monitoring [7].

Deep learning approaches for low-dose MRI. In [8], the au-
thors propose a deep learning method that predicts contrast-
enhanced brain MRI slices from corresponding pairs of zero-
contrast and low-dose (0.010 mmol/kg injection of GBCA)
T1-weighted MRI slices, thus suggesting to decimate the us-
age of GBCAs in neuroimaging while maintaining a satis-
fying diagnostic performance. A year later, the study [9]
goes even further and details a deep neural network archi-
tecture that predicts 3D patches of contrast-enhanced brain



MRIs from corresponding patches of multiple zero-contrast
MRI sequences (including T1, T2, T2-Flair, diffusion and
susceptibility-based contrasts), thus suggesting to completely
eliminate the need for GBCAs.

Contributions. In this paper, we propose a deep learning
method to synthesize brain contrast-enhanced MRIs from cor-
responding zero-contrast and low-dose modalities, the latter
being obtained after an injection of GBCA at 0.025 mmol/kg.
We share engineering tactics that allow the fast training of
our architecture which directly processes entire brain images
instead of slices or patches. We evaluate the method on a data
set of 105 patients with mixed conditions. Finally, the relative
contributions of the input modalities are systematically inves-
tigated with ablation studies, and the asymptotic performance
of the method is estimated by training it on nested subsets of
the total data set.

2. MATERIALS AND METHODS

Data and preprocessing. Imaging data from 150 MRI exams
were collected at Gustave Roussy Hospital (Cancer Cam-
pus), France. The acquisition methodology is depicted by
Figure 1: T1, T2-Flair and diffusion sequences are acquired
before injecting 0.025 mmol/kg of GBCA and acquiring a
contrast-enhanced T1 (T1ce), that we denote as “low-dose”.
After a second injection of the remaining 75% of the stan-
dard 0.100 mmol/kg dose of GBCA, another T1-weighted
sequence is acquired, and is called “full-dose” T1ce in the
rest of the article. All sequences are corrected using the N4
bias field correction algorithm [10], co-registered on the MNI
152 brain atlas [11] using affine transformations, resampled
to an isotropic 1mm resolution and cropped to volumes of

size 160×192×160. Apparent diffusion coefficient (ADC)
maps are computed from the diffusion sequences. Images are
then normalized using the signal statistics of their respective
brain content, identified using the HD-BET method [12]. Af-
ter brain masking and extreme values clipping, all intensities
are linearly mapped to the [0, 1] interval.

Included patients have mixed conditions (including brain
metastases, glioblastoma) and follow a mix of therapies (in-
cluding surgical resection, biopsy, radiotherapy). MRI se-
quences were acquired on both 1.5T and 3T imaging systems.
Out of 150, 25 sessions were incomplete and are therefore
excluded. We choose in this work to use only 1 session per
patient, further discarding 9 more MRI sessions. Finally, 11
more sessions with very large artifacts or whose preprocess-
ing catastrophically failed were manually rejected, leading to
a final heterogeneous data set of 105 sessions or patients.

Deep network architecture. Figure 2 details the proposed
deep network architecture, adapted from [13], that synthe-
sizes virtual contrast-enhanced brain MRIs from correspond-
ing 1≤M ≤ 4 zero-dose and/or low-dose sequences stacked
as M -channel volumes of size 160×192×160. In addition
to the reference configuration indicated by Figure 1 where
M = 4 input modalities (T1, T2-Flair, ADC and low-dose
T1ce) are exploited to train the deep network, additional com-
binations where M<4 will be evaluated in Section 3.

In any case, input modalities are encoded into a hierar-
chy of feature maps by the successive application of 2-strided
convolution filters with isotropic kernels of size 2, and resid-
ual convolution blocks of kernel size 3 without striding. The
number of channels of the first feature map C ∈ {8, 16, 32}
is left as an hyper-parameter whose influence will be investi-
gated in Section 3. A symmetrically-built decoder iteratively
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Fig. 2. Architecture of the proposed deep neural network for the synthesis of full-dose contrast-enhanced brain MRIs from zero-
dose and/or low-dose sequences. Both the number of input modalities M and the network width C are left as hyperparameters.



evaluates 2-strided transposed convolution filters and residual
convolution blocks of respective isotropic kernel sizes 2 and
3, up until a final convolution with kernel size 1 that finally
synthesizes the virtual contrast-enhanced T1. Skip connec-
tions are taken into account by concatenation. All activation
functions are 0.2-ReLU at the exception of the final sigmoid.

Training and testing the deep network. The deep network is
trained to minimize the L2 loss between its predictions and
the reference full-dose T1ce MRIs using the Adam optimizer
with default hyper-parameters, for 300 epochs. Flip augmen-
tation is used both during training with 50% probability for all
three axes, and during validation and testing where all eight
possible configurations are computed and averaged. In order
to accelerate both training and inference, we leverage half-
precision computing using the Nvidia-Apex library, and flip
augmentations are performed directly on the GPU.

All performances are computed using the same 5-fold
cross-validation approach, and are therefore directly com-
parable to each other. In some experiments, only a reduced
fraction F ∈ {25%, 50%, 100%} of the 84 available training
subjects in each fold are exploited, in order to evaluate the
influence of the data set size and in turn estimate the asymp-
totic performance of the proposed method. Note that even
in such cases, the test sets are kept identical. Four perfor-

mance metrics are considered: in addition to the “global” L2
loss which is directly optimized, we also compute the tumor-
averaged L2 (t-L2) based on segmentation maps of enhancing
lesions, as well as the peak signal-to-noise ratio (PSNR) and
the structural similarity index (SSIM, see [14]) as in [8, 9].

3. RESULTS

Qualitative results for the reference configuration. We first
evaluate our method using all available input modalities (M=
4 with T1, T2-Flair, ADC and low-dose T1ce), maximal train-
ing sets (F =100%), and intermediate network width (C=16
channels). Average performance metrics are 31.6 (×10−5) for
L2, 74.4 (×10−4) for t-L2, 35.3 dB for PSNR and 94.2% for
SSIM, which compares favorably to the related works [8, 9],
although such direct comparison of metrics on different data
sets must be interpreted with care. Figure 3 presents represen-
tative examples of virtually-enhanced MRIs for three patients
with different conditions. In the case of a patient with brain
metastases (top row), we can see that the contrast is well-
reconstituted for one of the two visible lesions (overlaid in
green in the rightmost figure), when the shape of the second
enhancing lesion (overlaid in red) is not perfectly captured.
In the case of a patient with resected glioblastoma (middle
row), we see that the enhancing border is well-located, al-
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Fig. 3. Axial slices of T1, T2-Flair, ADC, low-dose T1ce, virtual T1ce and full-dose T1ce images (in columns, from left to
right) for three patients with brain metastases (top row), resected glioblastoma (middle row), and no enhancing lesion (bottom
row). The last column overlays manually-defined segmentation maps (in colors) of enhancing lesions on the full-dose T1ce.
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X X X X 31.6 (11.4) 74.4 (80.2) 35.3 (1.52) 94.2 (1.31)

7 X X X 65.3 (30.9) 263. (185.) 32.2 (1.69) 91.6 (2.00)

X 7 X X 34.0 (13.2) 129. (99.5) 35.0 (1.54) 94.0 (1.29)

X X 7 X 32.2 (12.0) 84.1 (86.8) 35.2 (1.56) 94.1 (1.32)

X X X 7 32.0 (12.2) 79.9 (83.8) 35.2 (1.55) 94.2 (1.33)

7 X X 7 66.9 (30.9) 264. (190.) 32.1 (1.68) 91.5 (2.01)

X 7 X 7 33.9 (13.0) 133. (102.) 35.0 (1.56) 94.1 (1.31)

X X 7 7 31.3 (11.5) 87.1 (87.8) 35.3 (1.54) 94.2 (1.31)

7 X 7 7 65.7 (30.8) 260. (186.) 32.2 (1.71) 91.6 (1.99)

X 7 7 7 36.9 (14.3) 137. (106.) 34.6 (1.59) 93.8 (1.32)

Table 1. Means and standard deviations of the achieved L2,
t-L2, PSNR and SSIM performance metrics in a sequence of
scenarii where the number of input modalities M is iteratively
decreased. For each configuration M , best metrics are in bold.

though slightly under-enhanced. Finally, in the case of a pa-
tient without any enhancing lesion, we can notably observe
that the synthesized MRI presents a smoother and less arti-
facted aspect that the reference full-dose MRI, in line with [8].

Identification of key modalities. We systematically investigate
the influence of input modalities by training and testing our
deep learning method in varied scenarii: M is iteratively de-
creased according to a backward elimination procedure where
at each step, the least influential modality is removed. Table 1
presents the obtained results: starting from the reference con-
figuration previously discussed, the first modality that can be
removed with the lesser impact on the performance is the T2-
Flair; ADC then follows as the second less essential modality
before T1. The low-dose T1ce is clearly identified as the key
modality for our virtual enhancement method, whose perfor-
mance systematically and significantly drops when deprived
of contrast-enhanced inputs. We also interestingly observe
that adding the T2-Flair and ADC modalities to the zero-
contrast and low-dose T1 MRIs does not improve the global
L2, PSNR and SSIM metrics, but improves the t-L2 perfor-
mance on the tumor regions.

Estimation of the asymptotic performance. We finally eval-
uate how the performance of our method evolves when the
size of the training set is artificially decreased to only a quar-
ter (F=25%), a half (F=50%), or three-quarter (F=75%)
of its reference size (F =100%). The influence of the deep
network width, as defined by the number of channel dimen-
sions of the first feature map C ∈ {8, 16, 32}, is jointly in-
vestigated. Figure 4 plots the evolution of the average perfor-
mance metrics when these two hyperparameters are varied.
The performance clearly drops when the network width of
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Fig. 4. Mean L2, t-L2, PSNR and SSIM performance metrics
in an array of scenarii where the size of the training data set
F and the deep network width C are jointly varied.

the reference configuration is decreased from C=16 to 8. On
the other hand, doubling this number of channels to C=32
seems only beneficial for the t-L2 metric when all available
data is exploited (F=100%). We also read that the global L2,
PSNR and SSIM performance metrics curves with respect to
the training fraction F are approaching saturation: we may
reasonably hypothesize that expanding further our data set
would only yield sublinear improvements. In particular, we
submise that the PSNR and SSIM metrics would respectively
remain below 36.1dB and 94.6% if the data set size was dou-
bled (F=200%). By contrast, it is more difficult to anticipate
the asymptotic performance of our method as measured by the
t-L2 metric, which does not exhibit clear signs of saturation.

4. DISCUSSION AND CONCLUSION

In this paper, we detailed a deep learning method that syn-
thesizes brain contrast-enhanced MRIs from complementary
low-dose and zero-contrast modalities. The method was eval-
uated on a large data set of patients with mixed conditions,
and showed a state-of-the-art performance with respect to the
literature, both qualitatively and quantitatively. We system-
atically studied the influence of input modalities and clearly
identified that the low-dose MRI is key, suggesting that the
information provided by injecting a GBCA cannot be simply
recovered by combining zero-contrast modalities. We finally
investigated the influence of the data set size and the deep net-
work width, which allowed the estimation of the asymptotic
performance of our method. In order to evaluate the potential
impact of our method in clinical practice, we will evaluate in
future work if the synthesized images allow the correct iden-
tification of lesions by professional radiologists.
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