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1 Introduction. Essentialist and existentialist

viewpoints on Types

The notion of Type was introduced at the very beginning of 20th century by
Bertrand Russell in [Russell, 1903] (Appendix B: “The Doctrine of Types”).
The new fregean frame for Logic, in its set theoretical format, just happened
to be proved inconsistent. Following Russell’s diagnosis, the fault originates in
the consideration of mathematical objects as if they had an existence per se, a
pure existence. Russell’s aim in introducing type theory was therefore to rebuild
logic by rooting the existence of objects in a kind of existence, in other words
an essence (their type); hence rejecting out of the scope of existence those in-
dividuals with no essence (meaningless, pseudo existing objects).
Four decades later, similar considerations led Alonzo Church to introduce types
in his Lambda-calculus, a theory today considered as one of the first pro-
gramming languages ever designed [Church, 1940]. In “Simply typed Lambda-
calculus” (but also in the more powerful typing systems elaborated later on),
it is the building of programs (lambda-terms: acting, behavioural individuals)
that is tamed by the discipline of types. In that context, once again, the ex-
ternal norm introduced by types aims at excluding meaningless – untypable –
individuals1.

It notably leaves aside the ones inducing infinite computations – the dynam-
ical version of logical paradoxes –, hence “taming” the computational dynamic.

In the same field of Theoretical Computer Science, an alternative approach
to the notion of type emerged however later on. Following the Propositions-as-
Types point of view (i.e. the Brouwer-Heyting-Kolmogorov semantics of proofs
revisited by the proof-as-programs viewpoint initiated by the Curry-Howard cor-
respondence [Howard, 1980]) a given type is seen as some given set of programs,
namely the set of all programs selected by the external norm of the typing
discipline. With this point of view (types as sets of programs), the question
naturally arises to characterise intrinsically which sets of programs are types,
i.e. characterising them from an existentalist viewpoint, by considering all pure

programs and their interactions in the computational process.
As existence appears rooted into essence in the first approach of the notion of
type, this second point of view is naturally qualified as “essentialist” (as William
Tait does, for instance in Theory of Types and Natural Deduction, the chapter 4
of [Tait, 1990], p. 65). For this alternative approach, existence precedes essence.
Better even: essence is deduced from existence, deduced a posteriori from the
behaviour (tell me how you act, I shall tell you who you are), a reason why it
may be qualified as “non essentialist” or “existentialist” (as Jean-Yves Girard
does, for instance in [Girard, 1990]).

In that latter existentialist point of view, a type describes a collective, com-
mon, behaviour so to speak: a set of acting individuals (programs) having,
through the computational process, a similar, or comparable, behaviour (at

1Actually, non typable terms are not always meaningless, especially when considering sim-

ple types. In Church’s times, the (blurred) delimitation between non-typable and paradoxal
(in the logical sense mentioned further) was not clear (in particular, it’s only with Tait’s and
Girard’s work that one could understand that lambda-terms of the shape (t)t may be non
problematic – [Tait, 1966] and [Girard, 1971].
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least with some respect) in their interaction with their (pure) peers2.
Concretely, existentialist types are defined through a closure by bi-ortho-

gonality operation (presented in section 3), where the involved notion of or-
thogonality3 is relative to some given binary relation. In the particular case of
theoretical computer science, the considered relation depends on the interac-
tive dynamic4 In this work, we will however consider the methodology from a
more general point of view, i.e. for any given binary relation. From that set
theoretical point of view, this operation of closure by bi-orthogonality provides
a general tool for classification and the concept of type becomes a classifying
notion.

The first classificatory notions emerged in late 19th century in the context
of the logical investigations by Peano’s school on abstraction. The historical
and theoretical thread which links abstraction to classification (by means of the
notions of equivalence relation, equivalence classes and quotientation of a set by
an equivalence relation, drawn by Peano’s school) is well known and well docu-
mented. Among the abundant literature on the history of Peano’s “Definitions
by abstraction” and Russell’s “Abstraction principles” (the new name later on
proposed and popularized by Russell for the former), one could refer in partic-
ular to [Consuegra, 1991] (whose first chapters underline the importance and
the anteriority of the Peano’s school investigations about abstraction and set
theoretical interpretations of abstraction5) and [Mancosu, 2016] (whose Part 1
in entirely devoted to the history of Abstraction theory, from 19th century – and
even earlier – to mid 20th century, in logic and in the mathematical practice).

In this work, we aim at showing that the same thread linking abstraction

to the notion of class extends to the (more general) notion of type. Moreover,
we advocate that such an extension is needed to understand the generalisation
of Peano school’s theory of abstraction that Hermann Weyl proposed in the
first decade of 20th century and which roots ideals elements à la Hilbert into
relational indiscernibility.

2 Abstraction and Ideality: from Peano to Weyl

2.1 Peano’s school’s research programme on abstraction.

Peano and his group launched around 1880 a research programme aiming at
establishing a typology of definitions (as they actually occur in the practice of

2The methodology is for example used in [Girard, 2001], [Krivine, 2001],
[Highland-Schalk, 2003]. For a more theoretical/conceptual focus on the methodology
itself : [Naibo-Petrolo-Seiller, 2016].

3The notion of orthogonality can be seen as a formulation of Garett Birkhoff’s polarities.
In the sections 1., 5., 6. and 7. of chapter IV: “Complete lattices” of [Birkhoff, 1948], bridges
are built between 1/ Closure operators (section 1), 2/ Orthogonality (Polarity in Birkhoff’s
terminology, section 5), 3/ Galois connections (section 6), starting from the Lattices viewpoint.
Thanks to Alexandre Miquel for the reference and enthousiast discussions.

4Actually, the closure by bi-orthogonality methodology has in contemporary Logic, a large
diffusion which exceeds the field of computational types. See for instance [Okada, 1998] where
a completeness result for cut-free provability is reaches by means of a notion of “fact”, which
rests on the same closure by bi-orthogonality methodology.

5In the sequel, we thus continuously refer to “the Peano’s school approach”, even if the
philosophical literature on abstraction tends to promote Frege and Russell, because of the role
they played in the logicist investigations about second order abstraction - see section 4
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mathematicians along centuries), using the precise linguistic tools offered by the
emerging formal logic. The thread of their investigations gradually led them to
bring out (as candidates for a special kind of “definition”) statements of the
form:

fR(x)=fR(x
′) ⇔ xRx′,

where fR is a newly introduced unary function constant and R is a binary pred-
icate6 satisfying three properties (for which they eventually coined the terms
reflexivity, symmetry, and transitivity, after some terminological hesitations)
characterising what they progressively called, as we still do: equivalence rela-

tions7. Peano’s group proposed to deem axioms of the form above as definitions
and coined them“definitions by abstraction”8.

A simple, popular example of such definitions “by abstraction” is that of the
direction of a line. One starts by considering the binary relation ‖ (“is parallel
to”) over lines defined by x‖x′ iffdef the lines x and x′ have all their points in
common or no points in common. One then introduces the new lexical element
f‖(x) (to be read: “the direction of line x”) satisfying f‖(x) = f‖(x

′) ⇔ x‖x′;
i.e. the direction of the lines x and x′ are the same if and only if x and x′ are
parallel.

The method described by the Peano’s school under the name “definition by
abstraction” actually covered numerous examples which can be found previously
in the history of mathematics9. Used as far back as in Euclid’s approach of ra-
tionals (abstracted from ratios comparison), the method happened however to
gain a wide, increasing spread in the mathematical practice of 18th and overall
19th centuries. Among several mathematical pursuits, one may cite − again
− directions abstracted from the relation of parallelism between lines; shapes
abstracted from topological invariances; von Helmholtz’s weights, brightness,

pitch of tones ; and neither last, nor least, cardinal numbers abstracted from
bijectibility between sets, a.k.a. Hume’s principle10.

6 To lighten the notation, we write xRx′ to denote sentences R[x, x′] having exactly two
free variables x and x′.

7 Following [Mancosu, 2016], p.22, “[. . . ] it was in the Peano school that for the first time
the three properties characterizing an equivalence relation were assigned a name. It was with
Padoa 1908 that such relations acquired the characterizing name of ‘relazione egualiforme’
defined as a relation that satisfies reflexivity, symmetry, and transitivity”. Nevertheless (ibid.
p. 88, footnote 57) “the explicit use of notions such as reflexivity, symmetry and transitivity in
the Peano school seems to originate with Vailati (1892) and De Amicis (1892). Vailati in 1892
claims originality for introducing the word ‘reflexivity’. De Amicis also credits Vailati with the
introduction of ‘reflexivity’ and both credit de Morgan with the introduction of ‘transitivity’.
De Amicis coined ‘convertible’ [conversivo] for what we call ‘symmetric’ but his terminology
did not catch on. Symmetric, in this sense, was introduced by Schröder in 1890”.

8 Following [Mancosu, 2016], p. 2 and p. 13, the term definitions by abstraction appeared
in print in 1894, but it was used earlier by members of the Peano school, at least from 1888.
In the first decade of 20th century, Russell favourized the “abstraction principle” terminology
to name those axioms (to the detriment of the “definition by abstraction” terminology).

9 For a broad historical overview, see [Mancosu, 2016], Chapter 1: “The mathematical
practice of definitions by abstraction from Euclid to Frege (and beyond)”.

10In §63 of his Grundlagen, Frege cites Hume as an ancestor of this idea, mean-
while developed by Cantor. The terminology Hume’s principle seems however to come
from [Boolos, 1987]. For a stimulating detailed overview of the genesis of the treatment of
numbers by Dedekind, Cantor and Frege, see [Tait, 1996].
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A large part of the early philosophical debates about definitions by abstrac-
tion comes from the fact that, semantically, the codomain of fR (whose elements
are considered as the abstracta) is not determined by the new “definitional”
axiom (favorizing interrogations about the ontological status of the thus poten-
tially new entities : the abstracta). Once a minimum of set theory is assumed,
a canonical solution is of course to reduce abstraction to classification by in-
terpreting systematically fR as the operator [.]R associating to any element
its equivalence class11 (thus choosing the quotient of the domain by R as the
codomain of fR)

12. In some cases, an ontologically less costly variant of that
classificatory solution (an Ockhamian solution to abstraction, so to speak) may
consist in choosing a representative in each equivalence class (even if choosing
is not at all an innocuous operation, in general . . . ).

2.2 From Peano to Weyl: abstracta and ideal elements.

In 1910, H. Weyl generalizes Peano’s theory of “Definitions by abstraction”, by
proposing the theory of what he coins “Creative definitions”, see [Weyl, 1910].
In [Weyl, 1927], he gives a more systematic presentation of the topic – a presen-
tation that he will improve again (notably by giving complementary examples)
in Philosophy of Mathematics and Natural Sciences, the augmented, revised,
and translated in english edition of his 1927 book [Weyl, 1949]. His aim, with
the concept of “creative definitions”, is not only to broaden the Peano’s school
typology in order to cover examples overstepping definitions by abstraction13,
but also to give a precise account of the Hilbertian process of introducing ideal

elements. For sake of brevity and simplicity, we will not present the general form
of “Creative definitions”. While Weyl considers creative definitions induced by
k + 2-ary relations for any integer k, we will focus on the case where k = 0, i.e.
creative definitions induced by binary relations14.

Even if Weyl himself does not conceptually justify his ideas in terms of in-
discernibility and does rarely use that terminology (he contents himself with
underlining how the notion of creative definitions fits with the definitional prac-
tices of mathematicians, through a list of specific instances), it is very clarifying
to present his creative definitions by introducing the notion of relational indis-
cernibility.

11The notion of Equivalence class was brought out by Mario Pieri, Cesare Burali-Forti
and Alessandro Padoa, within their attempts to reformulate “definitions by abstraction” as
“nominal definitions”, see [Consuegra, 1991]. Note that the “solution” interpreting fR(x) as
[x]R is more appropriately described as introducing a binder – which in that particular case
happens to be the binder corresponding to set formation: {y ; xRy}, rather than a function
constant fR. About abstraction principles formulated with binders, see [Pollard, 1998] and
[Tennant, 2017].

12Following [Mancosu, 2016], the first systematic and complete exposition of the partition-
ing/quotienting discipline in a mathematical textbook seems to occur only in the late 1920s
(probably for the first time in van der Waerden’s Abstrakte Algebra [Van der Waerden, 1930],
in the § 5, entitled “Klasseneinteilung. Äquivalenzrelation”). Nevertheless, “the technical de-
tails were already clear in the 1910s” for Russell, who, from 1902/1903, pleads for interpreting
“abstracta” systematically by equivalence classes.

13 The main examples presented or cited by Weyl are: circles in planar geometry, the
notion of function over reals, points at infinity, imaginary elements in geometry, Kummer’s
ideal numbers.

14We nevertheless believe this general case can be reduced to our binary setting or a simple
generalisation thereof
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2.3 Monadic indiscernibility versus Relational indiscerni-

bility.

In the philosophical literature, the word indiscernibility is frequently used to
qualify what would be better called universal, absolute indiscernibility, i.e. in-
discernibility of x and x′ from any possible viewpoints. That binary predicate
(absolute indiscernibility) is usually paraphrased in second order monadic pred-
icate logic as:

∀P (Px ⇔ Px′)

(see for instance the entry “Identity of Indiscernibles” of The Stanford Encyclo-

pedia of Philosophy, [Forrest, 2016]).
In what follows, we will leave aside the idea of absolute indiscernibility, lim-

iting thus ourselves to a more pedestrian notion, namely indiscernibility with
respect to a given piece of first order language: relative (i.e. not absolute) in-
discernibility. At first sight, this simply amounts to avoid the use of second
order quantification in the definition of the indiscernibility binary predicate.
However, if one does so (starting thus from the standard definition of absolute
indiscernibility given above – namely ∀P (Px ⇔ Px′)), the resulting concept
for, say, a given unary predicate P0 (indiscernibility of x and x′ relatively to P0,
namely P0x ⇔ P0x

′, that we could note x∼P0
x′), happens to be particularly

weak at least in terms of classification. If we consider a realization m of the
language including P0, then ∼P0

is interpreted by an equivalence relation over
the domain of m which partitions it into at most two classes. In other words, the
indiscernibility predicate induced by P0 can create at best a bi-partition of the
domain, i.e. it creates a classification à la Porphyry : the weakest kind of classi-
fication. Although the logical turn of the late 19th century overtook the notion
of “property” in favour of the more general notion of n-ary predicate/relation,
later philosophical investigations about the notion of indiscernibility essentially
kept approaching that concept from the point of view of monadic predicate
logic.

When one considers the indiscernibility induced by a binary relation R over a
set X , a basic observation is that R induces over X two indiscernibility (binary)

predicates. We will note them
td

∼R and
tr

∼R. They are defined by :

x
tr

∼Rx
′ ⇔def ∀y∈X (xRy ⇔ x′Ry) x

td

∼Rx
′ ⇔def ∀y∈X (yRx ⇔ yRx′)

(we say: x, x′ are ‘equi-targeters ’) (we say: x, x′ are ‘equi-targeted ’)

The equi-targeted and equi-targeters terminology evidently refers to graphi-
cal, sagittal representations of binary relations. The exponents td and tr conve-

niently recall targeted and targeter, respectively. The relations
td

∼R and
tr

∼R are
the two indiscernibility predicates induced by the binary relation15 R. We will

write
t.

∼R to denote indifferently one of
tr

∼R and
td

∼R.

15 Weyl considers the general case where R is a k+2-ary relation. Indiscernibility predicates

are then given as the family of formulas:

∀y0 . . . ∀yi∀yi+2 . . . ∀yk+2 (Ry0 . . . yixyi+2 . . . yk+2 ⇔ Ry0 . . . yix
′yi+2 . . . yk+2).
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2.4 Weyl’s creative definitions: indiscernibility and ideal

elements.

Weyl’s view is that indiscernibility predicates are the true occasions for intro-
ducing ideal elements (Peano’s abstracta being among them). Introducing a
“creative definition” thus means to introduce an axiom of the form:

WR(x)=WR(x
′) ⇔ x

t.

∼Rx
′

where WR (W for Weyl) is a newly introduced function constant16 and R is any
binary relation whatever.

As both indiscernibility predicates induced by R are equivalence relations
over X (for any R whatever), those “ideal elements” could well be seen just

as standard, usual abstracta à la Peano (abstracted from
td

∼R – or from
tr

∼R

as well). Weyl actually defends a more accurate but dual view, according to
which Peano’s abstracta are but particular cases of ideal elements inducible from
indiscernibility. Indeed, equivalence relations appear to be exactly the binary
relations which coincide with the indiscernibility predicates they induce, i.e. R
is an equivalence iff

t.

∼R= R. Hence, an abstractum introduced by a definition
by abstraction is but an ideality introduced by a creative definition, in the
very special case, proper to equivalences, where the indiscernibility predicate
t.

∼R collapses with the relation from which it was induced (namely R itself).
Beyond the simple observation that definitions by abstraction are special cases of
creative definitions, Weyl overall insists on the “finitist” specificity of definitions
by abstraction among creative definitions: they tame the complexity inherent
to indiscernibility predicates. Indeed, as an equivalence R allows to replace
the indiscernibility predicates it induces by R itself (as x

t.

∼R x is equivalent
to xRx′, inasmuch R is an equivalence), equivalences allow to get rid of the
universal quantifier present in the definition of indiscernibility predicates.

2.5 Which set-theoretic interpretation for Creative defi-

nitions ?

Similarly to what has already been observed for the case of a simple definition
by abstraction à la Peano-Russell, the codomain of the operator introduced by
a “creative definition” is left undetermined by the axiom. Exactly as Peano’s
school proposed a classificatory, set-theoretic interpretation of definitions by ab-
straction (the canonical interpretation of abstracta by equivalence classes), one
may want to investigate classificatory set-theoretic accounts of WR in “creative”

16As Weyl does compare Peano’s Definitions by abstraction to his own Creative definitions
(in order to defend that the latter do generalize the former), he presents them in a format
analogous to Peano’s one, namely as axioms introducing a fresh function constant, as Peano
does. But in the examples that he develops, it is clear that Weyl is actually tempted to
describe those axioms as introducing instead a definite descriptor and, thus, a binder and
a “copula” (even if he does not explicitly introduce specific notations). This would lead to

introduce a fresh binder θR, say, and to write θRx.x
t.

∼Rx
′ instead of WR(x′) in the axiom and

a copula that one would be tempted to note ∈. See footnote 18.
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definitions17 i.e. in those axioms of the form:

WR(x)=WR(x
′) ⇔ x

t.

∼Rx
′

where WR is a newly introduced function constant and R a binary relation
whatever.

A first way could simply consist in keeping the “usual” canonical interpreta-
tion, i.e. interpreting Weyl through Peano. After all, indiscernibility predicates
are themselves equivalences, and one may well choose to interpret Weyl’s ide-

alities as equivalence classes for indiscernibility (i.e. sets made of indiscernible
elements and maximal for that property)18.

Since it treats indiscernibility as if it were any equivalence whatever, this
first way of reading creative definitions (thus reading them à la Peano) does
not get the most out of the deep concept of indiscernibility. Notably, as soon
as one devotes attention to the correlations between the properties of R on
the one hand and the properties of the classifying operations induced by the
indiscernibility on the other hand (as Weyl himself does when he relates, in the
case of equivalence relations, the decrease in logical complexity of indiscernibility
predicates to the properties of the relation inducing them), a finer understanding
of the classificatory process at hand is wanted. Our thesis is that the notion
of type (to be defined in the next section) is the relevant tool to that effect.
As we will see in section 4, a bridge from the concept of indiscernibility to the
notion of type may indeed be built from the observation that individuals are

indiscernible iff they belong to exactly the same types.

That second way – that we will follow from now on – thus consists in in-
terpreting WR(x) not as the equivalence class of x for

t.

∼R anymore, but (at
least to start with) as the set of types (induced by R) to which x belongs (the
set of types of x w.r.t. R, as we will say). This amounts to canonically inter-
pret Weyl’s creative definitions (the generalized formulation of Peano’s theory
of abstraction) along “Abstraction Principles” of the form:

x
t.

∼R x′ ⇔ Set-of-TypesR(x) = Set-of-TypesR(x
′),

where R is any binary relation.
We will come back to that alternative interpretation of Weyl’s Abstraction

Principles in section 4, thus after having defined and presented the notion of
type – a task to which the coming section is devoted.

17 Weyl explicitely says that one may well choose to favour a set-theoretic interpretation
of his ideal elements. As an epigone of Hilbert, he nevertheless underlines that, from his
proof-theoretic point of view, such an interpretation is not compulsory, just a matter of taste.

18Let us notice that, in [Pollard, 1998], Stephen Pollard (who formulates Abstraction prin-
ciples using definite descriptors, hence binders, instead of function symbols, and introduce a
“copula” – see our footnote 16) claims that to do so actually amounts to reduce Weyl’s theory
of abstraction/ideality to a weak set theory, made of: 1/ a weak comprehension scheme limited
to “instantiable” properties, i.e. properties P [x] such that P [t/x] is provable for some term t
(following an argument due to Dummett, such a weak comprehension scheme is derivable as
soon as one accepts the small piece of comprehension enough to construct equivalence classes),
2/ together with a weak extensionality axiom equalizing only sets defined by provably equiv-
alent concepts differing only w.r.t. complementary parameters (i.e. A[x, ~yi] and A[x, ~zi], such
that A[x, ~yi] ↔ A[x, ~zi] is provable in the current theory, where the yi, zi do not occur free);
indeed this extensionality axiom is just a particular case of a creative definition à la Weyl
(indiscernibility w.r.t. the copula ∈).
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3 The notion of type

We will now present the notion of type induced by a binary relation R. That
notion may be defined for any binary relations between arbitrary sets and there
are no reasons to restrict ourselves to relations R over a single set here. We thus
chose to provide more general definitions based on relations between arbitrary
sets X and Y . Doing so we will be able to keep covering the particular case of
classifications induced by a relation over a single set – e.g. quotientation by an
equivalence relation –, but also to cover the more general case of classifications
where the criterion for classifying the elements of a set depends on another set.
Anyway, from now on, R will by default denote a subset of X × Y , and we
will follow the following notational conventions: A,A′ . . . denote subsets of X ;
B,B′ denote subsets of Y ; x, x′ . . . denote elements of X , and y, y′ . . . denote
elements of Y . The developments in this section are mainly technical, and we
will discuss their consequences in the next section.

3.1 The orthogonality relation induced by a relation.

The definition of types is based on a so-called orthogonality relation induced by
R.

Definition 1. The right orthogonality relation induced by R, is the binary
relation ⊥R ⊆ P(X) × P(Y ) defined by: A ⊥R B ⇔def A × B ⊆ R. The
relation A ⊥R B can be read both as “A is (left-)orthogonal to B” and as “B
is (right-)orthogonal to B.

Inasmuch only one relation R ⊆ X × Y is involved, we frequently leave
implicit the reference to R in those notation. In most situations, the context
suffices to makes ambiguities disappear.

The following easy lemma characterises the orthogonality relation element-
wise.

Lemma 2. Given two subsets A ⊆ X and B ⊆ Y ,

A ⊥ B if and only if ∀x ∈ A, ∀y ∈ B, xRy.

3.2 Orthogonality operators induced by a relation.

While the orthogonality relation defines a predicate over the product set P(X)×
P(Y ), it also induces two functions (·)⊥ : P(X) → P(Y ) and (·)⊥ : P(Y ) →
P(X) defined using the natural ordering of subsets induced by inclusion. Those
functions will be called the orthogonality operators.

Definition 3. Given a subset A ⊆ X , we define the (right) orthogonal A⊥

of A as the largest subset of Y which is right-orthogonal to A, i.e. A⊥ =def

max{B ∈ P(Y ) | A ⊥ B}. Similarly, the (left) orthogonal B⊥ of a subset
B ⊆ Y is defined as the largest subset of X which is left-orthogonal to B, i.e.
B⊥ =def max{A ∈ P(X) | A ⊥ B}.
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The fact that the notions of left- and right- orthogonal of a subset are well-
defined is based on the following property, which is a direct consequence of the
element-wise characterisation of the orthogonality relation.

Lemma 4. We consider subsets A ⊆ X, B ⊆ Y and B′ ⊆ Y . If A ⊥ B and

A ⊥ B′, then A ⊥ B ∪B′.

Once again, the definition can be understood element-wise19.

Lemma 5. Given subsets A ⊆ X and B ⊆ Y :

A⊥ = {y∈Y ; ∀x∈A xRy},

B⊥ = {x∈X ; ∀y∈B xRy}.

When considering iterated applications of the orthogonality operators, and
when the context will be clear, we will write abusively A⊥⊥ instead of (A⊥)⊥

and B⊥⊥ instead of ( B⊥ )⊥. Notice however that in the particular cases when
X and Y overlap (and notably when X = Y ), the notation A⊥⊥ becomes
ambiguous, as (A⊥)⊥ 6= ( A⊥ )⊥ in general.

Remark 6. We can check that left- and right- orthogonality operators are ex-
changed by considering the relation R−1 = {(y, x) ∈ Y ×X | (x, y) ∈ R} instead
of R. As a consequence, it is enough to state and prove the properties of the
right-orthogonality operator: by symmetry, the same property will hold for the
left-operator. We thus now give statements about “orthogonal operators” by
stating them for right-orthogonality.

Proposition 7. Given A ⊆ X, A ⊆ A⊥⊥.

Proof. This is a direct consequence of the fact that A ⊥ A⊥ and the definition
of (A⊥)⊥ as the maximal left-orthogonal to A⊥.

Proposition 8 (Contravariance). The orthogonal operators are contravariant:

given A ⊆ A′ ⊆ X, one has A′⊥ ⊆ A⊥.

Proof. Let us pick y ∈ A′⊥. By definition, for all x ∈ A, x also belongs to A′,
hence xRy. So A ⊥ A′⊥, i.e. A′⊥ is right-orthogonal to A. Since A⊥ is defined
as the maximal subset of Y which is right-orthogonal to A, this implies that
A′⊥ ⊆ A⊥.

Corollary 9. Given A ⊆ X, A⊥⊥⊥ = A⊥.

Proof. We have that A ⊆ A⊥⊥ by Proposition 7, thus Proposition 8 allows us
to conclude that A⊥⊥⊥ ⊆ A⊥. The converse inclusion is given by Proposition 7
applied to the set A⊥.

19So defined, the “orthogonality” and “orthogonal (operator)” terminology echoes and gen-
eralises the standard notion for vector spaces. In that latter case, A⊥ denotes “the orthogonal
of a subset A of a vectorial space X” defined as the sub-vectorial space whose elements are
all the vectors orthogonal to all the vectors of A. In that particular case, vectors x, x′ are
said orthogonal w.r.t. to a given bilinear form (. | .) defined over X × Y (notation x⊥x′),
when (x | y) = 0. So the notions we are considering are just generalising those ones, when
x⊥x′ means xRx′ for any relation R ⊆ X × Y , where X,Y also are arbitrary sets. Though
the notion has a long genealogy in the history of mathematical practice (from Euclid), the
theoretical focus on “orthogonality” in this broad sense seems to be notably due to Hilbert
(and then Weyl).
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Figure 1: Illustration of the counter-examples from remark 11.

Proposition 10. Let I be a set, and {Ai}i∈I an I-indexed family of subsets of

X, i.e. ∀i ∈ I, Ai ∈ P(X). Then:

1.

(

⋃

i∈I

Ai

)⊥

=
⋂

i∈I

A⊥
i ,

2.
⋃

i∈I

A⊥
i
⊆

(

⋂

i∈I

Ai

)⊥

.

However,

(

⋂

i∈I

Ai

)⊥

*
⋃

i∈I

A⊥
i

in general.

Proof. To prove the first item, we take y ∈
⋂

i∈I

A⊥
i and x ∈

⋃

i∈I

Ai and show that

xRy. By definition, there exists i0 ∈ I such that x ∈ Ai. On the other hand,
y ∈ A⊥

i
for all i ∈ I. Thus y ∈ A⊥

i0
, and therefore xRy since x ∈ Ai0 . For the

second item, as ∩i∈IAi ⊆ Ai for all i ∈ I, we use the contravariance to conclude
that A⊥

i ⊆ (∩i∈IAi)
⊥ for all i ∈ I. Consequently, ∪i∈IA

⊥
i ⊆ (∩i∈IAi)

⊥. Finally,
for the last assertion, one observes that this inclusion does not hold in general,
by considering X = Y = {1, 2, 3}, R = {(2, 2)}, A1 = {1, 2}, and A2 = {2, 3}.
One then checks that (A1 ∩A2)

⊥ = {2}⊥ = {2}, but A⊥
1 ∪A⊥

2 = ∅ ∪ ∅ = ∅.

Remark 11. In general, the operator (.)⊥ is neither surjective nor injective. For
surjectivity, let X1 = {1}, Y1 = {2, 3} and let R1 ⊆ X×Y be the binary relation
R1 = {(1, 2)} (depicted below): we have ∅⊥ = {2, 3} and {1}⊥ = {2}, hence
neither {3} nor ∅ are reached by (.)⊥ (even if ∅⊥{3} and ∅⊥∅). For injectivity,
let X2 = {1, 2}, Y2 = {3}, and R2 ⊆ X × Y be the binary relation R2 =
{(1, 3), (2, 3)}: we have ∅⊥ = {1}⊥ = {1}⊥ = {1, 2}⊥ = {3}. Both counter-
examples are illustrated in Figure 1; types are shown in purple, generating sets
of tests are shown in blue.

3.3 Types

Definition 12. A (left-)type is a subset A ⊆ X in the image of the left-
orthogonality operator, i.e. A ⊆ X is a type if and only if there exists B ⊆ Y
such that A = B⊥ . We call B a generating set of tests for the type A.

Notation 13. We denote Tl(R) the set of left-types, i.e. Tl(R) = {A ∈ P(X) |
∃B ⊆ Y,A = B⊥R }. We denote Tr(R) the set of right-types, i.e. Tr(R) = {B ∈
P(Y ) | ∃A ⊆ X,B = A⊥R}.

11



Again, we will omit to mention R when it is not ambiguous. Moreover, we
will also omit to mention the “direction” (right or left) any time it is not relevant
(we thus states a proposition without mentionning the direction and prove it
for one direction, indifferently).

Remark 14. Reformulated with the terminology just introduced, remark 11 may
be rephrased as: in general, some subsets of Y are not types, and a given type
may well have distinct generators.

We saw that any set is included in its double-orthogonal. We will now see
that types are exactly those sets for which the converse inclusion holds, i.e.
those one which are equal to their bi-orthogonal closure20.

Proposition 15. A subset B ⊆ Y is a type if and only if B = B⊥⊥.

Proof. Evidently, if B = B⊥⊥, then B has a generating set of tests, namely B⊥

and it is therefore a type. We will now prove the converse.
If B is a type, there exists A ∈ P(X) such that B = A⊥. We already know

that B ⊆ B⊥⊥ by Corollary 7. Let us show the converse inclusion :

B = A⊥ ⇒ B ⊆ A⊥

⇒ A⊥⊥ ⊆ B⊥ (by Proposition 8)

⇒ B⊥⊥ ⊆ A⊥⊥⊥ (by Proposition 8)

⇒ B⊥⊥ ⊆ A⊥ (by Corollary 9)

⇒ B⊥⊥ ⊆ B (as we assumed B = A⊥).

Proposition 16. Let A⊆X. The type A⊥⊥ is the smallest type includingA.

Proof. Indeed, A⊥⊥ is a type (since it has A⊥ as its generator) which is con-
tained in any type containing A. To see this, let us pick a type A′ such that
A ⊆ A′. As A ⊆ A′, we have A⊥⊥ ⊆ A′⊥⊥ (by Proposition 8 used twice). Since
A′ is a type, this gives A⊥⊥ ⊆ A′ by Proposition 15.

To close this fast presentation, let us mention that the inclusion order over
types has lattice structure (the infimum is given by intersection, the supremum
by the bi-orthogonal closure of union, which is indeed a supremum because of
proposition 16).

4 Back to abstraction and classification

We now come back to the task left uncompleted in the end of section 2: working
out a canonical alternative set-theoretic interpretation for the abstraction oper-
ators WR(.) introduced by Weyl’s Abstraction Principles (Creative definitions),

i.e. by axioms of the form WR(x) = WR(x
′) ⇔ x

t.

∼Rx′, where WR is a
fresh unary function constant and R any binary relation whatever. Our tool for
that task will be the bridge between indiscernibility and types mentioned in the
end of section 2, namely the proposition which states that to be R-indiscernible

(following
td

∼R, resp.
tr

∼R, as well) means belonging to exactly the same (right,
resp. left) types induced by R.

20The bi-orthogonality operator is an example of the notion of closure operator.
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4.1 A type-oriented interpretation of Weyl’s abstraction

operators.

Notation 17. Let R ⊆ X × Y , x ∈X and y ∈ Y . We introduce the following
notations – replacing our former informal notation “Set-of-TypesR(x)”:

TR(x) =def {A∈Tl(R) ; x∈A} and TR(y) =def {B∈Tr(R) ; y∈B}

The proposition below suggests a type-oriented canonical reading of the ab-
straction operator WR(x) (in “Abstraction principles” à la Weyl, i.e. creative
definitions) as TR(x).

Proposition 18. For any y, y′∈Y , one has: TR(y) = TR(y′) ⇔ y
td

∼R y′.

Proof. Let y, y′∈Y . We need to show that:

∀B ∈ Tr(R) ( y∈B ⇔ y′∈B ) ⇔ y
td

∼R y′.

• For the left-to-right implication, we let x∈X and verify:

xRy ⇐⇒
by def of (.)⊥

y ∈ {x}⊥ ⇐⇒
by the main hyp. of (⇒)

instanciated with type {x}⊥

y′ ∈ {x}⊥ ⇐⇒
by def of (.)⊥

xRy′.

This shows that ∀x ∈ X, (xRy ⇔ xRy′), i.e. y
td

∼R y′.

• For the right-to-left implication, we let B be a right type for R. By
definition of types, B = A⊥ for some A ⊆ X . Then:

y ∈ B ⇐⇒ y ∈ A⊥
⇐⇒

by def. of A⊥

∀x ∈ A, xRy ⇐⇒

if y
td

∼R y′
∀x ∈ A, xRy′

⇐⇒
by def. of A⊥

y ∈ A⊥
⇐⇒ y′ ∈ B.

Compared to the usual canonical reading of abstracta WR(x) as being the

[x]t.
∼R

(the equivalence classes for
t.

∼R, which collapse to [x]R when Rs is an

equivalence), the logical “order” of the new interpretation proposed (WR(x) as
being TR(x)) may seem a high price to pay for a refinement. Indeed, if R is
defined over X , the codomain of the operator TR(.) is the set P(P(X)). We will
now see, however, that, notably because types are closed by intersection, we can
canonically interpret the abstraction operator as the function associating to x
(actually to {x}) its minimal type, namely {x}⊥⊥, by proposition 16.

Proposition 19. Types are closed by intersection, i.e. let R ⊆ X × Y and

{Bi}i∈I , a non empty family of right types. Then
⋂

i∈I

Bi is a right type.

Proof. By definition of types, there is a family {Ai}i∈I of subsets of Y , such

that {Bi}i∈I = {Ai
⊥}i∈I . Then

⋂

i∈I

Bi =
⋂

i∈I

A⊥
i
=

(
⋃

i∈I

Ai

)⊥
(by remark 10). By

definition, being the orthogonal to some subset,
⋂

i∈I

Bi is thus a type.
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Proposition 20. Let x, x′ ∈ X. TR(x) = TR(x′) ⇔ {x}⊥⊥ = {x′}⊥⊥.

Proof. We start by the left-to-right implication. If TR(x) = TR(x′), then
⋂

TR(x) =
⋂

TR(x′). So {x}⊥⊥ = {x′}⊥⊥, since, by proposition 16, {x}⊥⊥ and {x′}⊥⊥ are
the smallest types to which x and x′ belongs, respectively.

For the right-to-left implication, if {x}⊥⊥ = {x′}⊥⊥, then {x}⊥⊥⊥ = {x′}⊥⊥⊥.

Thus {x}⊥ = {x′}⊥ (by corollary 9). Hence x
tr

∼R x′. So TR(x) = TR(x′), by
proposition 18.

Proposition 21. {x}⊥⊥ = {x′}⊥⊥ ⇔ x
tr

∼R x′

Proof. Corollary of propositions 18 and 20.

Proposition 21 finally invites us to interpret the abstraction operator WR(x)
(in “Abstraction principles” à la Weyl, i.e. creative definitions) as {x}⊥⊥, i.e.
the minimal type of {x}.

4.2 Reading abstraction through types: Classificatory and

philosophical stakes

That subsection is devoted to compare the canonical interpretation that we just
proposed for Weyl’s abstraction operators WR(.) (following which WR(x) is the
minimal type of x) with the old, traditional one (following which WR(x) is x’s
equivalence class for the indiscernibility relation induced by R – which collapses
with x’s equivalence classe for R, when R is itself an equivalence relation). We
aim not only to underline in which respects the classifications induced differ, but
also to draw the consequences of the specificities of the new interpretation over
the philosophical pursuits about abstraction initiated by Peano, Frege, Russell
and their followers.

As a prefatory remark, we would like to observe first that, in order to com-
pare both canonical interpretations, one has no particular reason to come back
to the particular case where R is a relation over a single set X . Indeed, from a
classificatory point of view, the case where R ⊆ X×Y with X 6= Y corresponds
to the general situation where the classifying criterion to be used is external to
the classified set (i.e., for example, a type B included in Y is generated by a
set of tests included in A – see Definition 12) and not by an internal one as,
for example, in the case of the quotientation of a set by an equivalence relation.
So, considering arbitrary sets X,Y , simply corresponds to the more general
classificatory frame where the criterion is not necessarily internal. Focusing on
relations over a single set is necessary only if one considers and investigates
the types induced by a relation satisfying particular properties (like reflexivity,
symmetry etc) whose definition requires that the relation is over a single and
the same set.

From a classificatory point of view, the main feature which distinguishes the
type-oriented interpretation from the class-oriented one is that, in the former
case, generally, an induced classification does not generates a partition of the do-
main of R. Actually, in general, neither the set of types, nor the set of minimal
types, nor the set of minimal types induced by singletons do induce partitions
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(as shows the following example: Let X1 = {1, 2}, Y1 = {3, 4}, and R3 ⊆ X×Y
be the binary relation R3 = {(1, 3), (1, 4), (2, 4)}; we have {1}⊥⊥ = {1} and
{2}⊥ = {1, 2}). The classifications induced by the type-oriented interpretation
thus are multi-classifying ones (i.e. a same element generally belongs to differ-
ent types).
That ability, for types, to classify multiply a given object impacts the philos-
ophy of abstraction in several respects. To see this, let us first recall that the
original philosophical debates which troubled Peano’s circle about abstracta,
were partly centred around considerations on the methodology of science (Are
definitions by abstraction reducible to nominal definitions ?), partly semantical
or ontological (What kind of objects are abstracta ? Are they additional enti-
ties, completely new w.r.t. the ones from which they are induced ?).
The traditional set-theoretical canonical solution (abstracta are equivalence
classes) brings a clear answer to both pursuits. Concerning the ontological
one, the answer is however equivocal, in a sense. In the one hand, sets may be
considered as new entities (some set theory is needed), moreover well separated
ones, since the set of equivalence classes forms a partition of the original set.
But, in the other hand, that same fact may be considered as supporting in a
way an ontological parcimony (i.e. the idea that the new, fresh entities are
fresh only in appearance). Indeed, when one partitions a set X , the cardinality
of the resulting partition cannot exceed the cardinality of X – an observation
which leaves open the door for a representation of the abstracta by the original
objects, hence to parcimony21.

By the way, as soon as for ontological pursuits, one wishes to target only
partitions (separated new individuals, but not more numerous than before), let
us notice that the condition defining equivalence relations are sufficient, but not
at all necessary. When R is a relation over a single set X , the conditions on R
which characterize the quotientation discipline are the ones which define collu-
sions (whose definition is recalled below). More precisely, if, for any relation R
over X (be it an equivalence or not), we denote by [x]R, the set {x

′ ∈ X ; xRx′}
(“the class of x for R”) , then the set of all classes, namely {[x]R}x∈X , designs
a partition of X iff R is a collusion (the condition “R equivalence” is sufficient,
but not necessary). Let us give the definition of collusions in the more general
case where R ⊆ X × Y . Those ones are the relations R which are simultane-
ously:
- collusive: ∀x, x′∈X

(

∃y∈Y (xRy ∧ x′Ry) ⇒ ∀y∈Y (xRy ⇒ x′Ry)
)

22,
- total: ∀x∈X ∃y∈Y xRy,
- surjective: ∀y∈Y ∃x∈X xRy.

21In case one requires, in order to recognize that cardinality could only decrease in case of
partition, that there exists an injection from the partition to the original set, the result then
rests upon the Partition Principle, which says that when there is a surjection s : X → Y , then
there exists an injection i : Y → X. The Partition Principle is provable in ZFC. The question
whether it is equivalent to the axiom of choice, seems to be still an open problem of set theory
(in any case, it was still the case in 1995, see [Higasikawa, 1995]. It should be interesting, from
an historical point of view, to determine whether the Peano’s school members included that
observation about cardinality into their ontological debates about definitions by abstraction.
De facto, even if the Partition principle has been first established in 1902 by [Levi, 1902],
Burali-Forti early proposed, in 1896, an approximation of it (actually a wrong formulation,
later criticised by Russell, in 1906). For a precise historical and technical presentation of the
Partition Principle, see [Banaschewski & Moore, 1990].

22The collusivity property may be reformulated in terms of indiscernibility predicates by:

R is collusive iff ∀x, x′∈X
(

∃y∈Y (xRy ∧ x′Ry) ⇒ x
tr

∼R x′
)
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Note that a collusion from X to Y may also be seen as a bijection between the
partition of X (whose elements are the left types for R) and the partition of Y
(whose elements are the right types for R)23.

In the particular case whereX = Y , i.e. when R is a relation over a single set
X , the fact that collusions characterize the quotientation discipline (formulated
above in terms of classes), may be also formulated in terms of types: the set of
the (right, resp. left) types induced by R forms a quasi-partition (of Y , resp. of
X) if and only if R is a collusion24. A rather thorough study of collusions over
a single set can be found in [Joinet, 2019].

Actually, the ontological parcimony remark continues to prevail for the mini-
mal types oriented interpretation that we designed, so that it cannot be invoked
to require that the set of abstracta form a partition or the original set, i.e. to
renounce to non partitioning, multi-classifying classifications. Indeed, in the
minimal types interpretation, since the set of generated types is indexed by X ,
the cardinal of that set of types could at most decrease: the function which, to
x associates x⊥⊥ is surjective.

By the way, the philosophical investigations on abstraction initiated by the
work of the Peano’s school members, Frege and Russell have been early extended
to non partitioning, multi-classifying classifications. In particular, several classi-
ficatory notions that may be seen somehow as “weakened” forms of equivalence
classes did play a central role in 20th century’s philosophy of logic. This is
typically the case of the notion of clique (a.k.a. similarity classe, following
Carnap’s later terminology [Carnap, 1928]) and of maximal cliques, whose defi-
nitions are recalled below. As we will see, they can be directly defined in terms
of orthogonal operators and in terms of the notion of type.

Those notions were first designed and studied from 1914 by Bertrand Russell
and from 1915 by a post-doc of his department, Norbert Wiener. Russell was
attempting to find a total ordering of instants “behind” any partial order of
events (aiming, so to speak, at “quotienting” any partial order by the symmet-
ric, non transitive binary relation: “x is incomparable to x′ w.r.t. the partial
order”). Wiener, following a thread more clearly linked with the theory of
abstraction originated in Peano’s school, was attempting to study abstraction
in case “equivalences” are replaced by “fuzzy equivalences”, namely similari-
ties with threshold features (his ultimate aim was a reconstruction of concepts
from the sensorial subjective experience). Later on, cliques will play a central
role in Carnap’s Quasi-analysis research programme (see [Leitgeb, 2007] and
[Gandon, 2016])25.

23Indeed, we can prove that the set of collusions from X to Y may be bijectively
mapped onto the set of bijections between partitions of X and partitions of Y . The arti-
cle [Joinet-Seiller, 202?] should appear soon.

24We say a quasi partition because the non emptiness of classes condition is not satisfied.
In the standard definition of a partition, a subset belonging to it, is required to be non empty.
This cannot apply inasmuch we two disjoint types: since types are closed by intersection, ∅
has then to be a type – the minimal type. But of course, if we focus on types whose generators
are singletons, as we did to interpret Weyl’s Abstraction principles, ∅ cannot be one of them.

25One may mention that, in almost recent times, the notion of clique happened to have a
second life in Logic, namely in Girard’s Linear Logic. “Coherent spaces”, by which the proofs
of Linear Logic are denotationally interpreted, are indeed spaces of cliques for “similarity
relations”. See [Girard, 1987] and also [Girard, 2004] where the considered “Coherent spaces”
are themselves defined through a bi-orthogonality construction.
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Maximal cliques do play for similarity relations (i.e. reflexive, symmetric,
but not necessary transitive ones), the same role than equivalence classes do
for equivalence relations. If one look at a similarity relation as an equivalence
to which transitivity is missing, one sees that the lost of transitivity entails
that, contrary to equivalence classes, cliques do intersect. As we show below,
maximale cliques may be characterised directly in terms of types. Let R be a
binary relation over a single set X .

Definition 22. A subset C ⊆ X is a clique for R iff ∀x, x′∈C xRx′. And a
clique C is a maximal clique for R, when, moreover: for all A ⊆ X , if A ) C,
then A is not a clique.

Proposition 23. Let R ⊆ X ×X, a reflexive relation over X and C ⊆ X.

C is a maximal clique ⇔ C⊥ ∩ ⊥C = C. If R is moreover symmetric, then:

C is a maximal clique ⇔ C = C⊥.

Though Russell’s, Wiener’s and Carnap’s investigations on cliques induced
by “similarity relations” propagate the interpretation of abstraction based on
classes toward multi-classifying classification, one may underline that the ap-
proach of classifications based on types goes much further. A first point is that
the type-oriented classifications is completely general : it does not require from
the relation R inducing the types any specific property whatever: it directly
catches relational indiscernibility for any relation.

5 Conclusion

The results presented above show that the notion of type could play a central
role to renew and improve the logical and philosophical investigations on ab-
straction. They draw an appropriate framework to interpret set-theoretically
Weyl’s creative definitions, as they build a set-theoretical counterpart for the
objects that one may want to make emerge from relational indiscernibility.

The fact that, doing so, one reduces – again – abstraction to classification
(again, since the members of the Peano’s school and Russell did already perform
such a reduction – even if only for the limited case of definitions by abstraction)
leaves nevertheless open a series of non pedestrian logical and philosophical
questions. Let us only briefly mention three lines of investigations that we hope
to be able to follow in a next future.

The first one, would be to study systematically how the structure of the
lattice of types depends on the properties of the relation inducing them (as
we did, for instance, with collusions) and how, in case multiple relations are
involved, the operations over the relations induce operations over the lattices of
types.

A second one, would be to try to investigate Second order abstraction prin-

ciples (which are central for logicism, including the contemporary “neo-logicist”
trend26), but from the types point of view. In the case of traditional Abstrac-
tion Principles à la Peano-Russell, Second order ones have the ordinary shape
of abstraction principles, but for the fact that the variables involved are second

26It was initiated by [Hale, 1987]. The literature about Second order abstraction principles
is abundant. One can find good introductions to the topic in [Antonelli-May, 2005] and
[Tennant, 2017].
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order variables. So they are of the form : ∀X∀Y
(

fR(X) = fR(Y ) ⇔ R[X,Y ]
)

,
where R[X,Y ] satisfies the properties defining equivalences. In that case, fR(X)
is supposed to be a first order individual (an “object”). Two famous examples
are Frege’s Axiom V and Hume principle. A soon as one considers second
order abstraction schemes, things become hazardous: some of them leads to
inconsistencies. At this stage, concerning that complex field, we are not able to
develop a clear strategy: the concept of types will certainly add complexity. The
polymorphic and multi-scale dimension of types could nevertheless constitute a
relevant tool to face the second order dimension (quantification over the set of
tests).

The last one, would be to investigate Weyl’s creative definitions again, but
with the viewpoint and the tools of contemporary proof-theory. Apparently,
only a few works did approach that way, the simpler case of definitions by
abstraction à la Peano ([Tennant, 2017], does it partially). In a sense, such
investigations would be faithful to Weyl’s dictum about creative definitions. In
reality, knowing what are abstracta (and in particular whether they are sets)
does not matter for us. What matters, with our creations, is to understand how
we use them.
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