
HAL Id: hal-03127947
https://hal.science/hal-03127947

Submitted on 1 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Steering Behaviors for Spatial Sound Authoring
Thibaut Carpentier, Andrew Gerzso

To cite this version:
Thibaut Carpentier, Andrew Gerzso. Steering Behaviors for Spatial Sound Authoring. 45th Interna-
tional Computer Music Conference (ICMC), Jun 2019, New York, United States. �hal-03127947�

https://hal.science/hal-03127947
https://hal.archives-ouvertes.fr


Steering Behaviors for Spatial Sound Authoring

Thibaut Carpentier
IRCAM, CNRS, Sorbonne Université – UMR STMS

1, place Igor Stravinsky, 75004 Paris
thibaut.carpentier@ircam.fr

Andrew Gerzso
IRCAM

1, place Igor Stravinsky, 75004 Paris
andrew.gerzso@ircam.fr

ABSTRACT

This paper describes a software tool that metaphorically
uses the concept of vector field in order to generate fluid,
lifelike, motions of autonomous agents. The “steering be-
haviors” of such agents is potentially useful in a number
of compositional contexts, where one wants to navigate
through a parameter space in a physically-inspired and im-
provisational manner. The present article focuses mainly on
spatial sound authoring, wherein the tool is used to create
constantly evolving trajectories of sonic objects in a virtual
space.

1. INTRODUCTION

1.1 Spatial trajectories as a compositional paradigm

Music in space and spatialized sounds have been a pre-
occupation of electroacoustic composers since the early
experiments of musique concrète in the 1950s. From that
point onwards, artists have explored a wide range of spa-
tial composition techniques, and a number of spatial audio
technologies have been developed in order to allow com-
posers and performers to control spatio-musical attributes.
Amongst the used techniques, movements of sounds have
been reported one of the most popular (contemporary) com-
positional practices by several surveys [1–4]. Moving sound
sources are typically used to introduce a choreography of
sonic objects, to provoke a contrast between static and dy-
namic layers, and to help with the segregation of streams.
In many compositional works, motions of sound sources
in real or virtual spaces are apprehended as spatial trajec-
tories: paths, curves, geometrical patterns, etc. constitue a
key paradigm for the control of the spatiotemporal sound
organization.

1.2 Techniques for spatial authoring

Within the framework of spatial trajectories, a great variety
of tools have been proposed for the creation and manipula-
tion of spatial data. Garcia et al. (section 2.3 in [4]) offers
a review of spatial authoring frameworks, and also empha-
sizes the explicit separation of the authoring environment
(in which composers edit or generate trajectories) from the
rendering engine (that actually performs the audio process-
ing). Broadly speaking, the approaches taken by trajectory
authoring tools can be classified in three main categories:

Copyright: c©2018 Thibaut Carpentier et al. This is an open-access
article distributed under the terms of the Creative Commons Attribution
License 3.0 Unported, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original author and source are
credited.

• “low-level” trajectory editors that essentially treat spa-
tial data as automation tracks (as found in Digital Au-
dio Workstations). Typically, these tools allow for the
“accurate” manipulation of trajectories through the use
of breakpoint functions, spline or Bézier curves, free-
hand drawing, quantized time-coordinate tuples, etc.,
optionally with transformative functionalities (rotation,
translation, scaling). This category includes – but is
not limited to: Zirkonium [5], Holo-Edit [6], Ambicon-
trol [7], SpaceJam [8], Trajectoires [9], etc., as well as
DAW plugins such as Spatium [10] or ToscA [11].

• algorithmic-based techniques: this is a broad category
that encompasses parametric or predefined trajectories
(ellipse, spiral, etc.) [12], generative tools (Lissajou,
Brownian, stochastic process, etc.), simulation of flock-
ing and swarming movements [13, 14], physical mod-
els [10, 15], scattering sound particles [16], constraints
engines [17], scripting or algorithmic compositional
toolboxes [18], etc.

• symbolic editors offering a somewhat “higher-level” de-
scription of the spatial features represented as graphical
symbols, spatial metaphors, or scores, in order to pro-
duce patterns, figures, or autonomous spatial scenarios.
This notably includes the Spatialization Symbolic Mu-
sic Notation framework [19], IanniX [20], i-score [21],
and other attempts at symbolic notation for composing
sound spatialization [22].

It must be noted that most authoring environments are not
limited to one category or another, as they often provide
mixed approaches. Similarly, composers are used to combin-
ing multiple perspectives, in order to alleviate the complex-
ity and expressivity constraints of each tool, and to build
their own idiosyncratic representation of spatial movements.

2. VECTOR FIELD AND STEERING BEHAVIORS

The work herein presented deals with a novel trajectory-
based tool that shares similarities with the aforementioned
editors, and borrows from both the algorithmically-driven
and symbolic approaches. At its core is the notion of vector
field, a physically-inspired representation, but approached
from a somewhat metaphoric angle.

A vector field consists of a collection of points in space,
called the domain, and a function that maps each point of
the domain to one (and only one) vector. Vector fields are
typically visualized in the 2D plane or in the 3D space, as a
collection of arrows with a given length and direction, each
attached to a point of the domain. They look like a “needle
diagram”. Vector fields are intensively used in physics as
a way to model and depict the magnitude and orientation

mailto:thibaut.carpentier@ircam.fr
mailto:andrew.gerzso@ircam.fr
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


of vectors, such as forces, velocities, etc. Typical examples
include electric fields, magnetic or gravitational fields, fluid
flows, or wind speed in weather charts. Vector fields offer
a rather intuitive representation, e.g. of the velocity of a
moving flow in space. When associated with a differential
equation, vector fields often exhibit certain common shapes,
such as a “source” (vectors emanating out of one point), a
“sink” (vectors disappearing into a hole), or a “saddle point”
(which looks like a horse’s saddle).
simone is a software tool (further detailed in section 3)

that builds on these paradigms. Its principle is very sim-
ple: the tool allows to generate and display a 2D vector
field, thought as a velocity field; when objects or “particles”
are “thrown” into this field, they become animated, and
they navigate through the domain, as autonomous agents.
This provides a quick and intuitive means to define and ex-
plore a space, e.g. a space of musical parameters, in a way
that is partly predictable (a vector field is easily grasped
at first glance), and partly “improvised” (singularities in
the field can make the particles deviate from their expected
trajectory). However, our claim is to make simone a cre-
ative tool for composers, and not a strictly accurate physical
model. Therefore a number of metaphorical operators have
been introduced, that can alter the behavior of the particles
moving through the vector field, leaving room for further
erratic and complex patterns.

Such an approach also closely relates to the notion of
“steering behaviors”. Steering behaviors is a term mostly
used in game development, after the seminal work of
Reynolds [23]: steering behaviors refers to the ability of
autonomous characters to move in a realistic manner in
their environment. These motion behaviors are described
by simple forces and interactions that are combined to pro-
duce lifelike, improvisational navigation around the charac-
ters’ domain. They do not rely on a global formulation of
the characters’ action (ultimate goal or long-term planning),
but rather use local information, updating the agents’ tra-
jectory by incremental adjustment step by step. This makes
them simple to understand and implement, but still able
to produce rather complex movement patterns. Reynolds
formalizes and gives many examples of steering behaviors,
such as: seek (pursuit of a target), flee (inverse of seek),
wander (random steering), collision avoidance (dodging
around obstacles), path following (steer along a predeter-
mined path), flow field following (aligning its motion with
the local tangent, a behavior that clearly corresponds to
the vector field situation), flocking (as implemented in the
well-known boids algorithm [24]), leader following, etc.

3. PROPOSED TOOL

The graphical user interface of simone is presented in
Figure 1. The window displays a 2D vector field, made of
N rows and M columns, forming a domain of N ×M cells
(in this example N = M = 17). Each cell contains a
vector (i.e. an arrow) characterized by its direction and
velocity. Unlike traditional representations of vector fields,
the velocity parameter is not depicted by the length of the
arrow. Here, all arrows are drawn with the same (arbitrary)
length, while the velocity factor is visualized by the light
red circle (the value being proportional to the radius of
the circle). This choice was made to improve readability

and ease edition of the cells. The background color of the
cells – here grey colors in a checkerboard pattern – has no
meaning; this design was chosen only for readability and
fast discrimination of the cells.

The vector (orientation and velocity) in each cell can be
specified via message, or controlled with the mouse and
a set of keyboard modifiers. In the current example, the
vector field has a vortex-like shape (with randomized ve-
locities) that was generated by a set of simple parametric
equations implemented in javascript. The topology of the
vortex can be distorted by the α and β parameters (dial
buttons in Figure 1). Other sets of equations can be easily
implemented.

Figure 1: Graphical user interface of simone.

Given this vector field, one can “throw” particles (simply
referred to as “points”) in the field, by setting their initial
position. The example in Figure 1 contains three points,
represented in red, black, and blue respectively. At each
computation tick the trajectory of the points is updated
according to the cell they are currently over: the steering
direction and the speed of the trajectory is altered by the
vector of the cell.

The computation tick is triggered by sending the /move
message, typically from a metronome. Changing the rate
of the metronome allows to alter the speed of the trajectory.
The /move command can be sent globally – applied to
all particles – or independently for each point, so that each
trajectory can operate at its own rate. At each computation
step, the simone object delivers output messages with
the current position and current cell for each point (see
bottom of Figure 1). Cartesian coordinates are arbitrarily
expressed in the [−1; 1] range, and can later be scaled to a



more convenient or meaningful domain.
The “history” of each point (i.e. its previous locations) is

depicted by a tail of dots (the older the history, the smaller
the dots). History serves as a visual cue, and can further
be used to alter the computation step: user can specified
an “inertia” parameter (expressed in 0–100% range) that
takes history into account in the update formulae. Higher
inertia makes the trajectory smoother, while points with
low value of inertia might suddenly change direction if
the vector field exhibits singularities. The capacity of the
history buffer (how many previous locations are retained)
can be modify, which would in turn alter the impact of
history in the inertia law.

The proposed vector field approach therefore offers
a powerful and intuitive way to generate spatial motifs.
Furthermore, trajectories can be flexibly modulated, by
changing their rate, or via transformations of the underlying
vector field. Indeed, the characteristics of the field can be
updated in real-time, by several means:

• properties of the parametric equations (α and β variables
in the present example) can be varied,

• external data (e.g. real-time weather charts) could be
used to derive a new vector field,

• the mouse cursor can be turned into a “magnet” (either
attractive or repulsive) so as to alter the directions of
the field arrows; such magnetic manipulation can be
applied on the whole domain, or only in user-defined
sub-regions,

• other algorithmic strategies can be easily implemented.
For instance, a point could modify the direction and/or
velocity of each of the cells it has already visited, turning
the field into a constantly evolving environment, etc.

As previously mentioned, simone is not intended to be
a physical-model simulator; it is rather thought as an open
environment that intuitively offers a wide range of patterns
and behaviors. In order to further extend possibilities, a
number of metaphorical operators have been introduced,
digressing from the classical vector field paradigm.

3.1 Cell operators

Each cell in the domain can be assigned an operator, used
in the computation iteration. In the example of Figure 1,
every cell of the domain was assigned the same operator, a
vector arrow representing a direction and a velocity value.
Other types of operators are proposed, and depicted with
graphical symbols (see Figure 2).

Figure 2: Various cell operators.

a) void cell: a void cell has no effect; it does not modify
the nominal direction or the speed of a point reaching
this cell.

b) simple vector, as previously described, imposes the new
direction and velocity of a point, optionally affected by
inertia.

c) ranged vector: similar to the simple vector, except that,
for each computation tick, a new direction is randomly
steered within the angular range.

d) radial cell: similar to the ranged vector, except that the
new direction is randomly chosen within a discrete set
of allowed paths.

e) paddle: provokes a reflection, depending on the incident
angle of the trajectory.

f) random cell: steers a new direction randomly; similar to
a ranged vector, with a 360◦ range.

g) repeller: provokes a perpendicular reflection of the inci-
dent trajectory.

h) attractor: produces an orbital path around the cell.
i) teleport: instantly transport to another (user-defined) cell

or Cartesian position.
j) speed: changes the trajectory’s velocity, without affect-

ing its incident direction.
k) deviation: deviates the incident direction by a given

amount (i.e. offset in steering direction).

Combining these operators in the domain allows to pro-
duce a wide range of improvised motions, similar to some
of Reynold’s steering behaviors. For example, “wander” or
random walk can be implemented by means of ranged and
radial cells.

Finally, one needs to deal with points leaving the domain
(i.e. getting out of bounds of the N ×M field). Available
options include: let the trajectory disappear, “wrap” the
point to the origin, to a given Cartesian position, to a given
cell, or to a random location.

3.2 Software implementation

simone is a Max external object, written in C++, and built
with the Juce framework. It is freely distributed with the
Ircam spat∼ package [25]. Benefiting from the latest
improvements in the spat∼ software architecture [26],
simone features import/export of presets, snapshot com-
patibility, and OSC communication. In the context of vector
field, the use of OSC pattern matching appears very handy
and efficient as it allows to concisely address a subset of the
domain (e.g. /row/[2-5]/col/*/type repeller
will assign the ‘repeller’ type to all cells in the rows 2 to 5).

4. CONCLUSION AND PERSPECTIVES

We have presented a novel software tool that relies on the
concept of vector field to generate spatial trajectories. With
the inclusion of metaphorical operators, the trajectories act
as autonomous agents, navigating through a domain in a
lifelike and improvisational manner. The underlying vector
field itself can be generated with various techniques, e.g.
mathematical equations, hand-drawing, or data mapping,
etc. The tool is intuitive to use, and is generic enough to
be applied in a variety of contexts. Spatial sound authoring
constitues a primary field of application, as trajectory-based
technique is a most popular compositional practice. Another



obvious application of the proposed technique is corpus-
based concatenative synthesis [27], wherein snippets of
sounds are (re-)composed by navigating through a space
of (musically meaningful) descriptors. Future work will
investigate the usefulness of the tool in other generative
compositional processes. New developments are also con-
sidered to further extend the expressivity of the tool, e.g.
by adding new kinds of symbolic operators, or constraints
between multiples trajectories so that several points can
produce collective steering behaviors.

5. REFERENCES

[1] M. A. Baalman, “Spatial Composition Techniques and
Sound Spatialisation Technologies,” Organised Sound,
vol. 15, no. 3, pp. 209 – 218, Dec 2010.

[2] N. Peters, G. Marentakis, and S. McAdams, “Current
Technologies and Compositional Practices for Spatial-
ization: A Qualitative and Quantitative Analysis,” Com-
puter Music Journal, vol. 35, no. 1, pp. 10 – 27, 2011.

[3] F. Otondo, “Contemporary trends in the use of space in
electroacoustic music,” Organised Sound, vol. 13, no. 1,
pp. 77 – 81, April 2008.

[4] J. Garcia, T. Carpentier, and J. Bresson, “Interactive-
compositional authoring of sound spatialization,” Jour-
nal of New Music Research, vol. 46, no. 1, pp. 74 – 86,
2017.

[5] D. Wagner, L. Brümmer, G. Dipper, and J. A. Otto,
“Introducing the Zirkonium MK2 System for Spatial
Composition,” in Proc. of the International Computer
Music Conference (ICMC) / Sound and Music Comput-
ing, Athens, Greece, Sept. 2014, pp. 823 – 829.

[6] L. Pottier, “Dynamical spatialization of sound.
HoloPhon : a graphic and algorithmic editor for
Sigma1,” in Proc. of the International Conference on
Digital Audio Effects (DAFx), Barcelona, Spain, 1998.

[7] J. C. Schacher, “Seven years of ICST ambisonics tools
for MaxMSP – a brief report,” in Proc. of the 2nd In-
ternational Symposium on Ambisonics and Spherical
Acoustics, Paris, France, May 2010.

[8] A. Madden, “Developing spaceJam: The New Sound
Spatialization Tool for an Artist and Novice,” Master’s
thesis, New York University, Nov 2014.

[9] J. Garcia, X. Favory, and J. Bresson, “Trajectoires: a
Mobile Application for Controlling Sound Spatializa-
tion,” in Proc. of CHI EA’16: ACM Extended Abstracts
on Human Factors in Computing Systems, San Jose, CA,
USA, May 2016, pp. 3671 – 3674.

[10] R. Penha and J. P. Oliveira, “Spatium, tools for sound
spatialization,” in Proc. of the Sound and Music Com-
puting Conference, Stockholm, 2013, pp. 660 – 667.

[11] T. Carpentier, “ToscA: An OSC Communication Plugin
for Object-Oriented Spatialization Authoring,” in Proc.
of the 41st International Computer Music Conference
(ICMC), Denton, TX, USA, Sept. 2015, pp. 368 – 371.

[12] R. Normandeau, “Octogris2 et ZirkOSC2 : outils logi-
ciels pour une spatialisation sonore intégrée au travail
de composition,” in Proc. of Journées d’Informatique
Musicale (JIM), Montreal, Canada, May 2015.

[13] D. Kim-Boyle, “Spectral and Granular Spatialization
with Boids,” in Proc. of the 32nd International Computer
Music Conference (ICMC), New Orleans, LA, USA,
2006, pp. 139 – 142.

[14] T. Davis and P. Rebelo, “Hearing emergence: towards
sound-based self-organisation,” in Proc. of the 31st

International Computer Music Conference (ICMC),
Barcelona, Spain, 2005, pp. 463 – 466.

[15] M. A. Baalman, “Application of Wave Field Synthesis
in electronic music and sound installations,” in Proc. of
the Linux Audio Conference (LAC), Karlsruhe, 2004.

[16] C. Roads, Microsound. The MIT Press, 2001.

[17] F. Pachet and O. Delerue, “Constraint-Based Spatial-
ization,” in Proc. of the International Conference on
Digital Audio Effects (DAFx), Barcelona, Spain, 1998.

[18] M. Schumacher and J. Bresson, “Spatial Sound Synthe-
sis in Computer-Aided Composition,” Organised Sound,
vol. 15, no. 3, pp. 271 – 289, Dec 2010.

[19] E. Ellberger, G. T. Perez, J. Schuett, G. Zoia, and
L. Cavaliero, “Spatialization Symbolic Music Notation
at ICST,” in Proc. of the 40th International Computer
Music Conference, Athens, Greece, Sept. 2014.

[20] G. Jacquemin, T. Coduys, and M. Ranc, “Iannix 0.8,”
in Proc. of Journées d’Informatique Musicale (JIM),
Mons, Belgium, May 2012, pp. 107 – 115.

[21] J.-M. Celerier, M. Desainte-Catherine, and J.-M. Cou-
turier, “Outils d’écriture spatiale pour les partitions inter-
actives,” in Proc. of Journées d’Informatique Musicale
(JIM), Albi, France, Mar 2016, pp. 82 – 92.

[22] R. Gottfried, “SVG to OSC Transcoding as a Platform
for Notational Praxis and Electronic Performance,” in
Proc. of the 1st International Conference on Technolo-
gies for Music Notation and Representation (TENOR),
Paris, France, May 2015, pp. 154 – 161.

[23] C. W. Reynolds, “Steering Behaviors For Autonomous
Characters,” in Proc. of the Game Developers Confer-
ence, San Jose, CA, USA, 1999, pp. 763 – 782.

[24] ——, “Flocks, Herds, and Schools: A Distributed Be-
havioral Model,” Computer Graphics, vol. 21, no. 4, pp.
25 – 34, 1987.

[25] T. Carpentier, M. Noisternig, and O. Warusfel, “Twenty
Years of Ircam Spat: Looking Back, Looking Forward,”
in Proc. of the 41st International Computer Music Con-
ference, Denton, TX, USA, Sept. 2015, pp. 270 – 277.

[26] T. Carpentier, “A new implementation of Spat in Max,”
in Proc. of the 15th Sound and Music Computing Con-
ference, Limassol, Cyprus, Juy 2018, pp. 184 – 191.

[27] D. Schwarz, “Corpus-Based Concatenative Synthesis,”
IEEE Signal Processing Magazine, vol. 24, no. 2, pp.
92–104, March 2007.


	 1. Introduction
	1.1 Spatial trajectories as a compositional paradigm
	1.2 Techniques for spatial authoring

	 2. Vector field and steering behaviors
	 3. Proposed tool
	3.1 Cell operators
	3.2 Software implementation

	 4. Conclusion and Perspectives
	 5. References

