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. In this paper we propose a generalized model of the GREM (N α ), that has the structure of a tree with kn levels, where (kn ≤ n) is a non-decreasing sequence of positive integers. We show that as long as kn n →n→∞ 0, the decoration disappears and we have convergence to a simple Poisson point process. We study a generalized case, where the position of the particles are not necessarily Gaussian variables and the reproduction law is not necessarily binary.

Introduction

The random energy model (REM) was introduced by Derrida in 1981 [START_REF] Derrida | Random-energy model: an exactly solvable model of disordered systems[END_REF] for the study of spin glasses. In the REM, there are 2 N spin configurations. Each configuration σ ∈ {-1, 1}

N corresponds to an independent centred Gaussian random variable X σ with variance N , that models its energy level. It is well-known that the extremal process of the REM, which is defined as

E N = σ∈{-1,1} N δ Xσ-m N , where m N = β c N - 1 2β c log(N ) and β c = 2 log(2), (1) 
converges weakly in distribution to a Poisson point process with intensity 1 √ 2π e -βcx dx. Additionally the law of the maximum M N = max σ∈{-1,1} N X σ centred by m N converges weakly to a Gumbel random variable.

Derrida introduced a generalized model in 1985, called the GREM [START_REF] Derrida | A generalization of the random energy model which includes correlations between energies[END_REF], that has the structure of a tree with K levels and can be described as follows. Start by an unique individual (the root). It gives birth to 2 N K (we assume that N K is a positive integer) children at the first level. At each level i, 1 ≤ i < K, each child gives birth independently to 2 N K children. We associate each branch of this tree to an independent centred Gaussian random variable with variance N K . In the context of spin glasses, we obtain 2 N configurations in the level K, and the level energy of each configuration is the sum of the values along the branches that forms the path from the root of the tree to the leaf corresponding to this configuration. We call this model GREM N (K).

Note that the REM can then be thought of as a GREM with one level, i.e. a GREM N [START_REF] Addario-Berry | Minima in branching random walks[END_REF]. The correlation of the energy of two different configurations depends on the number of common branches shared by their paths from the root up to the node at which they split. These correlations do not have any impact on the extreme values of the energy levels, as the result described in [START_REF] Addario-Berry | Minima in branching random walks[END_REF] still holds even if (X σ , σ ∈ {-1, 1} N ) is distributed as a GREM N (K), as N → ∞. Kistler and Schmidt [START_REF] Schmidt | From Derrida's random energy model to branching random walks: from 1 to 3[END_REF] studied the asymptotic of the extremal process of a GREM with a number of levels K N = N α , for α ∈ [0, 1). They proved that, setting m (α)

N = β c N - 2α + 1 2β c log(N ),
the extremal process of the GREM N (N α ) converges weakly to a Poisson point process with intensity 1 √ 2π e -βcx dx, and the law of the maximum converges to a Gumbel distribution. In the GREM N (N α ) the stronger correlations between the leaves of the tree have the effect of decreasing the median of the maximal energy level, specifically its logarithmic correction. However the limiting law of the extremal process remains unchanged. In the case of α = 1, which corresponds to the classical binary branching random walk, the asymptotic behaviour of the extremal process is well-known. The convergence in law of the recentred maximum was proved by Aidékon [START_REF] Aïdékon | Convergence in law of the minimum of a branching random walk[END_REF], and recently Madaule [START_REF] Madaule | Convergence in law for the branching random walk seen from its tip[END_REF] showed the convergence of the extremal process to a decorated Poisson point process with random intensity. Therefore a phase transition can be exhibited, from a simple Poisson point process appearing in the GREM N (N α ) for α < 1 to a decorated one for α = 1.

The aim of this article is to have a closer look at this phase transition. We take interest in a generalized version of the GREM N (N α ), that has the structure of a tree with k n levels, where (k n ≥ 0) is a non-decreasing sequence of positive integers. We study the asymptotic behaviour of the extremal point process showing that as long as kn n → n→∞ 0, the decoration does not appear.

Notation and main result

A branching random walk on R is a particle system that evolves as follows. It starts with a unique individual located at the origin at time 0. At each time n ≥ 1, each individual alive in the process dies and gives birth to a random number of children, that are positioned around their parent according to i.i.d random variables.

The process we take interest in can be described as follows. Let k n be an integer sequence growing to ∞ such that k n ≤ n fo all n ∈ N and set b n = n kn the integer part of n kn . The process starts with an unique individual located at the origin at time 0. The particles reproduce for b n consecutive steps consecutively, each particle giving birth to an i.i.d. number of children. Then each descendant of the initial ancestors moves independently, making b n i.i.d. steps of displacements. This forms the first generation of the process. For each 1 ≤ k ≤ k n , every individual at generation k repeats independently of the others the same reproduction and displacement procedure as the original ancestor. In other words every individual creates a number of descendants given by the value at time b n of a Galton-Watson process, whose positions are given by i.i.d. random variables with the same law as a random walk of length b n .

To describe the model formally we introduce Ulam-Harris notation for trees. Set

U = n≥0 N n with N 0 = {∅} by convention. The element (u 1 , u 2 .., u n ) represents the u th n child of u th n-1 child .., of u 1 of the root particle which is noted ∅. If u = (u 1 , u 2 .., u n ) we denote by u k = (u 1 , u 2 .
., u k ) the sequence consisting of the k th first values of u and by |u| the generation of u. For u, v ∈ U we denote by π(u) the parent of u.

If u = (u 1 , u 2 .., u n ) and v = (v 1 , v 2 .., v n ), then we write u.v = (u 1 , u 2 .., u n , v 1 , v 2 .., v n ) for the concatenation of u and v. We write |u ∧ v| := inf{j ≤ n : u j = v j and u j+1 = v j+1 }.
This quantity is called the overlap of u and v in the context of spin glasses. A tree T is a subset of U satisfying the following assumptions:

• ∅ ∈ T . • if u ∈ T , then π(u) ∈ T . • if u = (u 1 , u 2 , ...u n ) ∈ T , then ∀ j ≤ u n , π(u).j ∈ T .
We now introduce the reproduction and displacement laws associated to our process. Let (Y n ) n∈N be a random walk such that E(Y 1 ) = 0 and Var(Y 1 ) = 1. We denote by (Z n ) n∈N a Galton-Watson process such that Z 0 = 1 and offspring law given by the weights (p(k)) k∈N with p 0 = 0. Under this assumption, the Galton Watson process survives almost surely. Set m = k≥1 kp(k) the mean of the offspring distribution and assume that m > 1. Recall that the Galton-Watson process (Z n ) ∈N satisfies for all n ∈ N:

Z n+1 = Zn j=1 ξ n+1,j ,
where (ξ n,j ) 1≤j≤Zn are i.i.d random variables with law (p(k)) k∈N .

Under the assumption E(Z 1 log(Z 1 )) < ∞, Kesten and Stigum [START_REF] Kesten | A limit theorem for multidimensional Galton-Watson processes[END_REF] proved that on the set of non extinction of T there exists a positive random variable

Z ∞ such that lim b→∞ Z b m b = Z ∞ > 0, a.s. ( 2 
)
In this article we assume that the following stronger condition holds:

E(Z 2 1 ) < ∞. (3) 
Construct a tree that we denote T (n) as follows. Start by the ancestor ∅ located at the origin. It gives birth to Z bn children. For each k ≤ k n , each individual at the generation k gives birth to an independent copy of Z bn , that are positioned according to i.i.d random variables with the same law as

Y bn . For 1 ≤ k ≤ k n , let H k := {u ∈ T (n) : |u| = k},
the set of particles in the k th generation. By construction, we have #H k = Z kbn in law for all k ≤ k n . We define (X

(n) u , u ∈ T (n)
) a family of i.i.d. random variables with same law as Y bn . For u ∈ T (n) , we write

S (n) u = |u| k=1 X (n) u k .
The goal of this paper is to study the asymptotic behaviour of the extremal process associated to this model

E (bn) n = u∈H kn δ S (n) u -mn .
Let us introduce notation associated to the displacement of the process. For all θ > 0 we set

Λ(θ) := log (E (exp(θY 1 ))) . ( 4 
)
We assume that there exists θ > 0 such that Λ(θ) < ∞. We write:

κ n (θ) = log E   |u|=1 e θX (n) u   . Observe that κ n (θ) = b n (log(m) + Λ(θ)) as E   |u|=1 e θX (n) u   = E   |u|=1 E(e θX (n) u |Z bn )   = E Z bn E(e θY bn ) = e bn(log(m)+Λ(θ)) .
The function κ n is convex and differentiable on {θ > 0, κ n (θ) < ∞}, its interval of definition. We assume that there exists θ * > 0 such that

θ * Λ (θ * ) -Λ(θ * ) = log(m). (5) 
We also assume that there exists δ > 0 such that

E (exp((θ * + δ)Y 1 )) < ∞ (6) 
Recall that the case k n = n corresponds to the classical branching random walk. Then under assumption (4) and ( 5), Kingman [START_REF] Kingman | The first birth problem for an age-dependent branching process[END_REF], Hammersley [START_REF] Hammersley | Postulates for subadditive processes[END_REF] and Biggins [START_REF] Biggins | The First-and Last-Birth Problems for a Multitype Age Dependent Branching Process[END_REF] showed that on the set of non-extinction of

T lim n→∞ M n n := κ(θ * ) θ * = v a.s
, where, M n = max u∈Hn S u and v is the speed of the right-most individual. Then, Hu and Shi [START_REF] Hu | Minimal position and critical martingale convergence in branching random walks, and directed polymers on disordered trees[END_REF] and Addario-Berry and Reed [START_REF] Addario-Berry | Minima in branching random walks[END_REF] proved that

M n = nv - 3 2θ * ln(n) + O P (1),
where O P (1) represents a tight sequence of random variables. Throughout this paper we will assume that we are in one of the two cases: 

(H 1 ): Y 1 is a standard Gaussian variable and b n → ∞ as n → ∞. ( H 
and bn log(n) 2 → n→∞ ∞ as n → ∞.
Our work is inspired by the recent works on the convergence of the extremal processes [START_REF] Arguin | Poissonian statistics in the extremal process of branching Brownian motion[END_REF], [START_REF] Arguin | The extremal process of branching Brownian motion[END_REF], [START_REF] Schmidt | From Derrida's random energy model to branching random walks: from 1 to 3[END_REF] and [START_REF] Madaule | Convergence in law for the branching random walk seen from its tip[END_REF]. The main result of this paper is the following convergence in distribution.

Theorem 1. Assume that (3), ( 4), ( 5), [START_REF] Berestycki | Extremes of branching ornstein-uhlenbeck processes[END_REF] and either (H 1 ) or (H 2 ) hold, then setting

m n = k n b n v - 3 2θ * log(n) + log(b n ) θ * , the extremal process E (bn) n = u∈H kn δ S (n) u -mn
converges in law to a Poisson point process with intensity

1 √ 2πσ 2 Z ∞ e -θ * x
, where σ 2 = κ n (θ * ) and Z ∞ is the random variable defined in equation [START_REF] Aïdékon | Convergence in law of the minimum of a branching random walk[END_REF]. Moreover, the law of the recentered maximum converges weakly to a randomly Gumbel distribution shifted by 1 θ * log(Z ∞ ). 

φ(S (n) u -mn) = E exp -Z ∞ 1 √
2πσ 2 e -θ * y (1 -e -φ(y) )dy .

The result of Kistler and Schmidt [22, Theorem 1.1] is covered by Theorem 2. It is the case (H 1 ) with k n = N α , 0 ≤ α < 1 and Z 1 = 2 in our theorem. In that case we have Z ∞ = 1 and m n = nβ c -2α+1 2βc log(n). Throughout this paper, we use C and c to denote a generic positive constants, that may change from line to line. We say that f n ∼ n→∞ g n if lim n→∞ fn gn = 1. For x ∈ R we write x + = max(x, 0). The rest of the paper is organized as follows. In the next section, we introduce the many to one lemma, and we will give a series of useful random walk estimates. In Section 4 we introduce a modified extremal process which we show to have same asymptotic behaviour of the original extremal process defined in the principal theorem. Finally we will conclude the paper with a proof of the main result.

Many-to-one formula and random walk estimates

In this section, we introduce the many-to-one lemma, that links additive moments of branching processes to random walk estimates. We then introduce some estimates for the asymptotic behaviour of random walks conditioned to stay below a line, and prove their extension to a generalized random walk where the law of each step is given by the sum of b n i.i.d random variables.

Many-to-one formula

We start by introducing the celebrate many-to-one lemma that transforms an additive function of a branching random walk into a simple function of random walk. This lemma was introduced by Kahane and Peyrière [START_REF] Kahane | Peyriere. Sur certaines martingales de Benoit Mandelbrot[END_REF]. Before we introduce it, we need to define some change of probabilities and to introduce some notation.

Let W 0 := 0 and (W j -W j-1 ) j≥1 be a sequence of independent and identically distributed random variables such that for any measurable function h : R → R,

E(h(W 1 )) = E e θ * Y1-Λ(θ * ) h(Y 1 ) .
where Y 1 is the law defined in Section 2. Respectively, we introduce (T

(n) j -T (n) j-1
) j≥1 a sequence of i.i.d random variables such that T 0 = 0 and

E(h(T (n) 1 )) = E u,|u|=1 e θ * S (n) u h(S (n) u ) E( u,|u|=1 e θ * S (n) u ) = E e θ * Y bn -Λ(θ * )h(Y bn ) . ( 7 
)
Observe that (T

(n) k , k ≥ 1
) is a sequence of random variables that have the same law as the process (U kbn = kbn j=1 W j , k ≥ 1). We now set T (n)

j = T (n) j -jb n v respectively Wj = W j -jv, j ≥ 1.
We have

E(W 1 ) = E Y 1 e θ * Y1-Λ(θ * ) = Λ (θ * ),
and as Λ (θ * ) = κ n (θ * ) = v, we have E( W1 ) = 0 and similarly

E W 2 1 ) = E Y 2 1 e θ * Y1-Λ(θ * ) = Λ (θ * ) + (Λ (θ * )) 2 ,
which gives Var( W1 ) = Λ (θ * ) = σ 2 which is finite by assumption [START_REF] Berestycki | Extremes of branching ornstein-uhlenbeck processes[END_REF]. As a consequence we have

E( T (n) 1 ) = 0 and Var( T (n) 1 )) = b n σ 2 < ∞.
In the case (H 1 ), note that W1 is a standard Gaussian random variable which mean that T (n) 1 is a centred Gaussian random variable with variance b n . For simplicity we write S u in place of S (n) u and T j in place T (n) j in the rest of the article. Proposition 3. [START_REF] Shi | Branching random walks. École d' Été[END_REF]Theorem 1.1] For any j ≥ 1 and any measurable function g : R j → R + , we have

E   |u|=j g((S ui ) 1≤i≤j )) = E(e -θ * Ti g(( Ti + ib n v) 1≤i≤j )   .
Proof. For j = 1, by [START_REF] Biggins | The First-and Last-Birth Problems for a Multitype Age Dependent Branching Process[END_REF] and using that b n v = κn(θ * )

θ * , we have

E   |u|=1 g(S u )) = E(e -θ * T1+κn(θ * ) g(T 1 )) = E(e -θ * T1 g( T1 + b n v)  
where T1 = T 1 -b n v. We complete the proof by induction in the the same way as in [23, Theorem 1.1].

Random walk estimates

In this section we introduce some estimates for the asymptotic behaviour of functionals of the random walks, such us the probability to stay above a boundary. We first give an estimate for the probability that a random walk stays above a boundary (f n ) n∈N , that is O(n 

P(w k ≥ -(k 1/2--y), k ≤ n) ≤ C 1 -y √ n
for any y > 0.

From now on we use the random walks (T k ) k≥1 and ( Tk ) k≥1 defined in [START_REF] Biggins | The First-and Last-Birth Problems for a Multitype Age Dependent Branching Process[END_REF], unless otherwise stated. We introduce a version of the Stone's local limit theorem [START_REF] Stone | On local and ratio limit theorems[END_REF] that gives an approximation of the probability for a random walk to end up in a finite interval. 

a n = -3 2θ * log(n) + log(b n ) θ *
then we get

E(f ( Tkn -a n + x)e -θ * Tkn ) = e θ * x n 3/2 b n √ 2πσ 2 k n b n f (y)e -θ * y dy(1 + o(1)) uniformly in x ∈ [-r n , r n ].
Proof. By setting h(z) = e -θ * z f (z), it is enough to prove that

E(h( Tkn -a n + x)) = 1 √ 2πσ 2 k n b n h(y)dy(1 + o(1)) (8) uniformly in x ∈ [-r n , r n ].
We prove this lemma by successive approximations of the function h, starting with an indicator function. Set

h(z) = 1 [a,b] (z) for some a < b ∈ R, then we write E(h( Tkn -a n + x)) = P Tkn -a n + x ∈ [a, b] , ( 9 
)
As T1 is the sum of b n i.i.d. copies of Z1 , Tkn is the sum of k n b n i.i.d. centred random variables with finite variance, therefore we can apply the Stone's local limit theorem [START_REF] Stone | On local and ratio limit theorems[END_REF] to obtain

P( Tkn -a n + x ∈ [a, b]) = b -a √ 2πσ 2 k n b n exp -(a n -x) 2 2k n b n σ 2 (1 + o(1)) = b -a √ 2πk n b n σ 2 (1 + o(1)),
uniformly in x ∈ [-r n , r n ], which completes the proof of (8) in that case. We now assume that h is a continuous function with compact support, we prove (8) by approximating it by scale functions. Denote by [a, b] the support of h. Let (t i ) 0≤i≤m be an uniform subdivision of [a, b] where m ∈ N is the number of the subdivisions and

t i = a + i(b -a)/m for 0 ≤ i ≤ m. Set h m (x) = m-1 i=0 m i 1 {x∈[ti,ti+1]} and hm (x) = m-1 i=0 M i 1 {x∈[ti,ti+1]} ,
where M i = sup z∈[ti,ti+1] h(z) and m i = inf z∈[ti,ti+1] h(z). Hence using the Riemann sum approximation and the fact that f is a non-negative function, for all > 0, there exists m 0 such that for all m ≥ m 0 we have

(1 -) b a h(y)dy ≤ b a h m (y)dy ≤ b a hm (y)dy ≤ (1 + ) b a h(y)dy, ( 10 
)
where b a h m (y)dy = m-1 i=0 b-a m m i and b a hm (y)dy = m-1 i=0 b-a m M i . Using equation (9) we have E hm ( Tkn -a n + x) = m-1 i=0 M i P Tkn -a n + x ∈ [t i , t i+1 [ = 1 √ 2πσ 2 k n b n m-1 i=0 b -a m M i (1 + o(1)) = 1 √ 2πσ 2 k n b n b a hm (y)dy(1 + o(1)).
Therefore, using that E(h( Tk -a n + x) ≤ E( hm ( Tk -a n + x) and by [START_REF] Caravenna | A local limit theorem for random walks conditioned to stay positive[END_REF] we deduce that lim sup

n→∞ sup x∈[0,rn] k n b n E h( Tkn -a n + x) ≤ (1 + ) 1 √ 2πσ 2 b a h(y)dy.
Using similar arguments we have lim inf

n→∞ inf x∈[0,rn] k n b n E h( Tkn -a n + x) ≥ (1 -) 1 √ 2πσ 2 b a h(y)dy.
Finally, letting → 0 completes the proof of ( 8) when h is a compactly support function. Finally we consider the general case, and assume that f is bounded with bounded support on the left. We introduce the function

χ(u) =    1 if u < 0 1 -u si 0 ≤ u ≤ 1 0 if u > 1 then we write, E(h( Tkn -a n + x)) = E h( Tkn -a n + x)χ( Tkn -a n + x -B) + E h( Tkn -a n + x)(1 -χ( Tkn -a n + x -B))
for some B > 0. Observe that the function z → h(z)χ(z -B) is continuous with compact support as a consequence we have

E(h( Tkn -a n + x)) = 1 √ 2πσ 2 k n b n h(y)χ(y -B)dy(1 + o(1)) +E h( Tkn -a n + x)(1 -χ( Tkn -a n + x -B)) . ( 11 
)
Using the Stone's local limit theorem [START_REF] Stone | On local and ratio limit theorems[END_REF] there exists a constant C > 0 such that the second quantity in the right-hand side of ( 11) is bounded by

E h( Tkn -a n + x)(1 -χ( Tkn -a n + x -B)) ≤ E h( Tkn -a n + x)1 { Tkn -an+x>B} ≤ ||f || ∞ E   j≥B e -θ * j 1 { Tkn -an+x∈[j,j+1]}   ≤ C||f || ∞ e -θ * B √ k n b n σ 2 .
On the other hand by the dominated convergence theorem we have

lim B→∞ 1 √ 2πk n b n h(y)χ(y -B)dy = 1 √ 2πσ 2 k n b n ∞ 0 h(y)dy,
Now using similar arguments to those used in the last case we deduce that

E(h( Tkn -a n + x)) = 1 √ 2πσ 2 k n b n f (y)e -θ * y dy(1 + o(1)),
which completes the proof.

Random walk with Gaussian steps

In this section we assume that (H 1 ) holds, i.e that ( Tk ) k≥0 is a Gaussian random walk. Let (β n (k), k ≤ k n ) be the standard discrete Brownian bridge with k n steps, which can be defined as,

β n (k) = 1 √ b n ( Tk - k k n Tkn ).
In the following lemma we estimate the probability for a Brownian bridge to stay below a boundary during all his lifespan. This lemma was introduced in [START_REF] Bramson | Maximal displacement of branching Brownian motion[END_REF].

Lemma 6. Let h be the function defined by

h(k) = 0 if k = 0 or k = k n a log((k n -k) ∧ k)b n ) + 1) otherwise.
where a is a positive constant. There exists a constant C > 0 such that for all x > 0 and n ≥ 0 we have

P β n (k) ≤ 1 √ b n (h(k) + x), k ≤ k n ≤ C (1 + x √ bn ) 2 k n . ( 12 
)
We refer to the function k → h(k) as a barrier. An application of this lemma is to give an upper bound for the probability that a random walk with Gaussian steps make an excursion above a well-chosen barrier.

Lemma 7. Let α > 0, and for

0 ≤ k ≤ k n we write f n (k) = α log( (kn-k)bn+1 knbn ). There exists C > 0 such that for all x ≥ 0, a < b ∈ R and k ≤ k n we have P Tk -f n (k) ∈ [a, b], Tj ≤ f n (j) + x, j ≤ k ≤ C(b -a) (1 + x √ bn ) 2 √ b n k 3 2
.

Proof. For n ∈ N we have

P Tk -f n (k) ∈ [a, b], Tj ≤ f n (j) + x, j ≤ k ≤ P Tk -f n (k) ∈ [a, b], Tj - j k Tk ≤ f n (j) + x - j k (f n (k) + a), j ≤ k ,
using independence between the discrete Brownian bridge Tjj k Tk and Tk we obtain

P Tk -f n (k) ∈ [a, b], Tj - j k Tk ≤ f n + x - j k (f n (k)), j ≤ k ( 13 
)
≤ P Tk -f n (k) ∈ [a, b] P Tj - j k Tk ≤ f n (j) + x - j k (f n (k) + a), j ≤ k .
To estimate the probability that a discrete Brownian bridge stay below a logarithmic barrier, we apply Lemma 6. First observe that the function x → log(x)

x is decreasing for x ≥ e, and using that

k n -j + 1 ≤ (k n -k + 1) + (k -j) + 1 ≤ 2(k n -k + 1)(k -j + 1), we have for j ≤ k 2 , f n (j) + x - j k (f n (k) + a) ≤ α j k log( k n b n (k n -k)b n + 1 ) -log( k n b n (k n -j)b n + 1 ) + x ≤ α j k (log(kb n ) + log(2)) + x ≤ α(log((jb n ∨ e)) + log(2)) + x
and for k 2 ≤ j ≤ k, we have

f n (j) + x - j k (f n (k) + a) ≤ α(log( k n b n (k n -k)b n + 1 ) + x -log( k n b n (k n -j)b n + 1 )) ≤ α(log(((k n -j)b n + 1) -log((k n -k)b n + 1))) + x ≤ α(log(2) + log(1 + (k -j)b n ) + x.
Then by Lemma 6 we get after rescaling by 1 √ bn the following upper bound

P Tj - j k Tk ≤ f n (k) - j k (f n (j) -x), j ≤ k ≤ P β n (k) ≤ α(log((k ∧ (k -j)) + 1)) + x √ b n + 1, j ≤ k ≤ C (1 + x √ bn ) 2 k ,
where C is a positive constant. To bound the first quantity in (13) we use the Gaussian estimate

P Tk -f n (k) ∈ [a, b] ≤ b -a √ kb n
which completes the proof.

From now we denote by B n (k) = Tk √ bn . Recall that under (H 1 ), (B n (k)) k≤kn is a standard random walk with i.i.d Gaussian steps. Define the function L : (0, ∞) → (0, ∞) by L(0) = 1 and

L(x) := k≥0 P B n (k) ≥ -x, B n (k) ≤ min j≤k-1 (B n (j)) for x > 0.
It is known by [13, section XII.7], that the function L is the renewal function associated to the random walk (B n (k)) k≥0 . We will cite some properties that are mentioned in [13, section XII.7]. The fundamental property of the renewal function is

L(x) = E L(x + B n (1))1 {x+Bn(1)≥0} , (14) 
and is a a right-continuous and non-decreasing function. Since in case (H 1 ), the initial law has no atoms, then the function L is continuous. Also, there exists a constant c 0 > 0 such that

lim x→∞ L(x) x = c 0 . ( 15 
)
In particular there exists a constant C > 0 such that for all x ∈ R

L(x) ≤ C(1 + x + ). ( 16 
)
Also we have by, for x, y ≥ 0

L(x + y) ≤ 2L(x)L(y). ( 17 
)
Similarly, we define L -(x) as the renewal function associated to -B. Since T is a symmetric law we have L -(x) = L(x) for all x ≥ 0. It is also known that there exists a positive constant C 1 such that for y ≥ 0

P min k≤kn (B n (k)) ≥ -y ∼ n→∞ C 1 L(y) √ k n . ( 18 
)
By Theorem 3.5 in [START_REF] Spitzer | A tauberian theorem and its probability interpretation[END_REF], assuming that B is Gausian we have

C 1 = 1 √ π .
We now introduce an approximation of the probability for a random walk to stay below a line and end up in a finite interval . Set 

Fn (k) = k k n a n = k k n (m n -k n b n v), k = 0..., k n , n ∈ N.
a n = -3 2θ * log(n) + log(b n ) θ * . For all f ∈ C l,+ b we have E f ( Tkn -a n + x)e -θ * Tkn 1 { Tk ≤ Fn(k)-x,k≤kn} = e θ * x √ 2π 0 -∞ f (y)e -θ * y dy R( -x √ b n ) + o(1) . uniformly in x ∈ [-r n , 0]. Proof. By setting h(z) = e -θ * z f (z) it is enough to prove that E(h( Tkn -a n + x)1 { Tk ≤ Fn(k)-x,k≤kn} ) = 1 k 3/2 n √ 2πb n 0 -∞ h(y)dy(R( -x √ b n ) + o(1)) (19) uniformly in x ∈ [-r n , 0].
Following the same method used in Lemma 5 it is enough to prove this estimate for an indicator function. By writing

1 [-a,-b] = 1 [-a,0] -1 [-b,0] for some a > 0, b > 0, it is enough to prove this estimate for h(z) = 1 [-a,0] (z), in that case we have E(h( Tkn -a n + x)1 { Tk ≤ Fn(k)-x,k≤kn} ) = P Tkn -a n + x ≥ -a, Tk ≤ F n (k) -x, k ≤ k n . Define a new probability measure Q on R by dP dQ ( T ) = exp( -a n n T + Λ( a n n )) (20) 
where Λ(θ) = θ 2 2 . Then we rewrite

P Tkn -a n + x ≥ -a, Tk ≤ F n (k) -x, k ≤ k n = E Q (e -an n ( √ bn Bn(kn)- an 2n ) 1 { √ bn Bn(kn)+x≥-a, √ bn Bn(k)≤-x,k≤kn} ),
where Bn (k

) = B n (k) -k √ bnkn a n .
Observe that the law of T under Q is the same as the law of T under P.

Under this change of measure, we can rewrite the probability as

E Q e -an n √ bn Bn(kn)+ a 2 n 2n 1 { √ bn Bn(k)≤-x,k≤kn, √ bn Bn(kn)+x≥-a} ≤ e an n (x+a)+ a 2 n 2n Q b n Bn (k) ≤ -x, k ≤ k n , b n Bn (k n ) ≥ -a -x .
as a consequence lim sup

n→∞ sup x∈[-rn,0] E Q e -an n √ bn Bn(kn)+ a 2 n 2n 1 { √ bn Bn(k)≤-x,k≤kn, √ bn Bn(kn)+x≥-a} ≤ lim sup n→∞ sup x∈[-rn,0] Q b n Bn (k) ≤ -x, k ≤ k n , b n Bn (k) ≥ -a -x , similarly we have lim inf n→∞ inf x∈[-rn,0] E Q e -an n √ bn Bn(kn)+ a 2 n 2n 1 { √ bn Bn(k)≤-x,k≤kn, √ bn Bn(kn)+x≥-a} ≤ lim inf n→∞ inf x∈[-rn,0] Q b n Bn (k) ≤ -x, k ≤ k n , b n Bn (k n ) ≥ -a -x . ( 21 
)
for all a > 0. Therefore, it remains to estimate the quantity [START_REF] Mallein | Maximal displacement in a branching random walk through interfaces[END_REF]. Applying the Markov property at time p = [ kn 2 ] we get

Q b n Bn (k) ≤ -x, k ≤ k n , b n Bn (k n ) ≥ -a -x = E f x,n,a ( b n Bn (p))1 { √ bn Bn(k)≤-x,k≤p} (22) 
where for all y ≤ 0

f x,n,a (y) = Q b n Bn (k n -p) + y ≥ -a -x, b n Bn (k) + y ≤ -x, k ≤ k n -p .
Using that the process (

√ b n ( Bn (k n -p) -Bn (k n -p -j)), 0 ≤ j ≤ k n -p) has the same law as ( √ b n Bn (j), 0 ≤ j ≤ k n -p) under Q, we obtain f x,n,a (y) = Q (-b n Bn (k)) ≤ (-b n Bkn-p ) -(x + y) ≤ a, k ≤ k n -p = Q b n Bn (k) ≤ b n Bn (k n -p) -(x + y) ≤ a, k ≤ k n -p since ( √ b n Bn (k)) k≥0 is a symmetric law. We write Bn (k n -p) = max 0≤j≤kn-p √ b n Bn (i), set τ kn-p = min i : 0 ≤ i ≤ k n -p, Bn (k n -p) = b n Bn (i)
the first time when √ b n Bn (i) hits its maximum in the interval [0, k n -p]. We have

f x,n,a (y) = kn-p i=0 Q τ kn-p = i, b n Bn (k) ≤ b n Bn (k n -p) -(x + y) ≤ a, k ≤ k n -p .
Applying the Markov property at time i we get

f x,n,a (y) = kn-p i=0 E g( Bn (i) -a)1 { Bn(i)= √ bn Bn(i)≤a} ,
where for all z ≤ 0, g x,n,y (z

) = Q y + x ≤ √ b n Bn (k n -p -i) ≤ y + x -z, Bn (k n -p -i) ≤ 0 .
We now split the sum

kn-p i=0 into in i=0 + kn-p i=in+1 , where i n = [ √ k n ],
then we write f n,x,a (y) = f (1) n,x,a (y) + f (2) n,x,a (y)

where

f (1) n,x,a (y) = in i=0 E g( Bn (i) -a)1 { Bn(i)= √ bn Bn(i)≤a} ,
and

f (2) n,x,a (y) = kn-p i=in+1 E g( Bn (i) -a)1 { Bn(i)= √ bn Bn(i)≤a} . Set φ(x) := xe -x 2
x 1 {x≥0} . By Theorem 1 [START_REF] Caravenna | A local limit theorem for random walks conditioned to stay positive[END_REF] of Caravenna for n → ∞,

Q -(x + y -z) ≤ b n Bn (k n -p -i) ≤ -(x + y)| b n Bn (j) ≥ 0, j ≤ k n -p -i = -z (k n -p)b n φ -y (k n -p)b n + o 1 (k n -p)b n ,
uniformly in y ≤ 0, x ∈ [-r n , 0] and z in any compact set of R -. As a consequence by ( 18) we get

g x,n,y (z) = -z (k n -p) √ b n π φ( -y (k n -p)b n ) + o( 1 (k n -p) √ b n ), uniformly in y ≤ 0, x ∈ [-r n , 0] and z ∈ [-a, 0].
For n large enough we get

f (1) n,x,a (y) = 1 (k n -p) √ b n π φ( -y (k n -p)b n ) in i=0 E   -( Bn (i) - a √ b n )1 Bn(k)≤ a √ bn ,k≤i   (23) 
+ o( 1 k n √ b n ) in i=0 Q Bn (k) ≤ a √ b n , k ≤ i .
We now treat the quantity

E f (2) x,n,a ( b n Bn (k n -p))1 { √ bn Bn(k)≤-x,k≤kn-p} .
Since φ is bounded, there exists a constant C > 0 such that for all x ∈ [-r n , 0], z ∈ R and 0

≤ i ≤ p g x,n,y (z) ≤ C √ b n (k n -p -i + 1) 1 {-a≤z≤0} ,
as a consequence, for all y ≤ 0 we have

f (2) x,n,a (y) ≤ C √ b n kn-p i=in+1 1 k n -p -i + 1 P Bn (i) ≤ a √ b n , Bn (i) ≥ 0
which is bounded using Lemma 7 by

f (2) x,n,a (y) ≤ C √ b n kn-p i=in+1 1 (k n -p -i + 1)i 3 2 = o( 1 k n √ b n ).
On the other hand we have,

Q( Bn (j) ≤ -x √ bn , j ≤ k n -p) ∼ n→∞ √ 2 √ π L( -x √ bn ) √ kn
by [START_REF] Kingman | The first birth problem for an age-dependent branching process[END_REF], which mean that

(L( -x √ b n )) -1 E f (2) x,n,a ( Bn (k n -p))1 { √ bn Bn(k)≤-x,k≤kn-p} = o( 1 k 3 2 n √ b n ). ( 24 
)
We now return to equation [START_REF] Shi | Branching random walks. École d' Été[END_REF]. Letting n → ∞, we have

∞ i=0 P Ti √ bn ≥ -a √ bn = R( a √ bn )
for a > 0 and by Fubini's theorem we have

∞ i=0 E   ( Bn (i) + a √ b n )1 Bn(k)≥ -a √ bn ,k≤i   = a √ bn 0 L(t)dt = 1 √ b n 0 -a L( -t √ b n )dt.
By dominated convergence theorem we have

1 √ b n 0 -a L( -t √ b n )dt = a √ b n (1 + o(1)) = 1 √ b n h(t)dt(1 + o(1). since h(t) = 1 [-a,0] (t)
. This yields, for all y ≤ 0

f (1) n,x,a (y) = 1 k n √ b n π φ( -y (k n -p)b n ) h(t)dt + o( 1 k n √ b n ).
as a consequence, by ( 18)

E   f (1) x,n,a ( b n Bn (k n -p))1 Bn(k)≤ -x √ bn ,k≤kn-p   = 2 √ 2 πk 3 2 n √ b n h(t)dt × E -x √ bn φ -Bn (k n -p) + x √ bn √ k n -p -Bn (k) ≥ 0, k ≤ k n -p L( -x √ b n ) + o(1) .
On the other hand, it's known (see Lemma 2.2 in [START_REF] Aïdékon | Survival of branching random walks with absorption[END_REF]) that under

P y .| Tk √ bn ≥ 0, k ≤ k n -p , Bn(kn) √
kn converges weakly (as n → ∞) to the Rayleigh distribution with density φ. Hence

lim n→∞ E -x √ bn φ Bn (k n -p) + x √ bn √ k n -p Bn (k) ≥ 0, k ≤ k n -p = ∞ 0 φ(t) 2 dt = √ π 4
uniformly in x ∈ [-r n , 0] . Combining this with [START_REF] Spitzer | A tauberian theorem and its probability interpretation[END_REF] we conclude that [START_REF] Komlós | An approximation of partial sums of independent RV's and the sample DF[END_REF] holds, which allows us to complete the proof by successive approximations.

KMT coupling for random walk

We now introduce the well-known KMT Theorem [START_REF] Komlós | An approximation of partial sums of independent RV's and the sample DF[END_REF] which is an approximation method of a random walk satisfying (H2) by a Gaussian random walk. t allows us to link estimates on random walks satisfying (H2) to the ones previously proved under assumption (H1).

Theorem 9 (Komlos-Major-Tusnàdy). Let (X i ) 1≤i≤n be a sequence of i.i.d random variables such that

E(X i )) = 0, 0 < E(X 2 i ) = σ 2 < ∞ and E(exp(θ|X i |)) < ∞ for some θ > 0.
Then there exists a sequence of i.i.d standard normal variables (Z i ) 1≤i≤n such that for all y ≥ 0

P max 1≤k≤n |σ -1 k i=1 X i - k i=1 Z i | > C log(n) + y ≤ K exp (-λy)
where C, K and λ are universal positive constants.

Observe that we can construct an increasing sequence of integers d n such that d n / log n → ∞ and d 2 n /b n → 0. Using assumption (6), we can apply Theorem 9, to note that with high probability, the random walk ( Tk ) k≤kn stays within distance d n from a random walk ( Ŝk ) 0≤k≤kn with standard Gaussian steps. More precisely, setting the event

W n = | Tk - √ b n Ŝk | ≤ d n , k ≤ k n we have P(W c n ) ≤ e -λ(dn-C log n) = o(n -γ )
for all γ > 0, as d n log n. We start by proving a version of Lemma 4 for the random walk satisfying (H 2 ). Lemma 10. Fix > 0, there exists C > 0 such that

P( Tk ≥ -(k 1/2--y), k ≤ k n ) ≤ C 1 + y √ bn √ k n
for any y > 0.

Proof. Let > 0. The proof is an application Theorem 9. We have

P Tk ≥ -(k 1/2--y), k ≤ k n ≤ P Tk ≥ -(k 1/2--y), k ≤ k n , W c , k ≤ k n + P b n Ŝk ≥ -(k 1/2-+ d n -y), j ≤ k .
Applying Theorem 9, there exists a constant C > 0 such that

P Tk ≥ -(k 1/2--y), k ≤ k n ≤ C n γ + P b n Ŝk ≥ -(k 1/2-+ d n -y)j ≤ k ,
for all γ > 0. Using the fact that dn √ bn → 0 as n → ∞, we have for n large enough

P Tk ≥ -(k 1/2--y), k ≤ k n ≤ P Ŝk ≥ - 1 √ b n (k 1/2-+ 1 -y)j ≤ k
and by Lemma 4 we conclude the proof.

In the same way we prove a similar result to Lemma 7.

Lemma 11. Let α > 0, and for

0 ≤ k ≤ k n , write f n (k) = α log (kn-k)bn+1
knbn . There exists C > 0 such that for all x ≥ 0, a ≤ b ∈ R, we have for n large enough

P Tk -f n (k) ∈ [a, b], Tj ≤ f n (j) + x, j ≤ k ≤ C(b -a + 2d n ) (1 + x √ bn ) 2 √ b n k 3 2
.

Proof. Applying again Theorem 9, there exists a constant C > 0 such that

P Tk -f n (k) ∈ [a, b], Tj ≤ f n (j) + x, j ≤ k ≤ C n γ + P b n Ŝk -f n (k) ∈ [a -d n , b + d n ], Ŝj ≤ 1 √ b n (f n (j) + x + d n ), j ≤ k .
for all γ > 0. For n large enough we obtain

P Tk -f n (k) ∈ [a, b], Tj ≤ f n (j) + x, j ≤ k ≤ P b n Ŝk -f n (k) ∈ [a -d n , b + d n ], Ŝj ≤ 1 √ b n (f n (j) + x) + 2, j ≤ k ,
and we use Lemma 7 to complete the proof.

We now prove a version of Lemma 8 for a random walk satisfying (H 2 ). Set

Fn (k) = k k n a n -c n 1 k =0,kn k = 0, ..k n where (c n ) n∈N is a sequence of integers satisfying lim n→∞ c n = ∞ and lim n→∞ c n √ b n = 0. ( 25 
)
Before moving to the proof we need the following Lemma.

Lemma 12. Uniformly in

x ∈ [c n , ∞], we have lim n→∞ L( x-cn √ bn ) L( x √ bn ) -1 = 0.
Proof. The proof follows from the properties of the renewal function introduced in [START_REF] Hammersley | Postulates for subadditive processes[END_REF]. We first consider the ratio

L(y-cn √ bn ) L(y)
for large value of y. Let > 0, by [START_REF] Hu | Minimal position and critical martingale convergence in branching random walks, and directed polymers on disordered trees[END_REF], there exists a constant A = A( ) > 0 sufficiently large such that for all y ≥ A we have

c 0 (1 -)y ≤ L(y) ≤ c 0 (1 + )y. (26) 
Using [START_REF] Velenik | Localization and delocalization of random interfaces[END_REF] we have

sup x √ bn ≥A L( x-cn √ bn ) L( x √ bn ) -1 ≤ | 1 + 1 - -1| + c 0 (1 + )c n A √ b n . ( 27 
)
On the other hand, recall that y → L(y) is continuous. Hence it is uniformly continuous on [0, A], and

sup x∈[cn,A √ bn] L( x √ b n ) -L( x -c n √ b n ) ≤ sup y∈[ cn √ bn ,A] L(y) -L(y - c n √ b n ) ≤ w L ( c n √ b n ),
where w L (δ) = sup s,t |t-s|≤δ |L(t) -L(s)|. Since the renewal function is increasing, we have L(y) ≥ 1, for all y ≥ 0, which implies that

sup y∈[ cn √ bn ,A] L(y -cn √ bn ) L(y) -1 ≤ w L ( c n √ b n ) → 0 as n → ∞. (28) 
By ( 27) and (28) we have

sup x∈[cn,∞) L( x-cn √ bn ) L( x √ bn ) -1 ≤ sup x∈[cn,A √ bn] L( x-cn √ bn ) L( x √ bn ) -1 + sup x √ bn ≥A L( x-cn √ bn ) L( x √ bn ) -1 ≤ w L ( c n √ b n ) + | 1 + 1 - -1| + c 0 (1 + )c n A √ b n .
Letting n → ∞ then → 0 we conclude the proof.

Corollary 13.

Setting

a n = -3 2θ * ln(n) + log(b n ) θ *
, then there exists C > 0 such that With the same notation as Lemma 8 we have

E(f ( Tkn -a n + x)e -θ * Tkn 1 { Tk ≤ Fn(k)-x,k≤kn} ) = e θ * x √ 2πσ 2 b n 0 -∞ f (y)e -θ * y dy L( -x √ b n ) + o(1) , ( 29 
)
uniformly in x ∈ [-r n , -(c n + d n )].
Proof. We will divide the proof of this corollary into two parts, proving separately an upper and a lower bound for (29). We set h(z) = e -θ * z f (z) . As a consequence, it is enough to prove that

E(h( Tkn -a n + x)1 { Tk ≤ Fn(k)-x,k≤kn} ) = 1 k 3/2 n √ 2πσ 2 b n 0 -∞ h(y)dy(L( -x √ b n ) + o(1)) uniformly in x ∈ [-r n , -(c n + d n )].
Using the same arguments in Lemma 8, it is enough to prove this Corollary with the function h(z) = 1 [-a,0] (z) for some a > 0. Then we write

E(h( Tkn -a n + x)1 { Tk ≤ Fn(k)-x,k≤kn} ) = P(A (k) n (x)) (30) 
where

A (k) n (x) = Tk ≤ Fn (k) -x, k ≤ k n , Tkn -a n +
x ≥ -a the event that the random walk ( Tk ) k≤kn stays below the barrier k → F n (k) for all k ≤ k n and end up in a finite interval.

• Upper bound

We have

P(A (k) n (x)) = P A (k) n (x), | Tkn-1 -a n + x| ≤ h n b n + P A (k) n (x), | Tkn-1 -a n + x| > h n b n (31)
where (h n ) n∈N is a sequence growing to ∞, that we will fix later on. We bound these two quantities separately choosing h n such that lim sup

n→∞ sup x∈[-rn,-cn] L( -x √ b n ) -1 k 3/2 n b n P A (k) n (x), | Tkn-1 -a n + x| > h n b n = 0.
We first observe that

P A (k) n (x), | Tkn-1 -a n + x| > h n b n = P A (k) n (x), Tkn-1 -a n + x < -h n b n since the event Tkn-1 ≤ Fn (k n -1) -x, Tkn-1 -a n + x > h n √ b n is impossible for n large enough. Then we have, lim sup n→∞ sup x∈[-rn,-cn] L( -x √ b n ) -1 k 3/2 n b n P A (k) n (x), Tkn-1 -a n + x < -h n b n ≤ lim sup n→∞ sup x∈[-rn,-cn] L( -x √ b n ) -1 k 3/2 n b n P Tkn -a n + x ∈ [-a, 0], Tkn-1 -a n + x < -h n b n ≤ lim sup n→∞ sup x∈[-rn,-cn] L( -x √ b n ) -1 k 3/2 n b n P(| T1 | ≥ b n h n ).
On the other hand we write

P(| T1 | ≥ b n h n ) = P( T1 ≥ b n h n ) + P(-T1 ≥ b n h n ),
and additionally we have

P T1 ≥ b n h n = P e θ T1 ≥ e θhn √ bn ≤ e bn(Λ(θ)-θhn √ bn) ,
for all θ > 0. As Λ is C 2 on a neighbourhood of 0, we have

Λ(θ) = Λ(0) + Λ (0)θ + Λ (0)θ 2 2 + o(θ 2 )) = Λ (0)θ 2 /2 + o(θ 2 ).
Therefore, choosing θ = hn √ bn , there exists C > 0 such that for all n large enough, we have

P( T1 ≥ b n h n ) ≤ e -Ch 2 n .
Similarly, we have 

P( T1 ≤ - √ b n h n ) ≤ e -Ch
L( -x √ b n ) -1 k 3/2 n b n P A (k) n (x), Tkn-1 -a n + x < -h n b n ≤ lim sup n→∞ sup x∈[-rn,-cn] L( -x √ b n ) -1 k 3/2 n b n e -Ch 2
n which goes to zero as n → ∞ as long as h n > 2 log(n) C . We now bound the first quantity in the right hand-side of (31). Applying the Markov property at time k n -1 we get

P A (k) n (x), | Tkn-1 -a n + x| ≤ h n b n (32) = E f n ( Tj + a n -x)1 { Tk ≤ Fn(k)-x,| Tkn-1 -an+x|≤hn √ bn,k≤kn-1|}
where f n (z) = P z T1 ∈ [-a, 0] for all z ∈ R. We estimate the function z → f n (z), n ∈ N, using the refined Stone's local limit theorem in [START_REF] Borovkov | Generalization and refinement of the integro-local stone theorem for sums of random vectors[END_REF]Theorem 2.1]. By (H 2 ) there exists a constant c > 0 such that for all z ∈ R

f n (z) ≤ a √ 2πb n σ 2 exp -(z -a n + x) 2 2b n + c b n .
To approximate (32) for a random walk satisfying (H 2 ) we apply Theorem 9, there exists a constant C > 0 such that for all γ > 0 we have

P A (k) n (x), | Tkn-1 -a n + x| ≤ h n b n (33) ≤ C n γ + a √ 2πb n σ 2 E sup |w|≤dn exp -( Ŝkn-1 + w -a n + x) 2 2b n σ 2 1 B (k) n (x) + c b n P B (k) n (x) .
where

B (k) n (x) = Ŝk ≤ Fn (k) + d n -x, k ≤ k n -1, | Ŝkn-1 -a n + x| ≤ h n √ b n + d n .
We write then

E sup |w|≤dn exp -( Ŝkn-1 + x -a n + w) 2 2b n 1 B (k) n (x) (34) = E Q sup |w|≤dn e -an n √ bn Skn-1 +nΛ(an/n) exp -( √ b n Skn-1 + x -a n + w) 2 2b n 1 C k n (x)
where

C (k) n (x) = Sk ≤ -x + d n -c n √ b n , k ≤ k n -1, | b n Skn-1 + a n k n -x| ≤ h n b n + d n and √ b n Sk = √ b n Ŝk -k kn a
n is a centred Gaussian random walk under the measure Q defined in the proof of Lemma 8. Then using the dominated convergence theorem and the fact that 

-a n + x) 2 2b n σ 2 1 C (k) n (x) ≤ lim sup n→∞ E Q   exp -( √ b n Skn-1 + x) 2 2b n σ 2 1 Sk ≤ 1 √ bn (x+dn-cn),k≤kn-1   ≤ lim sup n→∞ E Q   exp -( Skn-1 + -x √ bn ) 2 2σ 2 1 Sk ≤ -x+dn -cn √ bn ,k≤kn-1   .
Applying Lemma 2.3 in [START_REF] Aïdékon | Convergence in law of the minimum of a branching random walk[END_REF] for the Gaussian random walk ( Sk ) k≤kn , and using Lemma 12 we obtain for all

x √ bn ∈ [-rn √ bn , -(cn+dn) √ bn ], lim sup n→∞ k 3 2 n E Q   exp -( Skn-1 + -x √ bn ) 2 2σ 2 1 Sk ≤ -x+dn-cn √ bn ,k≤kn-1   ≤ 1 √ 2πσ 2 ∞ 0 e -y 2 2σ 2 L(y)dy × L( -x + d n -c n √ b n ).
We now observe that that 1

√ 2πσ 2 ∞ 0 L(y)e -y 2 2σ 2 dy = E L( Ŝ1 )1 { Ŝ1≥0} ) = L(0) = 1, which implies lim sup n→∞ k 3 2 n E Q   exp -( √ b n Skn-1 + x) 2 2b n σ 2 1 Sk ≤ -x+dn -cn √ bn ,k≤kn-1   ≤ L( -x + d n -c n √ b n ).
To complete the proof of the upper bound it remains to show that lim sup

n→∞ sup x∈[-rn,-cn] L( -x √ b n ) -1 k 3/2 n b -1 2 n E 1 B k n (x) = 0. ( 35 
)
Using similar computations we have

sup x∈[-rn,-cn] k 3 2 n P Ŝk ≤ Fn (k) + d n -x, k ≤ k n -1, | Ŝkn-1 -a n + x| ≤ h n b n + d n ≤ sup x∈[-rn,-cn] k 3 2 n P Sk ≤ -x + d n -c n √ b n , Skn-1 - a n k n √ b n + x √ b n ≥ -h n - d n √ b n , k ≤ k n -1 ≤ CL( -x + d n -c n √ b n ) hn+ 2dn √ bn 0 L(y)dy.
Since the renewal function x → R(x) is increasing we have by [START_REF] Kesten | A limit theorem for multidimensional Galton-Watson processes[END_REF] sup

x∈[-rn,-cn] k 3 2 n P Ŝk ≤ Fn (k) + d n -x, k ≤ k n -1, | Ŝkn-1 -a n + x| ≤ h n b n + d n ≤ C(h n + 2 d n √ b n )L( -x + d n -c n √ b n )L(h n + d n √ b n ) ≤ C(h n + 2d n √ b n ) 2 L( -x + d n -c n √ b n )
where we used in the last inequality that L(t n ) ≤ ct n for some constant c > 0 when t n → n→∞ ∞.

Thanks to Lemma 12 we obtain sup 

x∈[-rn,-cn] L( -x √ b n ) -1 k 3/2 n b -1 2 n P B (k) n (x) ≤ C (h n + 2dn √ bn ) 2 √ b n which goes to zero since log(n)+dn √ bn → 0 as n → ∞.
L( -x √ b n ) -1 b n k 3 2 n E(h( Tkn -a n + x)1 { Tk ≤ Fn(k)-x,k≤kn} ) (36) 
≤ lim sup

n→∞ sup x∈[-rn,-cn] L( -x √ b n ) -1 b n k 3 2 n P A (k) n (x), | Tkn-1 -a n + x| ≤ h n b n ≤ 1 √ 2σ 2 π 0 -∞
f (y)e -θ * y dy.

We now treat the lower bound.

• Lower bound

We now compute a lower bound for P A (k) n (x) . Using similar arguments to these used in (32) by ignoring in this case the event | Tkn-1 -a n + x| ≤ h n √ b n , which does not play any role in the proof of the lower bound we have by Theorem 9

P Tk ≤ Fn (k) -x, k ≤ k n , Tkn -a n + x ∈ [-a, 0] ≥ a √ 2πb n σ 2 E inf |w|≤dn exp -( √ b n Ŝkn-1 + w -a n + x) 2 2b n σ 2 1 { √ bn Sk ≤ Fn(k)-dn-x,k≤kn-1} .
Similar computations to these used in the upper bound lead to

lim inf n→∞ E inf |w|≤dn exp -( √ b n Ŝkn-1 + x -an n + w) 2 2b n 1 { Ŝk ≤ Fn(k)-x-dn,k≤kn-1} ≥ lim inf n→∞ E Q   exp -( Skn-1 + x √ bn ) 2 2σ 2 1 Sk ≤ -x-dn -cn √ bn ,k≤kn-1   .
Applying again Lemma 2.3 in [START_REF] Aïdékon | Convergence in law of the minimum of a branching random walk[END_REF] for the Gaussian random walk ( Sk ) k≤kn , we obtain for all

x ∈ [-r n , -(c n + d n )], lim inf n→∞ k 3 2 n E Q   exp -( Skn-1 + x √ bn ) 2 2σ 2 1 Sk ≤ -x-dn -cn √ bn ,k≤kn-1   ≥ 1 √ 2πσ 2 ∞ 0 e -y 2 2σ 2 R(y)dy × L( -x -(c n + d n ) √ b n ).
Finally, by Lemma 12 we get lim inf

n→∞ inf x∈[-rn,-(cn+dn)] (L( -x √ b n ) -1 b n k 3 2 n E(h( Tkn -a n + x)1 { Tk ≤ Fn(k)-x,k≤kn} ) (37) 
≥ 1 √ 2πσ 2 0 -∞ f (y)e -θ * y dy.
Combining equations ( 36) and (37) we deduce that

E(h( Tkn -a n + x)1 { Tk ≤ Fn(k)-x,k≤kn} ) = e θ * x √ 2πσ 2 √ b n k 3 2 n 0 -∞ f (y)e -θ * y dy(L( -x √ b n ) + o(1)) uniformly in x ∈ [-r n , -(c n + d n )].

The modified extremal process

Recall that ( Tk ) 1≤k≤kn is a sequence of centred random walk with Var( Tk ) = kb n σ 2 and a n = m nk n b n v. The goal of the next section is to introduce a modified extremal process and to prove that it has the same weak limit as the original extremal process E n .

Start by setting

E n,Rn = u∈H kn δ Su-mn 1 {Su k ≤Rn(k),∀k≤kn} ,
where refer to the function R n : {0..., k n } → R as a barrier. More precisely our objective is to prove that the weak limit of the modified extremal process E n,Rn and the original extremal process E n coincide for a well-chosen function R n .

In a first step, we start by proving that there exists a barrier R n such that, with high probability, all individuals stay below it all most of time. The existence of this barrier gives us further information for the localization of the paths of the extremal particles.

Lemma 14. Consider the barrier

R n (k) = kb n v - 3 2θ * log( k n b n + 1 (k n -k)b n + 1 ) + c n , k = 0..., k n
where (c n ) n∈N is the sequence of integers defined in [START_REF] Stone | On local and ratio limit theorems[END_REF]. It then holds:

P(∃u ∈ H kn , S u k > R n (k), for some k ≤ k n ) = o(1) when n ↑ ∞.
Proof. Using Markov inequality we get

P(∃|u| = k n , S u k > R n (k), k ≤ k n ) ≤ k≤kn E   |u|=k 1 {Su k >Rn(k),Su j ≤Rn(j),j<k}   .
By Proposition 3 we have,

k≤kn E   |u|=k 1 {Su k >Rn(k),Su j ≤Rn(j),j<k}   ≤ k≤kn E exp(-θ * Tk )1 { Tk >Rn(k)-kbnv, Tj ≤Rn(j)-jbnv,j<k} ≤ e -θ * cn k≤kn (k n b n + 1) 3 2 
(k n -k)b n + 1)

3 2 P( Tk > Rn (k), Tj ≤ Rn (j), j < k), (38) 
where Rn (j) = R n (j) -jb n v, for all 1 ≤ j ≤ k n . We compute this probability by conditioning with respect to the last step Tk -Tk-1 to get

P( Tk > Rn (k), Tj ≤ Rn (j), j ≤ k) = E(f k-1 ( Tk -Tk-1 ))
where, ∀y ∈ R

f k-1 (y) = P Rn (k) -y ≤ Tk-1 ≤ Rn (k), B n (j) ≤ 1 √ b n Rn (j)), j ≤ k -1 .
Assume that (H 1 ) or (H 2 ) hold, by Lemma 7 or 11 and using the fact that cn √ bn → n→∞ 0, we deduce that, for n large enough, there exists C > 0 such that, ∀y ∈ R

f k-1 (y) ≤ C1 {y≥0} (1 + y √ bn ) 3 k 3/2 .
Now Plugging this in (38) we obtain

P(∃|u| = k n , S u k > R n (k), k ≤ k n ) ≤ Ce -θ * cn k≤kn (k n b n + 1) 3 2 ((k n -k)b n + 1) 3 2 1 k 3 2 (1 + E( Tk -Tk-1 √ b n ) 3 + ) → n→∞ 0.
completing the proof.

From this lemma we deduce that the extremal process E n,Rn has the same weak limit of the one of E n . Now we will consider a barrier which is lower. For the choice of such barrier we refer to the work of Arguin, Bovier and Kistler [START_REF] Arguin | The extremal process of branching Brownian motion[END_REF] in the case of branching Brownian motion. Their method is based on the mechanism of entropic repulsion which is used in the statistical mechanics of membrane models, see [START_REF] Velenik | Localization and delocalization of random interfaces[END_REF].

Proposition 15. Define the barrier

F n (k) = kb n v + k k n a n -c n 1 k =0,kn , k = 0..., k n .
Let A = [a, ∞) where a ∈ R, then we have

lim n→∞ E(E n,Rn (A) -E n,Fn (A)) = 0.
Proof. Let the following subsets of H kn

A (u) n = {u ∈ H kn : S kn -m n ∈ A, S k ≤ R n (k), k ≤ k n , } the 
set of particles at generation k n that are close to the maximum and that stay below the barrier k → R n (k) for all k ≤ k n . Respectively we introduce

B (u) n = {u ∈ H kn : S kn -m n ∈ A, S k ≤ F n (k), k ≤ k n } . Set the integer-valued variable #(A (u) n ∩ (B (u) n ) c ) = # {u ∈ H kn : S kn -m n ∈ A, S k ≤ R n (k), k ≤ k n , ∃j ≤ k n , S j > F n (j)} .
Using the fact that

B (u) n ⊂ A (u)
n we deduce that Applying the Markov property at time j we get

E(E n,Rn (A) -E n,Fn (A)) = E(#(A (u) n ∩ (B (u) n ) c )) = E   |u|=kn 1 {S kn -mn∈A,S k ≤Rn(k),
P Tkn -a n -a ∈ [r, r + 1], Tk ≤ Rn (k), k ≤ k n , Tj > Fn (j) ≤ P Tk ≤ Rn (k), k ≤ j, Tj > Fn (j) × (39) 
sup x∈[Fn(j),Rn(j)]

P x Tkn-j -a n -a ∈ [r, r + 1], Tk ≤ Rn (k + j), k ≤ k n -j . ( 40 
)
To bound the probability (39), we apply the Markov property at time l = [ j 3 ],

P( Tj > Fn (j), Tk ≤ Rn (k), k ≤ j) ≤ P( Tk ≤ Rn (k), k ≤ l) sup z≤ Rn(l) P z Tj-l > Fn (j), Tk ≤ ' Rn (k + l), k ≤ j -l .
Set T k = Tj-l -Tj-l-k , which is a random walk with the same law as Tk . Then we obtain

P z Tj-l > Fn (j), Tk ≤ Rn (k + l), k ≤ j -l ≤ P z Fn (j) < Tj-l ≤ Rn (j), Tk ≥ F n (j) -R n (j -k), k ≤ j -l . ( 41 
)
We bound the probability in (41). We use a lower bound for the expression (F n (j)-R n (j -k), k ≤ j -l).

Observe that the function x → log(x)

x is decreasing for x ≥ e, and

(k n -j)b n + 1 + kb n ≤ 2((k n -j)b n + 1)kb n ,
then we have 

F n (j) -R n (j -k) = -3 2θ * j k n log(k n b n ) -log(k n b n ) + log((k n -j + k)b n + 1) + ln(b n ) θ * -2c n ≥ - 3 
P z Fn (j) < Tj-l ≤ Rn (j), Tk ≥ F n (j) -R n (j -k), k ≤ j -l ≤ P Tk ≥ -3 2θ * (log(kb n ) + log(j ∧ ((k n -j) + 1)) + log(2)) -2c n , k ≤ l × P x Fn (j) -z < Tj-2l ≤ Rn (j) -z .
Assume that (H 1 ) or (H 2 ) hold, then by Lemmas 4, 5 or 10 for n large enough we obtain

P Tk ≤ Rn (k), k ≤ j, Tj > Fn (j) ≤ P B n (k) ≤ 1 √ b n Rn (k), k ≤ l ≤ C √ j × P B n (k) ≥ -3 2θ * (log(j ∧ ((k n -j) + 1)) + log(kb n ) + log(2)) -2 c n √ b n , k ≤ l ≤C 1+log(j∧((kn -j)+1)) √ j × P x 1 √ b n ( Fn (j) -z) < B n (j -2l) ≤ 1 √ b n ( Rn (j) -z) ≤C log(j∧((kn-j)+1))+1 √ jbn ≤ C (1 + (log(j ∧ ((k n -j) + 1))) 2 √ b n j 3 2
.

Using Lemma 7 or 11, for n large enough we have sup x∈[Fn(j),Rn(j)]

P x Tkn-j -a n -a ∈ [r, r + 1], Tk ≤ Rn (k + j), k ≤ k n -j ≤ C (1 + 2d n ) √ b n (1 + log(j ∧ ((k n -j) + 1))) 2 (k n -j) 3 2
, therefore, we conclude that

E(E n,Rn (A) -E n,Fn (A)) ≤ C (1 + 2d n ) √ b n k 3 2 n j≤kn
(1 + (log(j ∧ ((k n -j) + 1)))) 4 ((k n -j) + 1)

3 2 j 3 2 ≤ 2C (1 + 2d n ) √ b n j≤[kn/2]
(1 + log(j))

4 j 3 2 → n→∞ 0, as j≤[kn/2] (1+log(j)) 4 j 3 2 < ∞.
This lemma implies that the two extremal processes E n,Fn and E n,Rn have the same weak limit. Consequently, the the same as the o ne of E bn n . For u ∈ T (n) , we introduce

H n (u) = {S u k ≤ F n (k), k ≤ k n }
the set of individuals satisfying the F n -barriers. We will prove that, with high probability, the set of pairs of extremal particles that branch off at time k ≥ 1 and stay all the time below the barrier k → F n (k) is vanishing in the large n-limit. This show that all particles contributing in the extremal process split from the root.

Lemma 16.

With the same notation used before, we have,

lim n→∞ E (#{(u, v), |u ∧ v| ≥ 1, H n (u), H n (v), S u -m n ∈ A, S v -m n ∈ A}) = 0.
Proof. By considering the positions of any pairs of individuals (u, v) at the generation k n and at their common ancestors u ∧ v we have 

E (#{(u, v), |u ∧ v| ≥ 1, S u -m n ∈ A, S v -m n ∈ A, H n (u), H n (v)}) = E   kn-1 j=1 |w|=j 1 {Sw i ≤Fn(i),i≤j} ( 
E #{(u, v), |u ∧ v| ≥ 1, S bn u -m n ∈ A, S bn v -m n ∈ A, H n (u), H n (v)} ≤ E   kn-1 j=1 |w|=j 1 {Sw i ≤Fn(i),i≤j} (uj+1,vj+1) 1 {Su j+1 ≤Fn(j+1),Sv j+1 ≤Fn(j+1)} φ j,n (S uj+1 )φ j,n (S vj+1 )   , (42) 
where

φ j,n (z) = E   |u|=kn-j-1 1 {z+Su-mn∈A,Su k +z≤Fn(j+k+1),k≤kn-j-1}   .
Now using Proposition 3 we obtain, φ j,n (z) = E e -θ * Tkn-j-1 1 {z+ Tkn-j-1 -mn+(kn-j-1)bnv∈A, Tk +z≤Fn(j+k+1)-kbnv,k≤kn-j-1} .

Summing with respect to the value of Tkn-j-1 -m n + (k n -j -1)b n v we have

φ j,n (z) ≤ Cn 3 2 b n e θ * (z-(j+1)bnv) h≥0 e -θ * h × P z-(j+1)bnv Tkn-j-1 -a n -a ∈ [h, h + 1], Tk ≤ F n (j + k + 1) -kb n v, k ≤ k n -j -1 . ( 43 
)
Note that If (H 2 ) holds by Theorem 9, we bound the quantity (43) by

P z Tkn-j-1 -m n + (k n -j -1)b n v -a ∈ [h, h + 1], Tk ≤ F n (j + k + 1) -kb n v, k ≤ k n -j -1 ≤ P z-(j+1)bn D (k) n ,
where

D (k) n = b n Ŝkn-j-1 -a kn-j-1 -a ∈ [h -d n , h + 1 + d n ], b n Ŝk ≤ Fn (k) + d n , , k ≤ k n -j -1 .
Now assume that either (H 1 ) or (H 2 ) hold. Thanks to Lemma 7 or 11 we have,

φ j,n (z) ≤ C(1 + 2d n )k 3 2 n e θ * (z-(j+1)bnv) (1 -z-(j+1)bnv √ bn ) 2 (k n -j) 3 2
.

By replacing this in the equation (42), we get

E #((u, v), |u ∧ v| ≥ 1, S bn u -m n ∈ A, S bn v -m n ∈ A, H n (u), H n (v)) ≤ C(1 + 2d n )k 3 2 n E( kn-1 j=1 1 (k n -j) 3 2 |w|=j 1 {Sw i ≤Fn(i),i≤j} × (uj+1,vj+1) 1 {Su j+1 ≤Fn(j+1),Sv j+1 ≤Fn(j+1)} e θ * Su j+1 -(j+1)bnv+Sv j+1 -(j+1)bnv f n,j (S uj+1 )f n,j (S vj+1 ))
where f n,j (u) = (1 + z-(j+1)bnv √ bn ) 2 . In the other hand we can bound the double sum (uj+1,vj+1)

1 {Su j+1 ≤Fn(j+1),Sv j+1 ≤Fn(j+1)} e θ * [Su j+1 -(j+1)bnv)+Sv j+1 -(j+1)bnv] f n,j (S uj+1 )f n,j (S vj+1 ) by (1 + S w -jb n v √ b n ) 4 e 2θ * (Sw-jbnv) × E     |u|=|v|=1 u =v (1 + X (n) u -b n v √ b n ) 2 (1 + X (n) v -b n v √ b n ) 2 e θ * (X (n) u -bnv+X (n) v -bnv)     . Using independence between X (n) u and X (n) v for u = v and the fact that E   |u|=1 (X (n) u -b n v)e θ * (X (n) u -bnv)   = 0, we have E     |u|=|v|=1 u =v (1 + X (n) u -b n v √ b n ) 2 (1 + X (n) v -b n v √ b n ) 2 e θ * (X (n) u -bnv+X (n) v -bnv)     ≤ E     |u|=|v|=1 u =v (1 + ( X (n) u -b n v √ b n ) 2 )e θ * (X (n) u -bnv) (1 + ( X (n) v -b n v √ b n ) 2 )e θ * (X (n) v -bnv)     ,
then conditioning on Z bn and using the following properties

E (X (n) u -b n v) 2 e θ * (X (n) u -bnv) = b n Λ (θ * ) = b n σ 2 and E e θ * (X (n) u -bnv) = m -bn , we obtain E     |u|=|v|=1 u =v (1 + ( X (n) u -b n v √ b n ) 2 )e θ * (Xu-bnv) (1 + ( X (n) v -b n v √ b n ) 2 )e θ * (X (n) v -bnv) |Z bn     ≤ (1 + σ 2 ) 2 Z bn (Z bn -1)m -2bn ,
as a consequence, there exists a constant C > 0 such that

E     |u|=|v|=1 u =v (1 + ( X (n) u -b n v √ b n ) 2 )e θ * (Xu-bnv) (1 + ( X (n) v -b n v √ b n ) 2 )e θ * (Xv-bnv)     ≤ C,
which leads to the following inequality

E #((u, v), |u ∧ v| ≥ 1, S bn u -m n ∈ A, S bn v -m n ∈ A, H n (u), H n (v)) ≤ C(1 + 2d n )k 3 2 n E   kn-1 j=1 1 (k n -j) 3 2 |w|=j (1 + S w -jb n v √ b n ) 4 e 2θ * (Sw-jbnv) 1 {Sw i ≤Fn(i),i≤j}   .
On the other hand by Proposition 3 we obtain

E (#((u, v), |u ∧ v| ≥ 1, S u -m n ∈ A, S v -m n ∈ A, H n (u), H n (v))) ≤ C(1 + 2d n )k 3 2 n E   kn-1 j=1 1 (k n -j) 3 2 (1 + Tj √ b n ) 4 e θ * Tj 1 { Ti≤ Fn(i),i≤j}   .
Summing with respect to the values of Tj -Fn (j), by Lemma 7 or 11 and for n large enough we get (kn-j) where α bn = b n v -3 2θ * ln(n) + ln(bn) θ * . Using Lemmas 8 or Corollary 13, depending on whatever we work under (H 1 ) or (H 2 ), we obtain the following approximation, E e -θ * Tkn-1 e -φ( Tkn-1 -α bn +x) -1)1 { Tk ≤ Fn(k+1)-(x-bnv),k<kn}

E (#((u, v), |u ∧ v| ≥ 1, S u -m n ∈ A, S v -m n ∈ A, H n (u), H n (v))) ≤ C(1 + 2d n )k 3 2 n kn-1 j=1 1 (k n -j) 3 2 ∞ r=0 E e θ * Tj (1 + Tj √ b n ) 4 1 { Ti≤ Fn(i), Tj -Fn(j)∈[-r-1,-r],i≤j} ≤ C(1 + 2d n )e -θ * cn k 3 2 n kn-1 j=1 1 (k n -j) 3 2 ∞ r=0 (1 + r) 4 e -θ * r × P Ti ≤ Fn (i), Tj -Fn (j) ∈ [-r -1, -r], i ≤ j ≤ C(1 + 2d n ) √ b n e -θ * cn
∼ n→∞ 1 √ 2πσ 2 L( -(x -b n v) √ b n
)e θ * (x-bnv) e -θ * y (e -φ(y) -1)dy. Additionally, we have by Equation ( 16) and the Markov inequality

E   L( -S (n) 1 √ b n )1 S (n) 1 √ bn ≤-A    ≤ C E   (1 + -S (n) 1 √ b n )1 S (n) 1 √ bn ≤-A    ≤ C E(|S (n) 1 |) √ b n A + E    |S (n) 1 | √ b n A |S (n) 1 | √ b n 1 S (n) 1 √ bn ≤-A    ≤ C A .
Therefore, we have lim sup

n→∞ E   L( -S (n) 1 √ b n )1 S (n) 1 √ bn ≤ Fn (1) √ bn    - 1 √ 2π 0 -A L(-y)e -y 2 2 dy ≤ C A .
Thus, letting A → ∞ in (47), by [START_REF] Hammersley | Postulates for subadditive processes[END_REF] we obtain that Finally, applying dominated convergence theorem and by assumption (3) we deduce that (44) holds for all function φ ∈ C l,+ b , which concludes the proof using Remark 2.

2 ):

 2 The characteristic function φ(λ) = E (exp(iλY 1 )) of Y 1 satisfies the Cramér condition, i.e lim sup |λ|→∞ |φ(λ)| < 1,

Remark 2 .

 2 Denote by C l,+ b the set of continuous, positive and bounded functions φ : R → R + with support bounded on the left. By [6, Lemma 4.1], it is enough to show that for all function φ ∈ C l,

Lemma 5 .

 5 Let f ∈ C l,+ b be a Riemann integrable function, and let (r n ) n∈N be a sequence of positive real numbers, such that lim n→∞ rn √ n = 0. Set

Lemma 8 .

 8 Let (r n ) n∈N be a sequence of positive real numbers such that lim n→∞ rn √ kn = 0. Let

  Finally by (33), (35) and Lemma 12 we deduce that lim sup n→∞ sup x∈[-rn,-cn]

1 P

 1 k≤kn,∃j≤kn,Sj >Fn(j)} {S kn -mn∈A,S k ≤Rn(k),k≤kn,∃j≤kn,Sj >Fn(j)}   = E e -θ * Tkn 1 { Tkn -an∈A, Tk ≤ Rn(k),k≤kn,∃j≤kn, Tj > Fn(j)} , where a n = m n -k n b n v and Fn (j) = j kn a n -c n 1 j =0,kn for all 1 ≤ j ≤ k n . Summing with respect to the value of T kn -a n -a at time k n , we have E e -θ * Tkn 1 { Tkn -an∈A, Tk ≤Rn(k)-kbnv,k≤kn,∃j≤kn, Tj > Fn(j)} Tkn -a n -a ∈ [r, r + 1], Tk ≤ Rn (k), k ≤ k n , Tj > Fn (j) .

  2θ * (log((j ∨ e)b n ) -log(k n b n ) + log((k n -j)b n + 1) + log(kb n ) + log(2)) -2c n ≥ -3 2θ * (log((j ∨ e) ∧ ((k n -j) + 1)) + log(kb n ) + log(2)) -2c n , ∀k, j = 1....k n . Applying again the Markov property at time l we get

  uj+1,vj+1) (u,v) 1 {Su-mn∈A,Sv-mn∈A,Su k ≤Fn(k),Sv k ≤Fn(k),j+1≤k≤kn}   where the double sum (uj+1,vj+1) is over pairs (u j+1 , v j+1 ) of distinct children of w = u ∧ v and (u,v) is over pairs (u, v) such that |u| = |v| = k n and u is a descendant of u j+1 , and v is a descendant of v j+1 . Applying the Markov property at time j + 1 we get

1 + 1 e

 11 Now we are ready to prove our main result.Proof of Theorem 1. Let φ ∈ C l,+ b , with support A = [a, ∞) where a ∈ R. We have to show thatlim n→∞ E e -u∈H kn φ(S (n) u -mn) = E exp -Z ∞ 1 √ 2πσ 2 e -θ * y (1 -e -φ(y) )dy . (44)First introduceG n = { (u, v), |u ∧ v| ≥ 1, S u -m n ≥ a, S v -m n ≥ a}.By Lemma 14 and Proposition 15, it is enough to prove (44) for the extremal processE n,Fn = u∈H kn δ Su-mn 1 Hn .whereH n = {S u k ≤ F n (k), ∀k ≤ k n }. Using Lemma 16, we have P(G c n ) → n→∞ 0, thereforeObserve that exp (-n i=1 x i ) = 1 + n i=1 (e -xi -1)if there exists at most i such that x i = 0. Hence using that under G n , for all w at the first generation, at most one descendant reaches level m n , we get, -φ(S u -m n + S w )) -1) -φ(S u -m n + S w )) -1) using again that G c n is an event of asymptotically small probability, and that this product of random variable is bounded by 1. We now apply the Markov property at time one to obtain ψ n (S w )1 {Sw-bnv≤ Fn(1-φ(Su-mn+x) -1 1 {Su k ≤Fn(k+1)-x,k<kn} have, ψ n (x) = E e -θ * Tkn-1 e -φ( Tkn-1 -α bn +x) -1)1 { Tk ≤ Fn(k+1)-(x-bnv),k<kn}

E( 1 +

 1 Plugging this in Equation (45) we getE e -E n,Fn (φ) L(-S w -b n v √ b n )e θ * (Sw-bnv) 1 {Sw-bnv≤ Fn(1)} 1 √ 2πσ 2 e -θ * y (e -φ(y) -1)dy)   .Recall that v = κ(θ * ) θ * , then by Girsanov transform we haveE L( -(S w -b n v) √ b n )e θ * (Sw-bnv) 1 {Sw-bnv≤ Fn(1)} = m -bn E random walk with variance b n . Fix A > 0 As the function x → L(x)1 x∈[-A, Fn(1)bn ] is bounded, by central limit theorem we have lim n→∞

E 1 +√ 2πσ 2 e 2 m

 122 L(-S w -b n v √ b n )e θ * (Sw-bnv) 1 Sw-bnv≤ Fn (1)bn 1 -θ * y (e -φ(y) --bn e -θ * y (1 -e -φ(y) e -θ * y (1 -e -φ(y) )dy Z bn .
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