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Abstract

We study a generalization of the model introduced in [22] that interpolates between the random
energy model (REM) and the branching random walk (BRW). More precisely, we are interested
in the asymptotic behaviour of the extremal process associated to this model. In [22], Kistler and
Schmidt show that the extremal process of the GREM(N®%), a € [0,1) converges weakly to a
simple Poisson point process. This contrasts with the extremal process of the branching random
walk (o = 1) which was shown to converge toward a decorated Poisson point process by Madaule
[20]. In this paper we propose a generalized model of the GREM (N®), that has the structure of a
tree with ky, levels, where (k. < n) is a non-decreasing sequence of positive integers. We show that
as long as '%" —n—oo 0, the decoration disappears and we have convergence to a simple Poisson
point process. We study a generalized case, where the position of the particles are not necessarily
Gaussian variables and the reproduction law is not necessarily binary.

Keywords: Extremal processes, Branching random walk, extremes of log-correlated random fields.
MSC 2020: Primary: 60G80, 60G70, 60G55. Secondary: 60G50, 60G15, 60F05.

1 Introduction

The random energy model (REM) was introduced by Derrida in 1981 [11] for the study of spin glasses.
In the REM, there are 2V spin configurations. Each configuration ¢ € {—1, 1}Ncorresp0nds to an
independent centred Gaussian random variable X, with variance N, that models its energy level. It is
well-known that the extremal process of the REM, which is defined as

1

55 log(N) and 5. = v/2log(2), (1)

En = Z O0x,—my, Where my = B.N —
oce{—1,1}N

converges weakly in distribution to a Poisson point process with intensity \/%e’ﬁﬂxdx. Additionally the
law of the maximum My = max_ (—113v Xo centred by my converges weakly to a Gumbel random
variable.

Derrida introduced a generalized model in 1985, called the GREM [12], that has the structure of
a tree with K levels and can be described as follows. Start by an unique individual (the root). It
gives birth to 2% (we assume that % is a positive integer) children at the first level. At each level i,

1 <i < K, each child gives birth independently to 2% children. We associate each branch of this tree
N

to an independent centred Gaussian random variable with variance 7. In the context of spin glasses,
we obtain 2%V configurations in the level K, and the level energy of each configuration is the sum of the
values along the branches that forms the path from the root of the tree to the leaf corresponding to this
configuration. We call this model GREMy (K).

Note that the REM can then be thought of as a GREM with one level, i.e. a GREMy(1). The
correlation of the energy of two different configurations depends on the number of common branches
shared by their paths from the root up to the node at which they split. These correlations do not have
any impact on the extreme values of the energy levels, as the result described in (1) still holds even if

(Xy,0 € {—1,1}) is distributed as a GREMy(K), as N — oo.
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Kistler and Schmidt [22] studied the asymptotic of the extremal process of a GREM with a number
of levels Ky = N, for a € [0,1). They proved that, setting

20+ 1
25,

the extremal process of the GREMy(N®) converges weakly to a Poisson point process with intensity
\/%e’ﬂcxd:v, and the law of the maximum converges to a Gumbel distribution. In the GREMy(N®)

ms\?) = B.N — log(N),

the stronger correlations between the leaves of the tree have the effect of decreasing the median of the
maximal energy level, specifically its logarithmic correction. However the limiting law of the extremal
process remains unchanged. In the case of a = 1, which corresponds to the classical binary branching
random walk, the asymptotic behaviour of the extremal process is well-known. The convergence in law
of the recentred maximum was proved by Aidékon [2], and recently Madaule [20] showed the convergence
of the extremal process to a decorated Poisson point process with random intensity. Therefore a phase
transition can be exhibited, from a simple Poisson point process appearing in the GREMy(N®) for
a < 1 to a decorated one for o = 1.

The aim of this article is to have a closer look at this phase transition. We take interest in a
generalized version of the GREMpy(N®), that has the structure of a tree with k,, levels, where (k,, > 0)
is a non-decreasing sequence of positive integers. We study the asymptotic behaviour of the extremal
point process showing that as long as %= —, . 0, the decoration does not appear.

2 Notation and main result

A branching random walk on R is a particle system that evolves as follows. It starts with a unique
individual located at the origin at time 0. At each time n > 1, each individual alive in the process dies
and gives birth to a random number of children, that are positioned around their parent according to
i.i.d random variables.

The process we take interest in can be described as follows. Let &, be an integer sequence growing
to oo such that k, < n fo all n € N and set b, = Lk | the integer part of 7. The process starts
with an unique individual located at the origin at time 0. The particles reproduce for b,, consecutive
steps consecutively, each particle giving birth to an i.i.d. number of children. Then each descendant of
the initial ancestors moves independently, making b,, i.i.d. steps of displacements. This forms the first
generation of the process. For each 1 < k < k,,, every individual at generation k repeats independently of
the others the same reproduction and displacement procedure as the original ancestor. In other words
every individual creates a number of descendants given by the value at time b, of a Galton-Watson
process, whose positions are given by i.i.d. random variables with the same law as a random walk of
length b,,.

To describe the model formally we introduce Ulam-Harris notation for trees. Set

U:UN”

n>0

with N = {@} by convention. The element (uy,us..,u,) represents the utl child of u'® | child .., of u,
of the root particle which is noted @. If u = (u1, ua..,u,) we denote by ug = (u1, us..,uy) the sequence
consisting of the k" first values of u and by |u| the generation of u. For u,v € U we denote by 7(u) the
parent of u. If u = (u1,us..,u,) and v = (v1, va..,v,), then we write u.v = (u1,ug.., U, v1, V2..,vy,) for
the concatenation of v and v. We write

lu Av| :=inf{j <n:u; =v; and uji1 # vjq1}.

This quantity is called the overlap of v and v in the context of spin glasses. A tree 7 is a subset of U
satisfying the following assumptions:

e JET.
o ifueT, then m(u) € T.

o ifu=(u1,us,..u,) €T, thenV j <u,, n(u).j€T.



We now introduce the reproduction and displacement laws associated to our process. Let (Y},)nen
be a random walk such that E(Y;) = 0 and Var(Y;) = 1. We denote by (Z,)neny a Galton-Watson
process such that Zy = 1 and offspring law given by the weights (p(k))ren with pg = 0. Under this
assumption, the Galton Watson process survives almost surely. Set m = >, ., kp(k) the mean of the
offspring distribution and assume that m > 1. Recall that the Galton-Watson process (Z,)en satisfies
for all n € N:

Zn
Znt1 = E En+1,4
j=1

where (&, ;)1<j<z, are i.i.d random variables with law (p(k))ren -
Under the assumption E(Z;log(Z1)) < oo, Kesten and Stigum [17] proved that on the set of non
extinction of T there exists a positive random variable Z., such that

Z
lim —l; =Zsx >0, as. (2)
b—oo M

In this article we assume that the following stronger condition holds:
E(Z}) < oo. (3)

Construct a tree that we denote 7(™ as follows. Start by the ancestor @ located at the origin. It
gives birth to Z;_  children. For each k£ < k,, each individual at the generation k gives birth to an
independent copy of Z;, , that are positioned according to i.i.d random variables with the same law as
Y. For 1 <k <k,, let

Hy = {ueTM™: |jul =k},

the set of particles in the k" generation. By construction, we have #Hj, = Zip,, in law for all k < k,,.

We define (X,(f’)7 u € T) a family of i.i.d. random variables with same law as Y}, . For u € T we

write
[ul

S =>"x{m.
k=1

The goal of this paper is to study the asymptotic behaviour of the extremal process associated to this

model
Sr(Lb”)Z Z 651(;")*mn'
uEHp,,

Let us introduce notation associated to the displacement of the process. For all § > 0 we set
A(0) :=log (E (exp(6Y7))) . (4)

We assume that there exists > 0 such that A(6) < co. We write:

kn(0) =logE Z ef X

lul=1

Observe that &, (0) = b, (log(m) + A(0)) as

]E Z GGXSLH) — E Z E(GGXfL") |an) — E (anE(GGYb" )) — eb,L(log(m)JrA(Q)).

lul=1 lu|=1

The function &, is convex and differentiable on {6 > 0, x,,(0) < oo}, its interval of definition. We assume
that there exists 6* > 0 such that

0*AN'(6%) — A(0*) = log(m). (5)
We also assume that there exists § > 0 such that

E (exp((0* 4+ 6)Y1)) < o0 (6)



Recall that the case k,, = n corresponds to the classical branching random walk. Then under assumption

(4) and (5), Kingman [18], Hammersley [14] and Biggins [7] showed that on the set of non-extinction of
T
M, *
lim — := w(0”) =v a.s,
n—oo nN o*

where, M,, = max,ey, S, and v is the speed of the right-most individual. Then, Hu and Shi [15] and
Addario-Berry and Reed [1] proved that

3 In(n) + Op(1),

M, =nv —
nv 507

where Op(1) represents a tight sequence of random variables.
Throughout this paper we will assume that we are in one of the two cases:
(H;): Y7 is a standard Gaussian variable and b,, — oo as n — co.
(Hz2): The characteristic function ¢(A) = E (exp(iAY7)) of Y7 satisfies the Cramér condition, i.e

limsup |¢p(N)] < 1,

[A|— o0

and 105(7"”)2 —nsco 00 aS M —> 00.
Our work is inspired by the recent works on the convergence of the extremal processes [1], [5], [22]
and [20]. The main result of this paper is the following convergence in distribution.

Theorem 1. Assume that (3), (4), (5), (6) and either (Hy) or (Hz) hold, then setting

3 log (b,
My, = knbpv — YL log(n) + gg(* )’
the extremal process
gr(Lbn) = Z 5S,S'L)7m
u€EHp,,

converges in law to a Poisson point process with intensity \/ﬁZooefe*z, where 02 = Ii;; (0%) and Zy
is the random variable defined in equation (2). Moreover, the law of the recentered mazimum converges
weakly to a randomly Gumbel distribution shifted by 0% log(Zwo)-

Remark 2. Denote by Cll;+ the set of continuous, positive and bounded functions ¢ : R — R, with
support bounded on the left. By [6, Lemma 4.1], it is enough to show that for all function ¢ € Cll)’+

. _Z, ¢(Sf‘n)—7nn)> < < 1 /_9* _
lim E (e u€H b, =FE(exp | —Zo—ee [e Y1 — e ?W)q )
n— oo < p 27_(_0_2 ( ) Y

The result of Kistler and Schmidt [22, Theorem 1.1] is covered by Theorem 2. It is the case (Hj)
with k£, = N* 0 < a < 1 and Z; = 2 in our theorem. In that case we have Z,, = 1 and m,, =

nPe — 22‘12; L1og(n). Throughout this paper, we use C' and ¢ to denote a generic positive constants,

that may change from line to line. We say that f, ~n_ oo gn if limy, oo g—f‘ = 1. For x € R we write

r4 = max(z,0).
The rest of the paper is organized as follows. In the next section, we introduce the many to one
lemma, and we will give a series of useful random walk estimates. In Section 4 we introduce a modified

extremal process which we show to have same asymptotic behaviour of the original extremal process
defined in the principal theorem. Finally we will conclude the paper with a proof of the main result.

3 Many-to-one formula and random walk estimates

In this section, we introduce the many-to-one lemma, that links additive moments of branching processes
to random walk estimates. We then introduce some estimates for the asymptotic behaviour of random
walks conditioned to stay below a line, and prove their extension to a generalized random walk where
the law of each step is given by the sum of b,, i.i.d random variables.



3.1 Many-to-one formula

We start by introducing the celebrate many-to-one lemma that transforms an additive function of a
branching random walk into a simple function of random walk. This lemma was introduced by Kahane
and Peyriére [16]. Before we introduce it, we need to define some change of probabilities and to introduce
some notation.

Let Wy := 0 and (W; — W;_1);>1 be a sequence of independent and identically distributed random
variables such that for any measurable function h : R — R,

E(h(W1)) = E <69*Y1*A(9*>h(yl)) :

where Y] is the law defined in Section 2. Respectively, we introduce (Tj(n) — T](f)l) j>1 a sequence of i.i.d
random variables such that 7o = 0 and

E (S, i % h(SE))

(M —
]E(h(Tl )) - E(Z 69*5«(”))
u,|u|=1 *

—E (eg*Ybn—W*)h(y;,n)) . (7)

Observe that (T, én), k > 1) is a sequence of random variables that have the same law as the process

(Ukp,, = Zfb:”l W;, k> 1). We now set Tj(n) = Tj(n) — jbnv respectively W; = W; — juv,j > 1. We have

EWy) = E (e 80) = 4 (6°),
and as A" (6%) = k, (%) = v, we have E(W;) = 0 and similarly
E (W12)) —E <Y12€9*Y17A(0*)) _ A// (0*) + (A/ (9*))27

which gives Var(W;) = A" (6*) = o2 which is finite by assumption (6). As a consequence we have
E(Tfn)) = 0 and Var(Tl("))) = b,0% < oco. In the case (Hj), note that W, is a standard Gaussian
random variable which mean that Tl(n) is a centred Gaussian random variable with variance b,,.

For simplicity we write S, in place of S and T j in place Tj(") in the rest of the article.

Proposition 3. [25, Theorem 1.1] For any j > 1 and any measurable function g : R9 — R, we have

E( > g((Su)icics) = E(e™ Tig((Ti + ibuv)i<icy)

lul=j

Proof. For j =1, by (7) and using that b,v = ”"9(5*), we have

E( Y g(S.) = E(e 1@ g(Ty)) = E(e™* Trg(T} + byo)
Jul=1

where Ty = T} — b,v. We complete the proof by induction in the the same way as in [23, Theorem
1.1]. O

3.2 Random walk estimates

In this section we introduce some estimates for the asymptotic behaviour of functionals of the random
walks, such us the probability to stay above a boundary. We first give an estimate for the probability
that a random walk stays above a boundary (f,)nen, that is O(n'/2=¢) for some € > 0 . This lemma
was introduced in [21, Lemma 3.2].

Lemma 4. Let (wy)nen be a centred random walk with finite variance. Fix e > 0, there exists C > 0
such that

Pluwy > —(K"/2~ — ),k <n) < cl\;ﬁy

for any y > 0.



From now on we use the random walks (T} )r>1 and (Tj)r>1 defined in (7), unless otherwise stated.
We introduce a version of the Stone’s local limit theorem [25] that gives an approximation of the
probability for a random walk to end up in a finite interval.

Lemma 5. Let f € Cll)’+ be a Riemann integrable function, and let (rp)nen be a sequence of positive
real numbers, such that lim,,_, T—\/% =0. Set

log(by,)
0*

U = log( )+

20*

then we get
_ O*zn3/2

E(f(Tk, — an +2)e " Tn) = —°

T / Flw)e® Vdy(1 + o(1))

uniformly in © € [—rp,Ty].

Proof. By setting h(z) = e=? % f(z), it is enough to prove that

E(h(Ty, — an +2)) = ) (8)

h(y)dy(1
\/27mkb,b/ yL+oll

uniformly in z € [—r,, r,]. We prove this lemma by successive approximations of the function h, starting
with an indicator function. Set h(z) = 1,4 (z) for some a < b € R, then we write

E(h(Th, n

—ap+ ) =P (Tk, — an + = € [a,}]), (9)

As Tj is the sum of b, i.i.d. copies of Z, Tkn is the sum of k,b,, i.i.d. centred random variables with

finite variance, therefore we can apply the Stone’s local limit theorem [25] to obtain
- b—a —(an—x)Q) b—a
P(Ty, —an+z€la,b]) = ————=exp| ——— | (1 +0(1)) = ————=(1+ 0(1)),
(T, oot = st exp (228 ) (1 o1) = 2 (14 o)

uniformly in x € [—ry,7,], which completes the proof of (8) in that case.

We now assume that h is a continuous function with compact support, we prove (8) by approximating
it by scale functions. Denote by [a, b] the support of h. Let (¢;)o<i<m be an uniform subdivision of [a, b]
where m € N is the number of the subdivisions and t; = a + (b — a)/m for 0 < i < m. Set

m—1 m—1

bm Z mll{le[t“twrl]} and h Z M; l{le[tutwl]}’

1=0 =0

where M; = sup_c(y, 4,,,) M(2) and m; = inf.¢p, 4, ,,) h(2). Hence using the Riemann sum approximation
and the fact that f is a non-negative function, for all € > 0, there exists mg such that for all m > myg
we have

b b b b
(1-0 / h(y)dy < / by (y)dy < / Fon(4)dy < (14 €) / h(y)dy. (10)

where f R (y)dy = S0 =2m; and f o (y)dy = S0 =2 0.
Using equatlon (9) we have

m—1 m—1

E (hm(Th, — an +x)) = > MiP (Th, — an + @ € [t;, ti1]) ! > b%“Miu +o(1))

= " B V2mo2k,b, =

y)dy(1 + o(1)).

\/2770 V2102 knby /
Therefore, using that E(h(T), — ay, + ) < E(hp (Tk — an + x) and by (10) we deduce that

_ 1 b
limsup sup /knbyE (R(Ty, —an + 1)) < (1 +e)\/ﬂ02/ h(y)dy.

n—oo xe[0,ry,]



Using similar arguments we have

_ 1 b
o . _ > (1_ .
llnn_1>101<1)fm€1[1017frn] knbnE (R(Tk, — an + ) > (1 —¢) — /a h(y)dy

Finally, letting ¢ — 0 completes the proof of (8) when h is a compactly support function. Finally we
consider the general case, and assume that f is bounded with bounded support on the left. We introduce
the function

1 if  wu<0
x(uy=q¢ 1—u si 0<u<l
0 it u>1

then we write,
E(h(Ty, — an +2)) = E (h(Tx, — an + 2)x(Tk, — an + = — B))
+E (h(Tkn —an +2)(1 = x(T, — an +2 — B)))

for some B > 0. Observe that the function z — h(z)x(z — B) is continuous with compact support as a
consequence we have

= 1
E(h(T), —an,+x zi/h — B)dy(1+ o(1
+E (h(Tk, — an + z)(1 = x(Tk,, — an + 2 — B))). (11)
Using the Stone’s local limit theorem [25] there exists a constant C' > 0 such that the second quantity

in the right-hand side of (11) is bounded by

E (h(T, — an +2)(1 — x(Tk, —an, + 2 — B))) <E (h(Tkn —an + x)l{fk”_an+x>3})
. —60"B
< fll<E Z e J]‘{Tkn—an—i—me[j,j—i—l]} < C\|f||ooW~

j=B

On the other hand by the dominated convergence theorem we have

lim

1 1 o
- [|n By = —— h(y)dy,
P / (y)x(y — B)dy T /O (y)dy

Now using similar arguments to those used in the last case we deduce that

_ 1 o
BT, —an +2)) = Zs—e— [ 1) dy(1 + o(1),
which completes the proof. O

3.2.1 Random walk with Gaussian steps

In this section we assume that (Hy) holds, i.e that (7})x>0 is a Gaussian random walk. Let (3, (k), k <
kn) be the standard discrete Brownian bridge with k,, steps, which can be defined as,

B.(0) = Z=(Ti = 1T,

In the following lemma we estimate the probability for a Brownian bridge to stay below a boundary
during all his lifespan. This lemma was introduced in [9].

Lemma 6. Let h be the function defined by

h(k) = 0 ifk=0o0rk==k,
alog((kn, — k) Nk)by) + 1)  otherwise.

where a is a positive constant. There exists a constant C' > 0 such that for all x > 0 and n > 0 we have

1
bn

(h(k) + ), k < kn> < 0(1:”7) (12)

P (ﬁn(k) <



We refer to the function k& — h(k) as a barrier. An application of this lemma is to give an upper
bound for the probability that a random walk with Gaussian steps make an excursion above a well-chosen
barrier.

Lemma 7. Let a > 0, and for 0 < k < k,, we write f,(k) = alog(%). There exists C > 0

such that for allx >0, a <b € R and k < k,, we have

1+ 75)°

P (T~ fulk) € [0,8) T, < )+, <) < Clb—a)——20s

Proof. For n € N we have

< P (Tk - fn(k) € [aa b]a 7 %Tk < fn(]) +x - %(fn(k) + a)vj < k) )
using independence between the discrete Brownian bridge Tj — %T .. and T}, we obtain

P (T~ folb) € 0Ty~ 250 < fut o= 207 (0).5 < ) (13)

EN

<P(Tk— fulk) € [a,b]) P (T AT < )+ = L) +a)g < k) .

To estimate the probability that a discrete Brownian bridge stay below a logarithmic barrier, we apply
Lemma 6. First observe that the function = — log( ) is decreasing for x > e, and using that &, —j+1 <
(kn—k+1)+(k—7)+1<2(k, —k—l—l)(k—j—l—l),wehaveforyﬁ2

~ J J knbn Ernbn
fa(G) + 2 — E(fn(k) +a) < ay (IOg((k—k)an) - IOg((kn—j)bn—i—l)) +x

ol

< (log(kby,) +log(2)) + z < a(log((jbn, V€)) +log(2)) + =

??‘

and for g < j <k, we have

) j knby, knbn,
fald) + 2 — %(fn(k)‘*‘a) < o(log (W) w—log(m))
< a(log(((kn = )b +1) = log((kn — k)bn + 1)) + 2
< a(log(2) +log(1 + (k — j)by) + .

Then by Lemma 6 we get after rescaling by \/% the following upper bound

P (75~ 153 < fu) ~ L) - 005 <)

’ (ﬂ"(’“) < alog((k A (k=) +1)) + —= +1,j < k) < O(ﬁ,

x
Vb

where C' is a positive constant. To bound the first quantity in (13) we use the Gaussian estimate

P (Tk - fn(k) € [a’b]) S

which completes the proof. O

From now we denote by B, (k) = \ﬁ Recall that under (H;), (B, (k))k<k, is a standard random
walk with i.i.d Gaussian steps. Define the function L : (0, 00) +— (0,00) by L(0) = 1 and

= ZP <Bn(k:) > —x,B,(k) < min (B for = > 0.
k>0 J<k—1



It is known by [13, section XIL.7], that the function L is the renewal function associated to the ran-
dom walk (B, (k))r>0. We will cite some properties that are mentioned in [13, section XII.7]. The
fundamental property of the renewal function is

L(z) = E (L(z + Bu(1)) 1218, (1)20}) » (14)

and is a a right-continuous and non-decreasing function. Since in case (Hy), the initial law has no
atoms, then the function L is continuous. Also, there exists a constant ¢y > 0 such that

lim M = Cp. (15)

T—00 I

In particular there exists a constant C' > 0 such that for all z € R
L(z) <C(1+xy). (16)
Also we have by, for z,y >0
Lz +y) < 2L(z)L(y). (17)

Similarly, we define L_(x) as the renewal function associated to —B.

Since T is a symmetric law we have L_(z) = L(x) for all z > 0. It is also known that there exists a
positive constant C; such that for y > 0

P (klgigi(Bn(k)) > y) e fjk@ 18)

By Theorem 3.5 in [24], assuming that B is Gausian we have C; = # We now introduce an ap-

proximation of the probability for a random walk to stay below a line and end up in a finite interval .

Set , .
Fo(k) = T = k—(mn — kpbuv), k =0...,k,, neN.
Lemma 8. Let (7,)nen be a sequence of positive real numbers such that lim, % =0. Let

_ -3 IOg(bn)
= g log(n) + T

an

Forall f € Cé’+ we have

—X

— _p*T e e 0 _
E (f(Tkn —an +z)e”’ T’“”lmsﬁn<k>w,kgkn}) = \/ﬂ/ fly)e™ " vy <R(\/17) + 0(1)> -

uniformly in x € [—ry,0].

Proof. By setting h(z) = e=? % f(z) it is enough to prove that

— 1 0 —T
E(h(T}, — an 17 i oy = = h(y)dy(R 1 19
(i an 4011200 ) = 7 | R +om)  (9)

uniformly in x € [—ry,0].

Following the same method used in Lemma 5 it is enough to prove this estimate for an indicator
function. By writing 1{_4 4 = 1{_4,0) — 1[—s,0) for some a > 0,b > 0, it is enough to prove this estimate
for h(z) = 1;_q,0](2), in that case we have

E(h(Tk, = an + )15 <) —ap<iny) = B (Th, — an +2 > —a, Ty < Fu(k) — 2,k < k) .

Define a new probability measure Q on R by

o @) = exp(—n T+ A% (20)



where A(0) = g. Then we rewrite

P (Tk, —an+z > —a, Ty < Fo(k) —x,k < k)
= Eq(e " (VonBnlhn)= 2")1{FB (kn) 22—, /Br B ()<~ ki <hon} )

where B, (k) = B, (k) — ﬁan. Observe that the law of 7" under Q is the same as the law of T’ under
P.
Under this change of measure, we can rewrite the probability as

2
— 20 /b, B (k) + 52 X R
Eq <6 " () 1{MBn<k)s—x,kSkn,MBn(knmz—a})

< rat3EQ (@Bn(k) <,k < Fony /b B () > —a — x) .

as a consequence

N 2
i — 22 Vb By (k) + 5%
h?_f;ip IG[S}P o Eq <€ " (o) 2 1{\/EBn(k)<x,k<kn,\/EBn(kn)+m>a}>

<limsup sup @(fB ) < xk<kn,\/>B —a—x)

n—00 g&[—ry,0]

similarly we have

- . — 21 /By B (ke
liminf  inf ]EQ< Von Ba( )+2" 1{WB (k) <=2,k <kpn,v/bpBr (kn)+x>— a})

n—oo 906[—7"71,70]
<liminf inf Q@ (\/bnén(k) <~k < kn, V/bnBp(kn) > —a — x) . (21)

n— oo me[frn,O]

for all @ > 0. Therefore, it remains to estimate the quantity (21). Applying the Markov property at
time p = [%] we get

Q (mén(k) < —x,k < ky, \/EBn(kn) > —a— 13) =K (fx,n,a(\/aén(p))l{\/ﬁén(k)gfx’kgp})

(22)

where for all y <0

fomaly) = (\/>B kn—p)+y>—a—uz, \/>B yg—x,kgkn—p).

Using that the process (vbn(Bn(kn — p) — Bn(kn —p — 7)),0 < j < k, — p) has the same law as
(VbnBn(5),0 < j < ky, — p) under Q, we obtain

Fomaly) = ( (/b B (k) < (—/bn B, —p) x+y)<ak:<k—)
-Q (mffn(k) < mémn ~p) = (@+y) Sak <k —p)
since (\/Eén(k:))kzo is a symmetric law. We write én(kn — p) = Maxo<;<k,—p \/EBn(z), set
Tk, —p = Min {z : 0<i<kn—p, Bplkn—p)= \/Eén(z)}

the first time when /b, By, (i) hits its maximum in the interval [0, k, — p]. We have

kn—p
fx,n,a(y) = Z Q (Tkn—p = ia \/E-én(k) § \/Eén(kn *P) - (‘T + y) S a7k S kn 7p> .
=0

Applying the Markov property at time i we get

kn—p

fonaly Z IE( () = @)1, ()=v5, B, z><a})

10



where for all 2 <0, gz ny(2) =Q <y+x <\b,B, (kn—p—1) < y+xfz,Bn(kn —p—1i) < 0).
We now split the sum Y into Y0 + S0 " Py, where i, = [/ky], then we write

Frwa) =0 ) + 12 ()

where _
fé%a);,a(y) = ZE (Q(Bn(i) - a)l{én(i):\/ﬁén(i)ga}) )
=0

and

kn—p

1.0 = > E(9Bali) = 015, 0oy ir<a) )

i=ip+1

Set ¢(x) := pe= 1¢;>0}. By Theorem 1 [10] of Caravenna for n — oo,
Q(~(@+y=2) < VouBulky —p—i) < ~(z+ 9)|VouBa(j) 2 0,5 < ko —p — i)

—Zz -y 1
(kn - p)bn¢ ( (kn - p>bn> ’ ( (kn - p)bn> 7

uniformly in y <0, z € [-r,,0] and z in any compact set of R_. As a consequence by (18) we get
1

el = G B ) G o

uniformly in y <0, z € [-r,,0] and z € [—a,0]. For n large enough we get

);

1 A~ a

 (kn \/ kn — p)bn ZE (Bl x/E)l{Bn(msJ‘—;Tkg} (23)

knw;@ (En(k) < S)

We now treat the quantity

+ o

( 2o (VD B 1{ﬁBn(k)< wk<kn—p})
Since ¢ is bounded, there exists a constant C' > 0 such that for all z € [-r,,0],z € Rand 0 <i<p

C
xr,n S . 1 —asz i
9z, 7y(2’) /bn(kn_p_l‘Fl) { <z<0}

as a consequence, for all y < 0 we have

2 )

1 ~ . a o~ .
r Z a————— (Bn<l>ém73n<z)20>

1 =inp+1

which is bounded using Lemma 7 by

c fer 1 1
Fa0) < G N Gt —olime)

" i+ —i+1)i2
N (=)
On the other hand we have, Q(B,(j) < T J <k — D) ~Mnooo % éﬁ by (18), which mean that
1
(L(=) B (20 (Balbn = D)L i <ot} ) = O )- (24)
Von ( {VbuBa(k)<—a.k<ky, p}) kr%\/E

11



We now return to equation (23). Letting n — oo, we have > ° P < T > —a ) = R(

and by Fubini’s theorem we have

. a o 0 —
ZE (B \/E)l{B <k>>—k<z /r \/1177/_(;“\/%)%

By dominated convergence theorem we have

‘Z) for a > 0

o0t a 1
L( )dt (I+0(1)) =
V TL —a Vv '(l Vv bn
since h(t) = 1{_q,0(t). This yields, for all y <0

£ ) = 1

sy

(t)dt + o(

as a consequence, by (18)

E zna \% B k - A :237\/§ h(t)dt
{Bn<k)§ ;ykgkn—p} N =

E ~Bulkn —p) ) >0,k <k L(—= 1
X \;:7<¢< \/ki— >|— 0,k < n—p>< (\/T—n)+0( ))

On the other hand, it’s known (see Lemma 2.2 in [3]) that under P, ( | 7 L > 0,k <k,— >, Bu(kn)
converges weakly (as n — 00) to the Rayleigh distribution with density ¢. Hence

BAn(kn p) = ~

. Vb, 2
lim E - (¢ B, (k) >0,k <k, — —/ o(t)“dt =
n—00 Tbn ( ( vV kn —p > | ( ) p) 0 ( )

uniformly in @ € [—ry,,0] . Combining this with (24) we conclude that (19) holds, which allows us to
complete the proof by successive approximations. O

3.2.2 KMT coupling for random walk

We now introduce the well-known KMT Theorem [19] which is an approximation method of a random
walk satisfying (H2) by a Gaussian random walk. t allows us to link estimates on random walks
satisfying (H2) to the ones previously proved under assumption (H1).

Theorem 9 (Komlos-Major-Tusnady). Let (X;)1<i<n be a sequence of i.i.d random variables such that
E(X;)) =0, 0 < E(X?) = 0% < 0o and E(exp(0|X;|)) < oo for some 0 > 0. Then there exists a sequence
of i.i.d standard normal variables (Z;)1<i<n such that for all y >0

k
(121’?? o ZX > il >Clog(n)+y> < Kexp (—)y)

i=1
where C, K and A are universal positive constants.

Observe that we can construct an increasing sequence of integers d,, such that d,,/logn — oo and
d? /b, — 0. Using assumption (6), we can apply Theorem 9, to note that with high probability, the
random walk (Tk) k<k, stays within distance d,, from a random walk (Sk)0<k< k, with standard Gaussian

steps. More precisely, setting the event W,, = {\Tk -V nSk| <dp, k< kn} we have

P(WS) < e~ Mdn—Clogn) _ o(n™7)

for all v > 0, as d,, > logn. We start by proving a version of Lemma 4 for the random walk satisfying
(Hz).

12



Lemma 10. Fiz € > 0, there exists C' > 0 such that
1+ %
Vkn

S

P(Tj, > — (kY€ — ),k < k,) < C

for any y > 0.
Proof. Let € > 0. The proof is an application Theorem 9. We have

P (Tk > (K2 —y) k< kn)
<P (Tk > (BY27C — ) k < ko, Wk < kn) +P (\/Eék > (kY27 +dy —y),j < k) .
Applying Theorem 9, there exists a constant C' > 0 such that
P(Th > — (k27— )k < k)
< T% +P (\/Esk > —(kY* 7 td, —y)j < k) :
for all v > 0. Using the fact that \%7 — 0 as n — 00, we have for n large enough

1
bn

P (Tk > (kY2 — )k < kn) <P (Sk > KV 41 —y)j < k)

and by Lemma 4 we conclude the proof. O

In the same way we prove a similar result to Lemma 7.

Lemma 11. Let a > 0, and for 0 < k < k,,, write f,(k) = alog (%) There exists C > 0

such that for all x > 0, a < b € R, we have for n large enough

B B 1_|_ T \2
P (Ty — fu(k) € [a,b),Tj < fulj) + 2,5 < k) <C(b— a+2dn)<\/lT§*§;).

Proof. Applying again Theorem 9, there exists a constant C' > 0 such that

P (Tp — fo(k) € [a,b],Tj < fo(j) +2,§ < k)

A A 1
< S AP (VBB b € o= dub 4 i), 5, <

Vb

(i) 4 d)g < E).
for all v > 0. For n large enough we obtain

N ~ 1
<P (\/bnsk fu(k) € [a—du,b+dy], 8, <

bn

(Fnll) +2) +2,5 < k) ,

ﬂ

and we use Lemma 7 to complete the proof. O

We now prove a version of Lemma 8 for a random walk satisfying (Hz). Set

_ k
Fn(k) = Fan - cnlk;éO,k:”

k =0,..k, where (¢,)nen is a sequence of integers satisfying lim,, o, ¢, = 0o and

lim % = 0. (25)

n—o00 /b,
Before moving to the proof we need the following Lemma.

Lemma 12. Uniformly in x € [¢,, 00|, we have

L(=72)
lim |—Y22” _ 1| =0,
n— o0 L(\/E)

13



Proof. The proof follows from the properties of the renewal function introduced in (14). We first consider

(y——2)
the ratio T\/)q for large value of y. Let ¢ > 0, by (15), there exists a constant A = A(e) > 0

sufficiently large such that for all y > A we have
co(1 =€)y < L(y) < co(1+€)y. (26)

Using (26) we have

L(#7=2) 1 1
sup | a4 §|17+6_1|+60(Ai>0n. (27)
>4 (75) —€ Vb

On the other hand, recall that y — L(y) is continuous. Hence it is uniformly continuous on [0, 4],
and

x T —cp
sup |L(—=) — L( )
2€[cn, AV, \/E \/E
c c
< sup |L(y) - Ly — —=)| S wr(—=),
ye[\;;:,A] \/E \/E
where wr,(0) = sup |L(t) — L(s)|. Since the renewal function is increasing, we have L(y) > 1, for all
s,t
[t—s|<é
y > 0, which implies that
Ly —7)
sup L(\)/E -1 <w,;(\jz>)—>0asn—>oo. (28)
ye[\;—gfn,A] Yy n
By (27) and (28) we have
L(ﬂf—cn) L(x—cn) L(x—cn)
sup 7\/? -1 < sup 7\/? — 1|+ sup ‘/5” -1
velen.00) | L(T57) welen,AvEn] | LTE) >4 | L(F)
Cn 1+e co(l+€)ep
< | T
= wL(\/E)JrH_6 | + AVD,
Letting n — oo then € — 0 we conclude the proof. O
Corollary 13. Setting
-3 log(b
n = 5 In(n) + %,

then there exists C' > 0 such that With the same notation as Lemma 8 we have
_ 0T et 0 0* —x
E(f(Th, — an+2)e=" Tl 5 0. =7/ “Tvay (L(SZ) +0(1) ), (29
(T = o+ 20 Py i) = e | Ty (U2 +00) 29
uniformly in x € [—ry, —(cn + dy)].

Proof. We will divide the proof of this corollary into two parts, proving separately an upper and a lower
bound for (29). We set h(z) = e ? #f(2) . As a consequence, it is enough to prove that

1 /0 —x
Y py— h(y)dy(
ki/Q\/ 2mo2b,, J—co ( Vb,

uniformly in z € [—r,, —(¢, + dy,)]. Using the same arguments in Lemma 8, it is enough to prove this
Corollary with the function h(z) = 1j_,)(z) for some a > 0. Then we write

E(h(Tkn —an t I)l{T'ngn(k)fx,kgkn}) = P(Agc) (2)) (30)

E(h(Tk, — an + )17, <, (k)—ok<kn}) =

L(—=) +o(1))

where

Aglk)(x) = {Tk < Fn(k) _ka < knafkn —ap+x > _a}

the event that the random walk (7} )x<k, stays below the barrier k — F, (k) for all k < k,, and end up
in a finite interval.

14



e Upper bound
We have

P(AD) (@) = P (AP @), [T, -1 = an + 2] < hav/ba) + P (AP @), [T, -1 — an + 2l > hav/ba) (31)

where (h,)nen is a sequence growing to oo, that we will fix later on. We bound these two quantities
separately choosing h,, such that

limsup  sup L(i)_lki/Q\/anP’ (Ag“)(av)7 Tk, -1 — an + x| > hn\/bn> =0.
n—00  zE[—T,,—cp] \/E

We first observe that
P (A;k)(l% Tk, 1 — an + x| > hn\/a) =P (.A%k) (), Th,, 1 — an + < —hn\/a)

since the event {Tkn,l < F’n(kn -1) - x,Tkn,l —an, +x > hn\/bn} is impossible for n large enough.
Then we have,

limsup  sup L(_—x)_lkz/Q\/anP’ (Agf)(a:),fkn,l —apt+z< —hn\/bn)
n—00  zE[—T,,—cCp] \/E

<limsup sup I _r

n—00 zE€[—ry,,—cp] \/E

<limsup  sup L(_—x)_lkg/2\/bnp(|fl| > \/bphy).
n—00 zE€[—ry,,—Cy] \/E

)—1@/2\/@]}» (Tkn —ap+2€[-a,0,Th, 1 —ap, +x< —hn\/a)

On the other hand we write

P(|T1| > V/buhy) = P(Ty > /by hn) + B(=T1 > \/bohy),

and additionally we have
P (Tl > /b, hn) _Pp (€9T1 > eehnm) < ebn(AO)=0hnvEr)

for all # > 0. As A is C? on a neighbourhood of 0, we have

A”(O)@Q

A(9) = A(0) + A'(0)0 + =

+o(6?)) = A(0)62/2 + o(6?).

Therefore, choosing 6 = %, there exists C' > 0 such that for all n large enough, we have

P(Ty > /by hy) < e P

Similarly, we have P(T; < —v/b, hn) < e~C" for n large enough. Finally we obtain

limsup  sup L(i)_lki/Q\/an (Aﬁ,’“) (), Tk, —1 — G+ < —hpy/ bn>
n—00 zE[—ry,—cp] \/E

—X 2
< limsu su L(— _1k3/2\/bne_0h"
N ”—><>0p ze[—rnl?—cn] ( V bn) "

which goes to zero as n — oo as long as h,, > 24/ %.

We now bound the first quantity in the right hand-side of (31). Applying the Markov property at
time k, — 1 we get

P(Aﬁf)(x)v\fkn—l —ap+a| < hn\/ﬁ) (32)

=E (fn(TJ‘ +an — x)1{T’kgﬁn(k)—nm"71—an+x\§hnm,k§kn—1l})
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where f,(z) = P, (T} € [—a,0]) for all = € R. We estimate the function z — f,(z), n € N, using the
refined Stone’s local limit theorem in [3, Theorem 2.1]. By (Hz) there exists a constant ¢ > 0 such that
for all z € R

a —(z —an +2)? c
< —.
fn(2) < V2mb, 02 P ( 2by, ) * bn

To approximate (32) for a random walk satisfying (Hy) we apply Theorem 9, there exists a constant
C > 0 such that for all v > 0 we have

P (AD @), T, -1 = an + ] < hov/by) (33)

C a —(Sky—1 +w — ap + ) ¢ k
_C e . 1 . ‘p (B( ) ) .
=t Vo (fﬁiﬂn o < 25,07 50w |+, B

W)+ dn — 2k <k — 1,185 1 — an + 2| < hnv/bn + dn}. We write then

— S' q1+x—-a,+w 2
E( sup exp( (k-1 5% ) )18’9)@)) (34)
n

|w|<dy,

n /5 — (VS 1 + 7 — a + w)?
_]EQ< sup o~ %2 Vb Sk, —14+nh (an /n) exp< ( kn 12—;;55 an + w) >1ck(m)>
|lw|<dp n "

=
=
]
=
@
o5
°=
&
|
=
>
e
IN
&St}

where
& —r+d, —¢
C(k) _ {S < T n n
R N

and b, S, = v/ bnS’k — k%an is a centred Gaussian random walk under the measure Q defined in the

7k§kn_17|vbngkn1+Zﬂn_x§hn\/bn+dn}
n

2
proof of Lemma 8. Then using the dominated convergence theorem and the fact that 'Z—" —n—oo 0, and
rescaling by \/% we obtain

—(S. — ap 2
limsupE (eXp ( sup (Sho -1 ;_waQ an +2) > 1C(k)(m)>

n—oo lw|<dn

—(vbn Sk, - 2
< limsupEg [ exp < ( bkn 21 +x) ) ~ 1
n—oo 2bpo {skgm(wdn—cn),ksm—l}
_(Sk?n_l + = )2
< limsupEg exp( 53 Vb 1, e
n—00 o {skg#,kgnq}

Applying Lemma 2.3 in [2] for the Gaussian random walk (Sy)x<, , and using Lemma 12 we obtain for
x Th (cntdn)
all 7= € [= 7= -7 ],

3
limsup ki Eq | exp

n—oo

—(Sk,ﬁl + ﬁy 1
202 {Skg*zﬁTn*%,kSknq}

"
-z +d, —cp,

1 o0 y2
< — e 22 L(y)dy x L{(——m———
<= / () x (=7

'(2 A
We now observe that that —=— [ L(y)e 2% dy = E (L(Sl)1{§1>0})) = L(0) = 1, which implies

).

V2ro2 JO

~(VonSku -1+ 2)%Y |
2b,,02 {ékgﬂ“‘TnJ%,kgnq}

3
limsup k3 Eq | exp (

n—oo

<L(_$+dn_cn

< \/E)'
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To complete the proof of the upper bound it remains to show that

- 1
fim gt Sup L(i)_lki/an 2E (1% z)) = 0.
n—00 z€l-rn,—ca]  Vln ( B( ))

(35)
Using similar computations we have
sup 5P(Sk < Fy(k) +dp — 2,k <k — 1,180, 1 — an + 2| < huy/bn +d )
EG[—T’”,—C”]
3 - —r+d, —c, = an, T d,
< sup ki P (Sk <——m—7r Sk, -1 — + > —h, — k <kn— 1)
TE[—Tn,—Cp] \/E kn\/a \/E \/E

—z+dy —cn, [T

Since the renewal function x — R(x) is increasing we have by (17)

sup KPP (S < Fulk) + du = 2k < i = 1,18k,-1 = @+ 2l < hu/b + )
wE[—Tm—Cn]
dy, -z +d, —c, dy, 2y, o, ,—x+d, —cCpn
< Chy + 2L L(hn + 2"y < C(hn L
= Ol w2 gt ) = Clt G0

) < ct,, for some constant ¢ > 0 when ¢, —,_00 OO

where we used in the last inequality that L(
Thanks to Lemma 12 we obtain

—x _1 (h + \/*)
sup  L(—=)""k3%b, 2P (BW¥) (2)) < O— 2L
TE[—Trn,—Cn] V bn) ( ( ) Vv bn

) Lo dy
which goes to zero since %

n

— 0 as n — oo. Finally by (33), (35) and Lemma 12 we deduce that

lim sup sup

—T 3
L(—=)"" /b k2 E(h(
n—00 zE€[—ry,,—Cp] \F

T, — an + 2) 1T < (k)0 k<hon}) (36)

<limsup  sup

-1 kz A(k)
n—oo ze[_rm_cn] \/7 \/7 (

\Tk 1 —ap +z| < hp/b )
< — e " Vdy.
< o /_Oo f(y) Y
We now treat the lower bound

¢ Lower bound

We now compute a lower bound for ]P’( 5{”(:5)) Using similar arguments to these used in (32) by
ignoring in this case the event {|Tkn,1 —ap+x| < hn\/bn}, which does not play any role in the proof
of the lower bound we have by Theorem 9

]P’(Tk < Fo(k) —a,k <kp, Ty, —an+x€ [fa,()])

~(Vb Sk, —1 +w — a, +x)?
2%, 02 s <Fuh)-du—ah<ka-1} | -

Similar computations to these used in the upper bound lead to

. . . _(Vbngkn_l_kx_i—’—w)
TR, P %, {8k <Puy i1}
—(Sknfl + \/%)2
> n
It inflig | exp < 202 ! Sp<=r=dnzen gk, 1

SRS =t ks }

LE inf ex
~ \/27b, 02 |w|<dy, P
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Applying again Lemma 2.3 in [2] for the Gaussian random walk (Sk)r<k,, we obtain for all z €
[_T’ru _(Cn + dn)]7

n—00 20’2

~(Skp—1 + 5=)?
11m1nfk21EQ exp( Von L
skg?,kgk —1}

—x— (cp +dy)
Vb

e 252R )dyXL( )

- \/ 27702

Finally, by Lemma 12 we get

. . . X . _ —_ 3 —

lgggfxe[_rnylzl(f(«'n"rdn)] ) 1 bnk%E(h(Tk" ~0n + x)l{TkSFn(k)—a;7kSkn}) (37)
1 / .

> e 7 Ydy.

> e | f) y

Combining equations (36) and (37) we deduce that

_ e@x

E(h(Tx, — an + w)l{Tkgﬁ‘n(k)fm,kgkn}) =

0
S — e 0"y —r 0
NN / e M ay(L(ZE) +o(1)

uniformly in € [—ry,, —(c, + dy)]. O

4 The modified extremal process

Recall that (Tk)lgkgkn is a sequence of centred random walk with Var(T}) = kb,o? and a, = m,, —
knbnv. The goal of the next section is to introduce a modified extremal process and to prove that it has
the same weak limit as the original extremal process &,.

Start by setting

EnR, = Z 08y —mn 1{Sy, <R (k) Vh<kn}>
u€EHp,,

where refer to the function R, : {0..., k, } — R as a barrier. More precisely our objective is to prove that
the weak limit of the modified extremal process &, g, and the original extremal process &, coincide for
a well-chosen function R,,.

In a first step, we start by proving that there exists a barrier R,, such that, with high probability,
all individuals stay below it all most of time. The existence of this barrier gives us further information
for the localization of the paths of the extremal particles.

Lemma 14. Consider the barrier

3 knby, +1

R (k’) 71€b v — 10 (m)+cn,k:07kn

20+
where (¢n)nen is the sequence of integers defined in (25). It then holds:
P(Ju € Hy, , Su, > Rn(k), for some k < k) = o(1) when n T cc.

n?

Proof. Using Markov inequality we get

PElul = kn, Suy > Ru(k),k <kn) < Y E | DY s, snok ), S, <R (3),7<H}
k<kn |u|=k

By Proposition 3 we have,

Z E Z 180, > Ra(k).Su, <R (5).5<k}

k<kn lu|=k
<) E (exp(*Q*Tk)1{Tk>Rn(k>—kbnv,TjSRn(j>fjbnv7j<k})
k<k,
o (knbp +1)2 _ S B
<e e P(Ty > Ra(k),Tj < Ru(j), 7 < k), 38
- k%;n(k — k)b, +1)3 i -5 S .
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where R, (j) = Rn(j) — Jbyv, for all 1 < j < k,. We compute this probability by conditioning with
respect to the last step T, — T—1 to get
P(Ty > Ry (k), Tj < Ry (j),j < k) = E(fr—1(Tk = Ty—1))
where, Vy € R
1
Vb,

Assume that (H;y) or (Hz) hold, by Lemma 7 or 11 and using the fact that % —n—oo 0, we deduce
that, for n large enough, there exists C' > 0 such that, Vy € R '

1+ 4)°
Jre-1(y) < Cl{yEO}TJ;

froaly) =P (RnUc) —y < Th1 < Ru(k), Ba(j) < —=Rn(j)),j <k — 1) .

Now Plugging this in (38) we obtain
P(3|U| = kTHSUk > Rn(k)ak S kn)

3

. knbn +1)2 1 Ty — Te1
<C 0% cn ( . 1+E73
SCe ) (Gon — B+ D)F RE T %)

k<k,

completing the proof. O

From this lemma we deduce that the extremal process &, g, has the same weak limit of the one of
&,. Now we will consider a barrier which is lower. For the choice of such barrier we refer to the work
of Arguin, Bovier and Kistler [5] in the case of branching Brownian motion. Their method is based on
the mechanism of entropic repulsion which is used in the statistical mechanics of membrane models, see

[26].

Proposition 15. Define the barrier

F, (k) = kbyv + %an — Lok, k=0..., ky.
Let A = [a,00) where a € R, then we have
i E(€.5, (4) ~ .5, (4)) = 0.
Proof. Let the following subsets of Hy,,
AW = fue My, Sy, —mp €A, Sp < Ru(k),k <ky,}

the set of particles at generation k, that are close to the maximum and that stay below the barrier
k — R, (k) for all k < k,,. Respectively we introduce

B = {ue€Hy, : Sk, —mn € A, S < Fu(k), k< kp}.
Set the integer-valued variable
#(AM N (BU)) = #{u € Hy, : Sk, —mn € A, Sk < Ru(k), k < kn,3j < kny S; > Fu(4)}

Using the fact that Bq(lu) C A%u) we deduce that

E(En R, (A) = En,r, (A)) = E(#(ALY N (BLY)))

= ]E Z 1{Skn _mn€A7SkSRn(k)kakwrvajSkwwSJ>Fn(j)} )

|u‘=kn

then thanks to Proposition 3 we obtain

E Z 1is, —mn€A,Su<Ry (k) k<kn,3j<kn.S;>Fn(j)}

|u|=kn

—E (e ¥ Ten1; < .
- {Tkp,—an€A T <Ry (k),k<kn,3j<kn,T;>Fn(j)} )
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where a,, = m,, — k,b,v and F’n(j) = kian —cnljzok, for all 1 < j < k,. Summing with respect to
the value of T}, — a, — a at time k,,, we have

79*’]_1)6 _ _ — —
L (6 " l{sz—aneA,TkSRn<k>—kbnv,k§kn,HjékapFn(j)})

Cn3 _o*r _ _ _
<5 > e Z P (Ty, —an —a € [r,r + 1), T < Ro(k), k <k, T; > Fu(j)) -
>0 0<j<kn

Applying the Markov property at time j we get
P (Tkn —ap —acr,r+1],Tx < Ry(k),k < kn,Tj > Fn(]))

sup P, (Tkn_j—an—ae [r,r—&—l],fkSRn(k‘—l—j),kSk‘n—j). (40)
z€[Fn(3),Rn(3)]

To bound the probability (39), we apply the Markov property at time [ = [%]
P(Tj > Fo(j i), [ < R (k),k < j)
<

<P(Ty < Ro(k), k<) sup P, (Tj—; > F,(j), Tu < ‘Ru(k+1),k<j—1).
2<Rn (1)
Set i’; = Tj_l — Tj_g_k, which is a random walk with the same law as T). Then we obtain
P. (Tj—1 > Fo(j), T < Ro(k+ 1),k < j —1)
g]P’Z(F()<TJl<R()Tk>F() Rn(j—k),kgj—l). (41)

We bound the probability in (41). We use a lower bound for the expression (F,(j) —Rn(j —k),k < j—1).
Observe that the function x +— log@

(kn — §)bn + 14 kby, < 2((kp — j)bn + 1)kby,

is decreasing for x > e, and

then we have

Fo(j) — Ru(j — k) = In(bs)

9*

-3
T (J 1og(knby) — log(knbn) + log((kn — j + k)by + 1)) +

— 2¢n,

Z 232 (log((j \ e)b ) log(knbn) + log((kn - J)bn + 1) + log(kbn) + 1Og(2)) - 2671
> 292 (log((j V €) A ((kn — 5) + 1)) + log(kby,) + 10g(2)) — 24, Vk, j = 1....k,.

Applying again the Markov property at time [ we get
P. (Fo(j) < Tjmi < Ru(4), Tk > Fu(j) — Rn(j — k), k < j —1)

<P <Tk > % (IOg(kbn) + 10g(] A ((kn - .7) + 1)) + log(2)) —2¢cp, k < l) X

Px (Fn(]) -z < Tj—Ql S Rn(]) - Z) .
Assume that (Hy) or (Hz) hold, then by Lemmas 4, 5 or 10 for n large enough we obtain

<P (Bnac) < S Rlb) k< z) x
P (Bn(k) > 2_9* (log(5 A ((kn — J) + 1)) + log(kby,) + log(2)) — 2%,]4: < l> X
gcl“‘)g““\%"’j)“”
. | L (1+ (log(G A ((kn —9) + 1))
o (= (Fuld) = 2) < Bl = 2) £ = (Rali) = 2)) < € N ~

<Clﬂg(1/\((kn J)+1)+1
Vibn
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Using Lemma 7 or 11, for n large enough we have

sup Pm(j%n_jA*an‘*(le V,T*’H7j1 S<Rn(kg+L”7k S kngij)
wE[Fn(j)’Rn(j)]
(1+ 2d,) (1 +1log(j A ((kn — 5) +1)))?
Vba (kn — ) ’

therefore, we conclude that

<C

1+2d,) 2 14 (log(§ A ((kp — 3) +1))N*
E(ngn(A) . gn,Fn(A)) < Cgk% Z ( ( g(] (( J§)§ ))))
\/E i<kn ((kn_.])+1)2.72
1+2d, 1+ log(4))*
< 901t 20) (L+logG)t |
Vo ) J*
D Bl =

J
This lemma implies that the two extremal processes &, , and &, g, have the same weak limit.
Consequently, the the same as the o ne of £» . For u € T, we introduce

Hp(u) = {Su, < Fu(k),k < kn}

the set of individuals satisfying the Fj,-barriers. We will prove that, with high probability, the set
of pairs of extremal particles that branch off at time & > 1 and stay all the time below the barrier
k — F, (k) is vanishing in the large n-limit. This show that all particles contributing in the extremal
process split from the root.

Lemma 16. With the same notation used before, we have,

ILm E (#{(u,v), |[u Av| > 1, H,(u), Hy(v), Sy — mp € A, S, —my, € A}) = 0.

Proof. By considering the positions of any pairs of individuals (u,v) at the generation k,, and at their
common ancestors u A v we have

E (#{(u,v),|lurv| > 1,8, —m, € A, S, —m, € A, H,(u), H,(v)})

kn—1
=E Z Z L{Su, <Fu(),i<j} Z Z1{SufmneA’SrmneA,sukSFn(k),SvkSFn(k),szzcgkn}
J=1 |wl=j (uj+1,v541) (u,v)

where the double sum > . . | is over pairs (u;41,v,41) of distinct children of w = u A v and
(uj+1,0541) I+ i+
2 (u,v) I8 over pairs (u,v) such that [u| = [v] =k, and u is a descendant of u;1, and v is a descendant
of vj4+1 . Applying the Markov property at time j + 1 we get

E (#{(u,v),[uAv| > 1,80 —m, € A, S —m, € A, H,(u), H,(v)})

kn—1
<E( D D Vs, <rmisy Y. L4800 SF(41).S0, 4, <Fn (4D} Pin (Suyar )0jn (Suy ) |
J=1 |w|=j (wjt1,v541)
(42)
where
$jn(2) =E Y LSy ma A Sy 2 (k) k1)
|lu|=ky,—j5—1

Now using Proposition 3 we obtain,

R (e T ]
bjn(2) =E (6 g 1{z+Tkn,j,l—mn+(kn—j—1)bnveA,Tk+ngn(j+k+1)—kbnv,kgkn—j—1}) :
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Summing with respect to the value of Tkn,j,l —my + (kn — 7 — 1)byv we have

Cn2 pecs (s ) e
bin(2) < = —e” (=G 1)bae) § =67
" h>0
X P. iy (Thopjo1 —an —a € (B h+ 1], Ty < Fo(j + k+1) = kbpv, k <k —j—1).  (43)

Note that If (Hz) holds by Theorem 9, we bound the quantity (43) by
P. (Thp—jo1 —mp+ (kn —j = Dbyv —a € [h,h + 1, T, < F(j + k+ 1) — kbyv, k < ky, — j — 1)
< PG, (Dﬁ[‘”) ;
where
Dk = {\/Eékn_j_l a1 —a € [h—dp h+ 1+ dn), DSk < Fulk) + dpy k< ki — 5 — 1}.
Now assume that either (H;) or (Hz) hold. Thanks to Lemma 7 or 11 we have,

z—(j bpv
(1 - =2

¢],n(z) < C(l +2dn)k§60*(2*(j+1)bn’v) .
(kn —7)2

By replacing this in the equation (42), we get

E (#((u,v), lu Av| > 1, SZ" —my €A, Sfj" —m,, € A,Hn(u),Hn(v)))
En—1

3 1
< C(14 2d,)kRE( Z W Z 1¢s,. <P (),i<5} ¥
=1 B = J)% 412,

0°Sy. . —(G+D)bpv+Sy. | —(G4+1)bn
Z 1{Suj+1SFn(j+1)vSvj+1§Fn(j+1)}e LA LT A Ufmj(Squ)fn,j(SyHl))

(uj+1,95+1)

where f, ;j(u) = (1+ %)2. In the other hand we can bound the double sum

n

> 1{Suj+1SFn(jH)’Svm<Fn(j+1)}€0*[suj“70“)[’"””%“7(j+1)b"”]fn7j(5uj+1)fn,j(Sle)

(Ujt1,v541)
by
Sw_jbnv 4 _20*(Sw—jb
1 + ( w ] n'U)
S

x™ v, x™ —p, I .
)E| D (L S L S e T e

lul=[v|=1

uFv

Using independence between X&") and Xq(,n) for u # v and the fact that

B (3 (00— b 0 | o,

lul=1

we have

E Z (1+ Mf(l x{" - b”“)269*(X§L")—bnv+x,5">—bnv)

jul=lo]=1 Von Von
uFv
<E[ > 0+ (bt x4 (KBt (x0
S — 6 u n — 6 v n y
lul=fo]=1 Von Von
uFv
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then conditioning on Z;, and using the following properties
E ((X&") - bnv)zee“xi”’—bnv)) = byA" (6%) = bpo? and E (ee*(xﬁ"”—bm) =m=,

we obtain

XM~ b . x5 — b )
E 1+ u nY\2\ 0% (X, —bnpv) 14+ v nYN2y 0% (X —byv) VA
ul;}:l_l( ( N )%)e (L+( N )%)e |Zy,,
UFv

< (1+0%)?%2, (2, — Lym™ 2,

as a consequence, there exists a constant C' > 0 such that

Z /‘Ku - bnv *(Xy—bnv v bnv (X —bpv

[ul=[v|=1

uFv

which leads to the following inequality

E (#((u,v), |luAv| > 1,52" —m, €A, SS" —m,, € A,Hn(u),Hn(v)))

kn—1

3 1 Sw — jbpv (S b v
SO+ 2)RE | 30 oy 30 (1 Pt e i)
j=1 (kn _.7)2 |w|=3 b” ’

On the other hand by Proposition 3 we obtain

]E(” ((u7v)7 |LL /\ ’U| Z 1aSu ”Ln 6 ‘la SU ”n G 41,]171(11),11”(’1))))
< C(l 2d )kn%]E kng : ! (1 _j )4 0" i].
+ n - + (& J T, <Fp(4),i<j
= (kn ])% /bn {T:<Fn(i),i<j}

Summing with respect to the values of T] — F,(j), by Lemma 7 or 11 and for n large enough we get

E (#((u,v),|lurv]| > 1,8, —m, € A, S, —m, € A, H,(u), H,(v)))

o kn—1 oo

3 1 0*T; Ty 4
< C(1+2dy,)k ]; W;E (e (1+ \/E) L8, < Fo (i), Ty~ Fu ()€l —r—1,—1],i<5}

oo

* 3 1 *
< O(L+2d,)e ki Y ——— S (1 4r)te 0
j=1 (kn - ])2 r—0
XP(TiSFH(i), 7j*Fn(j)€[*7"*17 T}71<])
55 ) 3
C(1+2d,) g0, K,
= — ’
Von =1 (kn—j)%]% e
5] k3 L
where we used that ;% W <2857 5 <o O
n—17 272 12

Now we are ready to prove our main result.

Proof of Theorem 1. Let ¢ € Cé’+, with support A = [a, 00) where a € R. We have to show that

- S(")fmn 1 *
nh—>H;oE (e Z“e”kn #(5: )) =FE (exp (_ZOOW /6_9 Y(1 - e_¢(y))dy>> . (44)

First introduce
G = {(u,v), [urv| >1,8, —m, >a,S, —my, >al.
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By Lemma 14 and Proposition 15, it is enough to prove (44) for the extremal process

gn,Fn: Z 5Su7mn1Hn'

u€EHp,,

where H,, = {Sy, < F,(k),Vk <k, }. Using Lemma 16, we have P(GS) —, o 0, therefore

E €Xp — Z ¢(Su _mn)lHn

uEHp,,

=E | 1¢, exp— Z ¢(Suy, —mn)lu, +0(1)
u€Hr,,

=E | 1¢, H exp — Z (S, —mn)lm, +o(1).

Jw|=1 u>w
|u|=kn

Observe that exp (— > i, ;) = 1+ > i (e7% — 1) if there exists at most ¢ such that x; # 0. Hence
using that under G,,, for all w at the first generation, at most one descendant reaches level m,,, we get,

E | exp— Z d(Sy —mp)lp,

UE’Hkn

=E|1q, [] |1+ D (exp(=¢(Su —mn+ Suw) = D) 1g, | | +0(1)

Jw|=1 u>w
|ul=kn

=E| ] |1+ D (exp(=¢(Su —mn + Sw)) = 1) 1m, | | +o(D),

|w|=1 u>w
|ul=kn

using again that G¢, is an event of asymptotically small probability, and that this product of random
variable is bounded by 1. We now apply the Markov property at time one to obtain

E [ exp— Z d(Sy —mp)lm, =E H 1+ wN(SW)l{Sw—bnvgﬁn(l)} +o(1), (45)
uEHkn |w|:1
where
Uiz E Z (e—(ﬁ(Su—mn-i-w) _ 1) 1{Suk <Fp(k+1)—z,k<kn} | 5 (46)
|ul=k,—1

using Proposition 3 we have,

Yn(z) =E (efe*Tk"fl67¢(Tk"717%”+$) - 1)1{Tkan(k+1)7(m7bnu),k<kn}>

where oy, = b,v — 55+ In(n) + lné#‘).

Using Lemmas 8 or Corollary 13, depending on whatever we work under (H;) or (Hs), we obtain
the following approximation,

—0*T. 1 —d(Th _1—
E (om0 Moo=t )10 ) ok

1 —(l' — bnv) 0* (x—b —0* —
~nyoo L el "”)/eeyed’(y)—ld.
- 2mo2 ( Vb, ) ( )y
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Plugging this in Equation (45) we get

E (e—sn,w))

S b Sw—bnv —0*
~nsoo B[] B+ L(- > 2w InT 0" s, b0er ) TWQ/ Y(e=?W) — 1)dy)
|lw|=1
Recall that v = K(e* ), then by Girsanov transform we have
(n)
—(Sw = bpv) | - (Sw—bn —b S
E(L(————— 1 = "E | L 1
< e {sumtsFu} J 2 s {r r“}
where S§n) is a centred random walk with variance b,. Fix A > 0
_S(”)
E|L(—Z=)1(
VB eno)
7S§n) B YL)
=E | L( )1 N +E|L(—)1( ..

As the function x — L(J:)l{ cla pn(l)]} is bounded, by central limit theorem we have
T€[—A, T —

s L[ L
lim E | L( 1 N = —/ L(—y)e™
n—00 by, {A< —Sin) < Fn (1) } 2w J_a

gdy.

bn

Additionally, we have by Equation (16) and the Markov inequality

_Sgn) _S{n)
E|L 1, . <ClEla+ 21, .
v {}A} ) {} A}

(S
Vb A VoA /b, { A}

S

<

3

Therefore, we have

— %n) 1 0 y? C
lim s E|l L(——)1 - — L(—ye zdy|l < —.
lﬂolip ( ﬁbn ) {f/(bf)<i"ﬁlfl)} o [A ( y)e Yl = A

Thus, letting A — oo in (47), by (14) we obtain that

_SYL) 1 0 2
lim E | L 1 = —— L(-y)e” = d
nso0 (\/E) {55")<Fn<1>} 2m /ﬂo (e =dy
Vom S om
S 0
=E|L 1¢ . =L0)=1
Vo



As a consequence we obtain

Sy — bpv * 1
E E (14 L(—=2 =) (Subav)q e 7/e
Unl ( ( V bn ) {Su,—bnvg F’“(l : } V 2702

1 7bn oy o) #{u,lu|=1}
~posoo E[ [ 1 — Wm e (1—e )dy

Zy
1 . "
=E|(1- m~n /e_e V(1 — e ?W)g ) .
(( . ( Jdy

Finally, applying dominated convergence theorem and by assumption (3) we deduce that (44) holds for
all function ¢ € Cé’+, which concludes the proof using Remark 2. O

—e*y(e—¢(y) _ 1)dy)
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