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Keypoints

e The key role of porosity heterogeneity in compaction banding of a weak
limestone is modelled using gradient-dependent plasticity.

e The constitutive model is calibrated from triaxial experiments data
combined with imaging techniques to compute porosity and strain
maps.

e Finite Element simulations can correctly reproduce the dominant fea-
tures of the compaction bands as observed in the experiments.

Abstract

Based on the experimental study on Saint-Maximin limestone presented in
a companion paper (Abdallah et al., 2020), a gradient-dependent plasticity
model is developed to account for the key role of porosity heterogeneity in the
formation and propagation of compaction bands. The constitutive law, de-
veloped in the frame of a micromorphic continuum theory, contains two hard-
ening variables: the porosity and its second gradient. A calibration method
for the additional micromechanical parameters is proposed. Data from the
companion paper are used in a four-step calibration procedure. First, the
standard Cauchy component is calibrated by means of the macroscopic stress-
strain curves. An Asymmetric Cam-Clay (ACC) model is adopted for the
yield surface. The dominant wavelength of the porosity heterogeneity of the
material is evaluated by applying the Fast Fourier Transformation (FFT)
on several porosity profiles obtained on samples before loading. This wave-
length is interpreted as the material length that appears in the model. In
addition to the deformation maps computed from Digital Volume Correlation
(DVC), a method that evaluates the second gradient of porosity is developed
to calibrate the hardening laws. A Linear Stability Analysis (LSA) is per-
formed to calibrate the higher order elastic modulus. The constitutive model
is implemented in a finite element code and triaxial loading experiments are
simulated. The numerical results are consistent with the experimental data
in terms of the onset of compaction bands, their thickness and plastic strain.
The size effect of the sample is explored and a regular band spacing, compa-
rable to the band thickness, is obtained.



1 Introduction

Studying the formation of compaction bands in sedimentary rocks is of strong
interest in rock engineering (Sternlof et al., 2006). These deformation bands
may occur due to inelastic compaction induced by several geosystem opera-
tions (e.g. geothermal energy (Barbier, 2002); CO, storage (Rutqvist, 2012);
oil and gas production (Olsson et al., 2002); see also Holcomb et al. (2007)).
In addition, these bands can be interpreted as indicators of the stress state
history in a geological formation. The observations performed on natural
fields and on laboratory tested samples show that these bands are likely to
form in high-porosity rocks (Rath et al., 2011; Baud et al., 2017). Further-
more, although these bands are observed to form in sandstones as well as
in carbonate rocks, it appears that the micro-mechanisms involved in strain
localization are not similar for the two rock types (Zhu et al., 2010; Cilona
et al., 2012).

Modelling compaction bands has been addressed in a number of papers
over the last decades (e.g. Rudnicki and Rice (1975); Issen and Rudnicki
(2000); Rudnicki (2007); Das et al. (2011); Stefanou and Sulem (2014)). It
is well known that standard constitutive models developed in the frame of
Classical Cauchy continuum theory are unable to assess the thickness of
the deformation bands. This can be tracked to the absence of an internal
length linked to the microstructure of the material in the formulation of the
constitutive relationships. The experimental observations performed in-situ
and in laboratory show that the deformation band thickness is scaled by the
grain size (Du Bernard et al., 2002; Sulem and Ouffroukh, 2006; Cilona et al.,
2014). To overcome this limitation, macroscopic constitutive laws can be
enriched by introducing material lengths that account for the microstructure
(Vardoulakis and Sulem, 1995; Bésuelle and Rudnicki, 2004). However, the
difficulty lies in the calibration of the additional parameters introduced in
such formulations.

In classical constitutive models, the material parameters are calibrated
using experimental laboratory tests such as triaxial, oedometric, plane strain
loading experiments, etc., assuming that the samples are loaded homoge-
neously during such experiments. However, the additional parameters in-
troduced in micromorphic media (i.e. continua with microstructure) require
the development of new calibration procedures, which are able to capture
the transition from homogeneous to inhomegeous deformation and to assess
the role of microstructure heterogeneities. For this purpose, global measure-



ments of stresses, strains and other state variables are not sufficient, and local
measurements at the scale of the microstructure are required. In the last two
decades, several imaging and post-processing techniques, which enable data
collection at the micro-scale level, have been developed (Hall et al., 2012).
Nonetheless, few works have been dedicated to the calibration of higher order
continua based on local measurements (e.g. for Cosserat continuum: Wang
et al. (2016); Esin et al. (2017)). A back analysis of the thickness of defor-
mation bands as observed in element tests can give access to the material
length of the underlying constitutive model (e.g. Raude et al. (2015)). How-
ever, this procedure poorly constrains the calibrated higher order parameters
since other model parameters influence the deformation band thickness and
the slope of the softening branch of the stress-strain curve. Therefore, full
field measurements based on advanced imaging techniques and digital volume
correlation appear to be appropriate for robust calibration of higher order
continuum models.

The objective of this study is to propose a constitutive model that can
describe the formation of compaction bands in high-porosity carbonate rocks
and a reliable method that permits to calibrate the additional parameters.
The experimental data presented in the companion paper (Abdallah et al.,
2020) are used to calibrate the proposed model. In Section 2, a gradient-
dependent plasticity model is developed based on the non-local aspect of the
deformation mode observed in the experiments. Then, the model is inter-
preted in the frame of the micromorphic continuum theory. A full calibration
procedure based on the experimental results (macroscopic mechanical data,
porosity and deformation maps) is presented thereafter in Section 3. Finally,
Section 4 is devoted to the implementation of the proposed constitutive law
in the Finite Element code Numerical geolab (Stefanou, 2018) and to the
numerical simulation of compaction banding. The formation and evolution
of compaction bands are simulated in due course of loading. The size effect
is also studied by considering samples with different sizes. A comparison
between the numerical results and the experimental data is done in order to
test the proposed model.



2 Gradient-dependent Plasticity

2.1 Experimental Observations

The effect of the porosity heterogeneity on compaction banding in high-
porosity limestones has been experimentally explored in Abdallah et al.
(2020). It is shown that the Saint-Maximin limestone exhibits a porosity
fluctuation from about 30% to more than 40% at the scale of one centime-
ter. This heterogeneity of the porosity is related to a heterogeneity of in-
terparticle cementation. Despite this fluctuation, a good repeatability of the
experiments has been obtained allowing to assume that samples of 4 cm in
diameter and 8 cm in height can be considered as representative elemen-
tary volumes. The experimental observations have shown that the porosity
heterogeneity is responsible for the compaction bands nucleation and propa-
gation, since these bands are identified in high-porosity zones, whereas denser
zones remain undeformed. In addition, several large pores (i.e. large in com-
parison to the pore and grain sizes) do not collapse even under relatively
high stresses (Figure 1), as opposed to other studies showing that larger
pores collapse first (e.g. Zhu et al. (2010)). These pores lie in low-porosity
zones and are protected by a surrounding stiffer matrix of well-cemented and
large grains. It is worth to mention that no compaction fronts propagating
from the boundaries toward the center of the sample have been observed in
the experiments, since special attention was devoted to minimize the fric-
tion at the interface between the sample and the loading platens (details
can be found in the companion paper (Abdallah et al., 2020)). Thus, the
modelling approach in this study will focus on the effect of the local porosity
heterogeneity on compaction banding (unlike the modelling approach pro-
posed by Shahin and Buscarnera (2020), who studied the effect of frictional
boundaries). An “equivalent homogeneous” continuum containing a material
length that accounts for the length scale of the porosity heterogeneity is thus
introduced.

2.2 Non-local Approach

The experimental observations made in the companion paper (Abdallah
et al., 2020), suggest that the deformation state at a point does not only
depend on the local properties, but also on the properties of the material at
the vicinity. This “non-local” character of the response can be described by



Figure 1: Undeformed large pores in a low-porosity zone: (a) at the initial
state; (b) after loading (Abdallah et al., 2020).

resorting to non-local plasticity models, in which the plastic hardening vari-
ables are averaged over a subvolume centered at the material point (Bésuelle
and Rudnicki, 2004). A simple way to represent the averaged quantities
is obtained by developing the Taylor expansion of the plastic variable up
to the second order and to consider a subvolume of cubic shape. In this
case, the plastic hardening parameter x and its second gradient VZk are
considered as two independent variables and a gradient-dependent plasticity
model is therefore constructed (De Borst and Miihlhaus, 1992; Pamin, 1996).
The yield surface F is expressed in terms of F(o;;, k, V2k), where o;; is the
stress tensor. The side length of the subvolume - referred henceforth by L -
represents a material length in the constitutive law, which permits to obtain
deformation bands of finite thickness as opposed to classical plasticity models
for which strain localizes on a mathematical plane (Vardoulakis and Sulem,
1995).

Compaction bands are associated with porosity reduction (Rath et al.,
2011) induced either by grain crushing as in the case of the Saint-Maximin
limestone (Abdallah et al., 2020) or by other micro-mechanisms such as
grain re-arrangement (Cashman and Cashman, 2000), calcite grain twinning
(Cilona et al., 2014), pore collapse (Zhu et al., 2010) and pressure solution
(Rustichelli et al., 2012). Hence, the plastic porosity change ¢! is taken
here as the plastic hardening parameter k. In addition, assuming that the
deformation of the solid matrix is negligible, the plastic porosity change can
be approximated by the plastic volumetric strain ”! (Coussy, 2011). The



validity of this assumption in view of the experimental data will be discussed
later in Section 3.3.2. Consequently, k = €' and F = F(0;j, ¢, V2e?!). The
incremental constitutive equation is:

. e bgjbil . bzgjag—iv 9.
Oij = ( ijkl — (1) 1, )sz — (UTV €y (1)

where ¢;; is the rate of the stress tensor, €5 is the rate of the strain tensor,

V?¢, is the rate of the second gradient of the volumetric strain, Cy, is the
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elasticity tensor, Hy p is the mean stress, bil =

bfj = Ciimn &?Zn’ g is the plastic potential, (¢, 7, k,l,m,n) are tensor indices
which can take integer values from 1 to 3 following the Einstein notation and
(1) is the Macaulay brackets equal to 1 in the plastic regime (if F' = 0 and
the plastic multiplier A > 0) and equal to 0 in the elastic domain (if F' < 0
orif F=0and \ < 0). The mathematical development to obtain Equation

1 is presented in A.

2.3 Gradient-dependent Plasticity Interpreted as a Mi-
cromorphic Continuum

The gradient-dependent plasticity model can be interpreted as a micromor-
phic continuum. In such continua, a subvolume is attached to each material
point leading to introduce additional degrees of freedom (Mindlin, 1964). A
rigorous mathematical framework is developed in this section for a general
micromorphic continuum theory following the work of Germain (1973) which
permits to define the equilibrium equations, boundary conditions and mate-
rial parameters. In addition, the required restrictions to reach the gradient-
dependent plasticity model developed in Section 2.2 are introduced.

2.3.1 Equilibrium Equation

In a micromorphic continuum, the kinematics of deformation of the sub-
volume attached to each material point is described from the displacement
vector w; and its first and higher-order gradients (X;j, Xijk, Xijki, ---), Where
all these quantities are considered as independent fields. Since the second
gradient of strain appears in the constitutive law (Equation 1), the required
fields are wu;, x;; and x;j. To match with the second gradient theory, the
microdeformation and its gradient are identified with the deformation of the
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(macro-) continuum and its gradient: x;; = u; ; and X;jx = w; j5. The internal
power density dw is finally written in the following form, where the notation
j represents the gradient operator (details of the mathematical developments
can be found in B):

ow = 045U j + VigrUi gk + Cijrili ki (2)

The introduced dual quantities are: o;; which is the standard Cauchy stress,
Viji and G which are higher order stresses. For simplicity, the body forces
are neglected. Hence, the principle of virtual power gives:

/ |:0'z'jui,j + VijkUiji + gijklui,jkl} dv = / [Tzuz + N;Du; + PiDQUi] ds (3)
7 09

where T;, N; and P; are the contact forces dual to u;, its first and second
normal derivatives Du; and D?u; with respect to the boundary 92 of the
domain Z (see Germain (1973)). From the volume integral in Equation 3,
one derives the following equilibrium equation for the Cauchy stress and the
higher order stresses:

(035 — Vijek + Cijrir),j = 0 (4)

Note that, by omitting the highest order term (;;;, the equilibrium equation
degenerates to the one of the second gradient theory as defined by Germain
(1973).

The enhanced kinematics considered in the first grade micromorphic con-
tinuum of degree two introduces 36 additional degrees of freedom: 9 compo-
nents for x;; and 27 for y;;,. However, the gradient-dependent constitutive
law formulated in Section 2.2 introduces only one additional degree of free-
dom, which is the second gradient of the volumetric strain V?¢,. Thus, some
assumptions must be set in order to restrict the general micromorphic model
to the considered gradient model. Raude et al. (2015) have presented the
formulation of a “second gradient dilation model”, where the only additional
degree of freedom is the first gradient of the volumetric strain Ve, (see also
Forest and Sievert (2006)). Here, a similar approach is presented, but for a
“third gradient dilation model”. To do so, only the volumetric quantities of
the higher-order stresses and of the kinematic variables are considered:

]_. Vijk = 51’ij and Xij = %&]X



2. Gijr = 03;0.C and Xiji = 36ij Xk

where ¢;; is the Kronecker symbol. The internal work density expression is
simplified to:

ow = o4U; 5 + VX & + CXkk (5)
where xj; is the second gradient of the volumetric strain: xpx = wiike =
V2e,. Moreover, the equilibrium equation becomes:

Tijj =0 (6)

where 7;; = 0y — 0;jVkk + 0ij0C e is the so-called “true” stress tensor (Var-
doulakis and Sulem, 1995).

2.3.2 Boundary Conditions

The surface integral in Equation 3 permits to write the boundary conditions:
Ti = 7ijn; + Dynp(vi, — Cr)rwn; — Di((”k - C,k)”k) + DynypDsnsCn;
—Dyny Di(Grins = Dy DynyC = DiCm) ) + Dy (¢Ditmy)) (1)

N; = (v, — Cr)nini + 2DpnyCn; — Dy(Cng)n; — D¢ (8)
Py = (n; 9)

where n; is the unit outward normal vector to the boundary 0% and the tan-
gential derivation D; is introduced following the definition of Mindlin (1964)
(see C). Considering that we are interested in modelling strain-localization
inside the body and not boundary-layer effects at an interface boundary,
it is assumed that the higher order contact forces N; and P; vanish. The
aforementioned assumptions result in ¢ = 0 and v, = (j on the boundary.
In this case, the surface traction is given by the standard Cauchy condition
ﬂ = ﬁ-jnj = 0;in;.

2.3.3 Constitutive Relationships

To rewrite the constitutive law given in Equation 1, the yield surface is
assumed to depend on the Cauchy stress, the scalar stress ¢ and the hardening
parameter €

F(Uijayk7C7 Egl) =0 (1())

9
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Figure 2: Higher order stress (1111 and second gradient of strain xjq11: the
“accordion effect”.

In addition, isotropic linear elasticity is assumed for the higher-order stresses:
U = AL?X (11)

and '
¢ = BL'Xyx (12)

where A and B are additional higher-order elastic moduli and L is a material
length. Since the first gradient of the volumetric strain is unnecessary in the
developed gradient-dependent plasticity model (Section 2.2), the modulus A
is put equal to zero. The consistency equation F =0 leads to the following
constitutive law:

. Wb\ . by 5 BL
o= (O = 0 - P E g )

which is equivalent to the gradient-dependent plasticity constitutive law given
in Equation 1, since %—IZBL‘1 = 835@ and Xk g = Uiikk = V?¢,. The depen-
dence of the yield surface on the higher-order stress state ( is defined once its
evolution with the second gradient of the volumetric strain is characterized.
Following Mindlin (1964), one can illustrate the higher order stress ;117 and
the second gradient of strain ;11,1 as shown in Figure 2 with the “accordion”

effect. The deformation of the subvolume is concentrated at the center.

3 Calibration Procedure

The constitutive law of the gradient-dependent plasticity model given in
Equations 12 and 13 can be seen as an extension of a constitutive law in
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the standard Cauchy formulation. The calibration of this enhanced model is
done in several steps illustrated in Figure 3, where the data of the samples
tested under different confining pressures from Abdallah et al. (2020) are
used. A full characterization of this model requires a calibration of:

1. The Cauchy continuum component, where the standard parameters
are calibrated using the macroscopic mechanical data averaged over
the rock sample.

2. The material length L, which is evaluated by means of the fast Fourier
transformation, applied on the porosity map computed in the initial
state.

3. The dependence of the yield surface on the second gradient of porosity,

which is considered as an internal variable, or equivalently on the higher
order stress: %—f. In this step, V2¢ is evaluated from the porosity
maps computed at several states of deformation. Furthermore, the
mean plastic volumetric strain is calculated from the Digital Volume

Correlation (DVC) maps.

4. The higher order elastic modulus B, which is assessed by means of a
linear stability analysis performed on stress states on the initial yield
surface. The range of confining pressures, for which compaction bands
occur at the plasticity onset in axisymmetric triaxial loading, permits
to evaluate the modulus B.

Each of the following subsections is devoted to one of the steps stated above.

3.1 Calibration of the Cauchy Component

Based on the stress and strain measurements at the scale of the samples, a
standard calibration of the Cauchy parameters is performed:

3.1.1 Elastic Parameters

An isotropic behavior is assumed for the elastic regime, which can be char-
acterized by two parameters: the Young modulus E and the bulk modulus
K. In absence of data on unloading/reloading cycles, the elastic moduli are
simply evaluated on the initial linear part of the stress strain curves, as the

11
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Figure 3: Calibration procedure of the gradient-dependent plasticity model.

mean stress is expressed in terms of the elastic volumetric strain as p = K¢
and the deviatoric stress in axisymmetric triaxial compression is expressed
in terms of the elastic axial strain as ¢ = —%égl. The calibrated values are:

E = 6230 MPa and K = 2810 MPa (Figure 4).

3.1.2 Initial Yield Surface

The Asymmetric CamClay (ACC) model (Samudio, 2017) is considered for
the yield surface shape. A presentation of this model is given in the D. The
yield surface is expressed as:

F =g’ + M*(p—p.)(p+p1) (14)

where k is the hardening-softening threshold, p. and p; are the compression
and traction isotropic yield stresses and x = m—tg’c is the normalized mean
stress with respect to the isotropic axis domain size. In order to characterize
the yield surface, four parameters must be calibrated: k, M, p, and p..
Results are given in Table 1 and the corresponding yield surface is plotted
together with the yield stresses in Figure 5a.
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Table 1: Calibrated parameters of the initial yield surface.
k] M[] pc[MPa] p, [MPa]
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Figure 5: (a) Initial ACC yield surface fitted to the yield stress data: red
triangles represent data from Abdallah et al. (2020) & blue squares for Baud
et al. (2009); Baud et al. (2017) data; (b) Yield surface evolution calibrated
on the stress states for several confining pressures and at different levels of

hardening.
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3.1.3 Yield Surface Evolution

Hardening is observed in hydrostatic loading experiments and in triaxial ex-
periments at relatively high-confining pressures. On the other hand, a slight
softening is observed at low confining pressures, whereas a perfectly plas-
tic behavior occurs in the transitional regime (Figure 4). To describe these
stress-dependent hardening/softening behaviors and to model the yield sur-
face evolution, the two variables p. and M are simply assumed to linearly
evolve with the plastic internal variable e/ (Equation 15), whereas the vari-
ables p; and k are assumed to remain constant. An increase of the parameter
pe (in absolute value) is responsible for a global hardening, whereas a decrease
of the parameter M induces a softening.

M = hyéb! (15)

For each experiment, the stress state is evaluated at several levels in the plas-
tic regime. Then, the hardening variables are calibrated as shown in Figure
5b. The obtained values are: h; = 1.53 x 10> MPa and hy = 4.21. Although
the softening behavior is slightly underestimated by the calibrated model,
the hardening laws give a very good representation for hydrostatic loading
and for intermediate/high confinement triaxial tests. To improve the cali-
bration, an evolution of one additional variable (p; or k) can be considered.
However, since modelling compaction bands is the objective of this study,
the proposed hardening laws are sufficient.

3.1.4 Plastic Potential

A simple Drucker-Prager plastic potential is considered:

g=>0Pp+q (16)

From the flow rule (¢?! = )\g—g; APl = )\g—g), the dilatancy parameter ( links

the rate of the plastic volumetric strain to the rate of the plastic shear strain
. -pl . . . .

magnitude: 5 = % This parameter is calibrated on the experimental data

as shown in Figure 6. A constant dilatancy parameter, independent of the

stress state and equal to -0.75, fits well the data.
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sured on 3 samples tested at different confining pressures. The dashed line
represents the model prediction for § = —0.75.

3.2 Material Length Calibration

As discussed in Section 2.1, porosity heterogeneity is found to control com-
paction banding in high-porosity limestones. The computed porosity maps
at the initial state of several Saint-Maximin limestone samples exhibit an
alternation between low- and high-porosity zones, whose mean values are
35% and 42% respectively (Abdallah et al., 2020). Therefore, the porosity
heterogeneity is schematically represented as a periodic pattern of low- and
high-porosity cubic zones as shown in Figure 7. An elementary cell with
side length L’ centered over a high-porosity zone is defined as the primitive
cell of the periodic lattice. In the frame of the gradient-dependent plasticity,
this primitive cell is considered as the representative elementary volume over
which the porosity and its second gradient are evaluated and over which com-
paction banding is studied. In other words, the material length L introduced
in the constitutive law (see Section 2.2) is identified here with the dominant
wavelength of the porosity heterogeneity L = L'. It is worth to mention
that a natural material like Saint-Maximin limestone exhibits porosity het-
erogeneity at various scales. We are interested here in capturing the most
developed compaction bands inside the sample and in seeking the relevant
material length that controls the thickness of the observed bands. Therefore,
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Figure 7: A schematic representation of the porosity heterogeneity. Darker
and brighter areas represent high- and low-porosity zones respectively

(p=42% and ¢$=35%).

for the sake of simplicity, we develop a constitutive model with a unique
material length L (i.e. L'), which is calibrated on specific selected zones as
described in the following.

In order to evaluate L’ (and consequently L), the FFT is applied on poros-
ity profiles plotted over lines defined in different orientations crossing the
main zones of the sample which have exhibited the formation of compaction
bands (see Figure 8 and Figure S5 which is presented in the Supporting Infor-
mation file for the sake of conciseness). The dominant wavelength obtained
from the FFT analysis is the calibrated value of L'.

In total, 17 lines are considered in three different planes: Lines L1, L2,
L3, L4, D, E and F in a XZ cross-section; Lines L5, 1.6, L7, A, B and C in a
YZ cross-section; Lines L8, L9, 10 and L11 defined in a XY cross-section in
the middle part of the sample. These lines are intentionally chosen centered
over a high porosity zone where compaction bands will form after loading. As
an example, the plots over the Line L1 are presented in Figure 9. The plots
concerning the lines L2 to L11 as well as the lines A to F can be found in the
supporting information file (Figures S1 to S4 and S6 to S7). For all the lines,
except for Lines 5, 11 and F, the dominant frequency is 0.0417 mm~!, which
corresponds to a wavelength of 24 mm. As for the lines L5, L11 and Line F,
the latter value represents the second dominant wavelength. This is due to
the fact that the porosity distribution is not perfectly isotropic. Nevertheless,
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Figure 8: Definition of the lines over which porosity profiles are plotted.
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Figure 9: Porosity profile plotted over the Line 1 (a) and the corresponding
FFT (b).

to keep the model simple, the material is assumed to be isotropic with a single
wavelength for the porosity distribution as presented in Figure 7. Therefore,
the selected material length is taken equal to 24 mm.

3.3 Hardening Laws

A comparison between the classical Cauchy formulation and the enhanced
gradient-dependent plasticity model, interpreted as a micromorphic contin-
uum, is presented in Table 2. The mean value of the plastic volumetric
strain, defined at the scale of the samples, is the unique internal variable in
the Cauchy continuum. However, the representative elementary volume in
the gradient-dependent plasticity model has a cubic shape with side length
L and is described by two internal variables: the porosity and its second gra-
dient V2¢, (whose equivalency with xj; has been shown in Section 2.3.1).
Therefore, the yield surface depends on these two variables and a method
to evaluate the second gradient of porosity from experimental data is thus
required.

3.3.1 Evaluation the Second gradient of Porosity

The computation of porosity maps from X-Ray computed tomography images
has been explained in Abdallah et al. (2020). On a porosity map, a subvolume
with cubic shape of side length L centered on a given point is defined and the
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Table 2: Comparison between the Cauchy and micromorphic continua.

Cauchy continuum Micromorphic continuum
g OF 4
Constitutive law 0ij = C'ffklékl 0ij = C’iefk!ékl - <1>%f1—13LXM
¢ = BL X
Internal variables (ePh) b0; V2o = Xni
(0'”, <6pl>) (Uljv gbo, V2¢0) or F(UZJ7C ¢0)
Yield surface  ¢¢** + MQ(p p)(p+p)  q*e* + M (p—pe)(p+ pr)
Hardening laws = hy(eh ) Do = oq(gbo + ﬂVngo)
M ha (el M = as(¢o + L V3igy)
Plastic potential g=0p+q g=0p+q

second gradient of the porosity at the center of the subvolume is computed.
It consists in fitting the porosity distribution with a second order polynomial
function corresponding to the Taylor series expansion up to the second order:

8e) ~ b0+ Yoo ( — ) + (e~ ) Hyle—z0)  (17)

where ¢y, V¢ and H() are the porosity, its first gradient vector and its

Hessian matrix respectively (with Hyl, j] = i ¢ ) all evaluated at the center
of the cube, 7y and z are the vector positions of the center and of a random
point inside the cubic domain respectively and the superscript symbol (.)
represents the transpose operator.

The mean value and the second order statistical moment of such distri-
bution can be easily evaluated in terms of the central porosity ¢y and the

second gradient V2¢, = (gif + 8y ¢+ ng)xmyo,zo as follows:
1 L*_,
¢) = I3 P(z)dv = ¢ +5 V Po (18)
, 1 , L*, 19L%_,
re.¢) = I rep(z)dv = Zﬁbo + 144OV bo (19)

where r = \/(z — 20)% + (y — y0)% + (2 — 20)? represents the distance of a
voxel to the center of the cube. The above integrals can be computed nu-
merically to evaluate the internal variables ¢y and V2¢y.
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3.3.2 Hardening Moduli Calibration

The yield surface is assumed to have the same expression as the one of the
Cauchy formulation, with the same initial parameters presented in Table 1.
Moreover, since the evolutions of the variables p. and M are linear in terms
of the mean plastic volumetric strain in the Cauchy formulation (Equation
15), it is assumed that the enhanced hardening laws are also linear in terms
of the two hardening variables ¢y and V2@y:

Pe = ar(do + L V3¢y)
M = as(do + L V2¢y) (20)

as the mean plastic volumetric deformation is approximated by the mean
plastic porosity change (e”) ~ ('), which is expressed by @y + %V%O
(see Section 3.3.1). a; and «s are the new hardening moduli that must be
calibrated on the tests data.

The procedure followed to calibrate the moduli a; and «y is presented
in Figure 10. For a loading stage from the State ¢ to the State ¢ + 1, the
porosity and its second gradient are evaluated on a selected cubic domain
from the porosity maps. On the other hand, the mean plastic volumetric
strain are evaluated over the same domain from the DVC map using Paraview
software (Ayachit, 2015). Then, from the macroscopic hardening laws given
in Equations 15, the increments of p. and M are evaluated. This procedure is
repeated for different selected cubic domains inside the same sample and for
several loading stages. Hence, the moduli oy and as can be finally calibrated.

The sample tested under high confining pressure (10.5 MPa) (see Abdal-
lah et al. (2020)) is considered here. Deviatoric loading has been applied
in two stages: the first one is stopped just after the plasticity onset (total
axial strain of 0.6%) and it is observed that compaction bands are formed.
The second loading stage is applied up to a total axial strain of 2.4%, where
compaction bands continue to develop. Two cubic domains, centered over
high-porosity zones, are selected inside the sample as shown in Figure 11
(REV 1 and REV 2). The porosity and its second gradient are evaluated
for each selected domain in the initial state and after each loading stage and
are plotted in Figure 12. Both internal variables decrease (in absolute value)
in due course of loading, which indicates that the material porosity becomes
lower and less heterogeneous. The plastic volumetric strain is averaged over
the two selected domains for each loading stage and the values are given in
Table 3. Finally, the hardening moduli are calibrated as shown in Figure
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Figure 10: Procedure followed to calibrate the hardening moduli oy and
for a loading stage from State ¢ to State ¢ 4 1.

13 and the following results are obtained: a; = 150.9 MPa and «ay = 4.15.
These values are very close to those obtained for the macroscopic harden-
ing laws (hy = 153 MPa and hy = 4.21 in Equation 15). In other words,
the mean value of the plastic porosity reduction is very close to the mean
plastic volumetric deformation, which confirms that the solid matrix plas-
tic deformation can be neglected with respect to the porosity evolution and
corroborates the assumption made in Section 2.2.

Furthermore, it is important to note that both the REV 1 and REV 2
are assumed to preserve their cubic shapes when ¢y and V2@, are calculated,
even in the deformed states. This assumption, which is adopted to simplify
the calibration procedure, is acceptable due to the low deformation levels of
the REVs (in the order of 2 to 3% as presented in Table 3). In addition, the
high confining pressure test is sufficient to calibrate the hardening moduli,
as several cubic domains can be selected inside the sample. The size of these
domains is considered large enough to have the same stress state as the full
cylindrical sample. Moreover, the plastic potential for this enhanced model
is supposed to be identical to the one of the underlying Cauchy continuum
(Equation 16). This means, that the second gradient of the porosity change
is assumed to be purely elastic since Xﬁfk = )\g—g =0.
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Figure 11: Two selected cubic elements, over which the mean plastic volu-
metric strain and the internal variables are evaluated during the a) first and
b) second loading stages.
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Figure 12: Evolution from the initial to the ultimate state of ¢y and V¢,
for each of the two selected domains. The arrow shows the direction of the
evolution with loading.
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Figure 13: Evolution of p. and M vs (¢o + g—jvéqso). The dashed lines
represent the fitted hardening laws obtained with the following moduli ay =
150.9 MPa and ay = 4.15.

Table 3: Mean plastic volumetric strain for each REV evaluated in each
loading stage.

REV Loading Stage (') [%]

1 1 -0.74
2 -1.44
2 1 -0.24
2 -1.54
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3.4 Elastic Modulus B Calibration - Linear Stability
Analysis

To complete the calibration of the model, the higher-order elastic modulus
B must be evaluated. As it will be shown in the following, this parameter
plays a role in the onset of compaction bands. A Linear Stability Analysis
(LSA) is performed at the plasticity onset to back analyze the experiments
and calibrate this parameter. In such an analysis, deformation bands are
seen as the result of an instability of the homogeneous deformation process.
A system is unstable in the sense of Lyapunov (1892, 1992) when its response
to a perturbation is unbounded. The stability of homogeneous deformation
is studied by considering small perturbations of the various fields and by
analyzing their evolution in time (e.g. the displacement field can be written
as u = u’ + u*, where the superscripts ° and * denote the homogeneous
solution and the perturbation, respectively). The equilibrium equation for
the homogeneous solution (Equation 6) is:

U?j,j + (Z-jéklgfl)kj =0 (21)

For a small perturbation around the homogeneous solution in stress and
strain fields, the momentum balance can be written as follows:

U:j,j + 5ij5l<:l§,7kj = pii; (22)

where p is the material density. Considering the constitutive law for a small
perturbation of the system (Equations 12 and 13), the momentum balance
can be written as:

b9 bf bf 812 L?
e 17kl * Jaﬁ * 8.8 4, % ek
it = D= Nty = (D = Uty 04300 BL I i = il (23)

Compaction banding is treated here as a 1D problem, although its structure
can be more complex as observed in the field (Eichhubl et al., 2010). Thus,
the applied perturbation to the displacement field takes the following form:

u;k _ Uieiz{m-i-st (24)

with Uy = Us = 0, A is the wavelength of the perturbation and s is the growth
coefficient. Since the displacement field is continuous across the band bound-
aries (uj(£%) = 0), the wavelength, A, defines the band thickness: d = 3.
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The stability condition corresponds to negative values of the growth coeffi-
cient s as this corresponds to pertubations which vanish in time. However, if
the real part of s is > 0, the system is unstable and the deformation localizes
in a compaction band. After some algebraic manipulations, the following
characteristic equation is obtained for the growth coefficient s:

- (Yema- (5 @5 - (om0 @

The above polynomial quadratic equation has two roots:

1 S| OF BL? 1 1
s = iL_\/ﬁ —(27T)201f11w - <1>(27T)4b?18—<?)\*4 - (27T)6BW (26)
where \* = % is the normalized wavelength. Figure 14a shows the plots of

the growth coefficient for several confining pressures for the case of B = 0.08
MPa. For confining pressures greater than 9.2 MPa (in absolute value), s is
observed to take positive real values, which means that compaction banding
can occur. However, for lower confining pressure values, s is purely imagi-
nary indicating that compaction banding is prohibited. These stress states
are illustrated by the solid line in Figure 15a. In addition, it appears that
the material length does not contribute in controlling the range of confining
pressures for which compaction banding can occur. The material length only
scales the dominant wavelength and does not affect the range of perturbation
wavelengths corresponding to positive values of the growth coefficient s for
a given confining pressure as shown in Figure 14b.

Accordingly, the elastic modulus B is the only additional parameter that
controls the range of confining pressures for which compaction banding oc-
curs at the plasticity onset. Figure 15 shows the portion of the yield surface
for which compaction bands can form for two different values of B. When
B decreases, this zone becomes larger. Based on the experimental results
obtained in Abdallah et al. (2020), compaction bands are identified in the
Saint-Maximin limestone sample tested under 10.5 MPa of confining pres-
sure. However, no compaction bands are observed in the sample tested at 6
MPa of confinement, but rather compactive shear bands. In addition, Baud
et al. (2017) have shown by means of acoustic emission measurements that
compaction bands can form in a Saint-Maximin limestone sample tested at
9 MPa of confining pressure in dry conditions. Assuming that the threshold
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Figure 14: Growth coefficient vs the normalized perturbation wavelength
under several confining pressures for B=0.08 MPa (p=1600 kg/m? in all
cases): (a) for L=24 mm; (b) Effect of the material length L.

for the formation of compaction bands is at the mid-point of these two values
(i.e. 7.5 MPa), the corresponding value of the parameter B would be 0.025
MPa (Figure 15b), which will be retained in the following.

For the considered constitutive model and calibrated parameters, one can
note that under hydrostatic compression, compaction banding is theoretically
possible as the slope of the yield surface p tends to —oo and assuming that
the dilatancy coefficient is the same as for the deviatoric tests (i.e. f =
—0.75). For these values, the bifurcation condition (see Equation 26) in
the classical formulation (B = 0) is fulfilled. Thus, the domain of stress
states on the yield surface for which compaction banding is possible extends
up to the hydrostatic axis as shown in Figure 15. However, in hydrostatic
compression, no strain localization is observed in the experiments (Abdallah
et al., 2020). We would need additional triaxial tests at higher confining
pressures to calibrate further the dilatancy parameter which probably evolves
at these high levels.
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Figure 15: Range of confining pressures for which compaction bands occur
(highlighted by the solid line) in the case of: (a) B=0.08 MPa; (b) B=0.025
MPa.

4 Numerical Implementation and Model Back-
analysis

In order to simulate the formation of compaction bands and follow their evo-
lution, the above constitutive model is implemented in the finite element code
Numerical Geolab (Stefanou, 2018) as a general micromorphic continuum of
degree 2. The restrictions u; ; = x;; and X;x = Xijk, presented in Section 2.3,
are introduced indirectly by means of penalty moduli (E) and an incremental
formulation is followed. This platform uses the Fenics library for finite ele-
ment generation and the volume is meshed using tetrahedral elements with
linear interpolation shape functions and using reduced integration. 1D triax-
ial compression simulations are performed on parallelepipedic samples with a
height equal to the material length L. This means that a primitive cell as de-
fined in Figure 7 is tested (i.e. one high-porosity and one low-porosity zones
are stitched together). Constant confining pressure is imposed on the lateral
boundaries, zero displacement and controlled axial displacement are imposed
on the lower and upper boundaries respectively (Figure 16). The higher order
stresses are taken equal to zero on all the boundaries. It is out of the scope
of the current study to explore the model prediction for the loading cases
that do not reveal the formation of compaction bands. Simulations on a sin-
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Figure 16: Schematic for the finite element model and its boundary condi-
tions.

gle element have been first performed in order to simulate the homogeneous
response and compare with experimental data. These plots are presented
in the supporting information file (Figures S8 and S9). To investigate the
mesh-dependency problem, numerical simulations in triaxial loading are per-
formed for several mesh sizes: 25, 40, 50 and 70 elements along the loading
direction (Figure S10 in the supporting information). No mesh-dependency
is observed for a mesh size of 0.48mm (50 elements) or finer. Moreover, a
sensitivity analysis on the parameters B and L is performed and the results
are shown in Figures S11 and S12 in the supporting information. The two pa-
rameters are observed to have similar impact on compaction banding, as for
smaller values, compaction bands become thinner and the amount of plastic
strain inside the band becomes greater.

4.1 Triaxial Test under High Confining Pressure

In this section, the numerical modelling of a triaxial compression loading
under 10.5 MPa of confining pressure is performed. The plastic volumetric
strain maps at different levels of loading are shown in Figure 17. A material
imperfection is introduced in the middle of the sample in order to trigger
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strain localization at the center: the initial value of the variable p, is reduced
by 2% over 3 mm (6 elements). A compaction band is formed at the plasticity
onset, in accordance with the experimental observations. Then, the band
thickness is observed to increase with loading and the plastic strain continues
to localize inside the band: -1.3% of plastic volumetric strain is found inside
the band for -0.6% of imposed total axial strain (i.e. the level of the first
loading stage applied in the experiment). The plastic strain continues to
increase inside the band and -5.6% of plastic volumetric strain is finally
reached for -2.4% of imposed total axial strain (i.e. the second loading stage
in the experiment).

In order to evaluate the band thickness, the profiles of the accumulated
plastic volumetric strain over the loading direction are considered (Figure
18). By analogy with the method used to evaluate a shear band thickness
in Rattez et al. (2018), the compaction band thickness is estimated here by
fitting a trigonometric interpolating function f(z) with the vertical profiles
of the plastic volumetric strain:

Z — Q9

)+1 (27)

a
f(z) = 51.9[&2_%3@#%3](2). [cos(%r

as

where a; is the maximum plastic volumetric strain, as is the position of the
band center, a3 is the wavelength of the cosine function and €, _as.,, | a)(2)
is a rectangular function defined as:

1 i z€(ag— Bray+ L]
UrestrsO = 0 it 2 ot~ doerr 4] (28)
The wavelength as is interpreted as the band thickness. The function f(z)
is successively fitted with the vertical profiles and the results are presented
with black dashed lines in Figure 18. Then, the compaction band thickness
evolution with respect to the imposed total axial strain is depicted in Figure
19. The initial thickness of the band at the plasticity onset is evaluated at
4.42 mm. This thickness increases rapidly with loading to reach around 12
mm for -0.3% of imposed total axial strain. Then, the band continues to
expand slowly and reaches a thickness of 15.4 mm for an imposed total axial
strain of -2.4%.
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Figure 17: Accumulated plastic volumetric strain maps at different loading
levels. The levels equivalent to the first and second loading stages applied in
the triaxial test (0.6% and 2.4% of total axial strain) are shown.
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Figure 18: Vertical profiles of the accumulated plastic volumetric strain at
various levels of imposed axial strain. Dashed lines represent the fitted curves
f(2). The plot on the right shows a zoom on the profile at the plasticity onset.
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Figure 19: Compaction band thickness evolution in due course of loading.
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4.2 Size Effect

The size effect is explored, and two additional samples having a height H =
48 mm (2 x L) and 72 mm (3 x L), respectively, are simulated under the
same loading conditions (10.5 MPa of confining pressure). The same mesh
size is considered for the various samples and 2.4% of total axial loading is
imposed (which corresponds to the loading level applied in the experiment).
The corresponding plastic axial strain maps are shown at several loading
states in Figure 20. It is observed that for bigger specimens, the number of
compaction bands increases, as three bands form for H=48 mm (denoted by
M1 to M3) and five form for H=72 mm (denoted by N1 to N5). The first
band to develop is located where the material imperfection is placed in the
middle of the sample. This band appears at the plasticity onset whereas the
other bands appear later and simultaneously at a total imposed axial strain
et =-0.19% in both cases H =48 mm and H=T72 mm.

The profiles of the plastic axial strain at several loading states are plotted
in Figure 21. Again, the trigonometric function f(z) is fitted for each band
allowing to quantify the band thickness (parameter a3) and the band spacing
(parameter ay). The band thicknesses are evaluated along loading and are
compared with the case H= 24 mm (Figure 22). The results indicate that
the band thickness is independent on the sample height and is not affected
by the number of bands developed. In addition, a regular spacing between
the centers of the bands is observed. This spacing is comparable to the
band thicknesses, as the ratio between the band spacing over the central
band thickness is close to 1 (Figure 23). Moreover, the amount of the plastic
strain in the central bands in both cases H = 48 mm and H = 72 mm are
similar at the same level of loading. These amounts are slightly lower than
the evaluated plastic axial strain obtained in the single band formed for the
case H = 24 mm at the ultimate loading level.

4.3 Comparison with the Experimental Results

The numerical modelling of the sample tested under 10.5 MPa of confining
pressure is compared to the experimental results of the sample tested un-

der the same conditions presented in the companion paper (Abdallah et al.,
2020):

1. In both experimental tests and numerical simulations, strain localiza-
tion in the form of compaction bands is obtained. The bands are formed
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Figure 20: Accumulated plastic axial strain maps at several loading states
for the cases H=48 mm and 72 mm. Three bands denoted by M1 to M3 and
five bands denoted by N1 to N5 are identified for the two cases respectively.
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Figure 21: Accumulated plastic axial strain profiles in due course of loading
for the samples of height H = 48 mm and 72 mm.
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Figure 22: Band thickness evolutions in due course of loading, compared to
the band thickness evolution for the sample of height H = 24 mm: a) Case
of H =48 mm; b) Case of H = 72 mm.
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Figure 23: Ratio of band spacings over the central band thickness with re-
spect to the imposed axial loading: a) Case of H = 48 mm; b) Case of H =
72 mm.

at the plasticity onset.

2. Two DVC have been performed on the laboratory tested sample (Figure
11). The REV 1, over which the material length L has been essentially
calibrated (Section 3.2), is considered here. Then, the plastic volumet-
ric strain in both stages is plotted over two lines defined in the normal
direction to the bands (Figure 24). The obtained band thicknesses are:
8.2 mm after the first stage and 13.4 mm after the second stage. On
the other hand, the thicknesses predicted in the numerical modelling
are 13.0 mm after the first stage and 15.4 mm after the second loading
stage.

3. The amount of the plastic volumetric strain inside the band is also in-
vestigated. The mean value of the incremental plastic volumetric strain
inside the compacted zone of the REV 1 is evaluated from the profiles
shown in Figure 24 (one increment corresponds to a loading stage). In
addition, the profiles of the incremental plastic volumetric strain ob-
tained in the numerical simulation are plotted and compared with the
experimental data. Although the strain amount is underestimated for
the first loading stage, a very good consistency between the numerical
and experimental results is obtained for the second loading stage.

4. The numerical modelling of compaction banding in bigger samples have
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shown a regular spacing between the bands, which is not the case phys-
ical experiments (Figure 11). The band spacing is found to be equal
to the band thickness (Figure 23), which is dependent in its turn on
the material length. Since a single and uniform value for the mate-
rial length has been considered in the numerical modelling, a regular
spacing is obtained. Improving the model prediction would require to
enhance the constitutive model by considering a distribution of mate-
rial lengths that could be calibrated from the porosity maps. In the
case of granular materials modelled in the framework of Cosserat the-
ory, such an approach has been developed by considering the whole
particle size distribution (Collins-Craft et al., 2020). In addition, it
is worth to mention that more complex patterns of compaction bands
are generally observed in laboratory tests and in the field. The de-
velopment of such strain localization bands can be controlled by other
parameters that are not considered in this study, such as the tectonic
regime, the evolution of parameters during strain localization and the
presence of fluids (Stefanou and Sulem, 2014; Soliva et al., 2016).

In conclusion, the numerical results are consistent with the experimental
data in terms of the onset and development of compaction banding, the
band thickness and the strain amount inside the compaction bands in due
course of loading.

5 Conclusions

Porosity heterogenity plays a major role in controlling the formation and
propagation of compaction bands in high-porosity carbonate rocks. These
bands are formed in high-porosity zones, whereas denser zones remain un-
deformed. In addition, large pores lying inside low-porosity zones are pro-
tected by the surrounding material. This non-local character of compaction
banding has lead to develop a gradient-dependent plasticity model for com-
paction banding in this study. Porosity and its second gradient have been
identified as two independent hardening parameters. The constitutive law
has been interpreted as a micromorphic continuum of degree 2, which can
be seen as an extension of the second gradient theory. A back-analysis of
the deformation band thickness is usually performed in order to identify the
material length. In this study, a new calibration method of the additional
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Figure 24: REV 1: Incremental plastic volumetric strain profiles. a) DVC
maps; b)-c) Profiles over the lines defined on the DVC maps in the first
and second stages respectively. The profiles obtained from the numerical
simulation (see Figure 18) are also shown.
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parameters has been proposed based on micromechanical properties and X-
Ray measurements without of band thickness measurements. This model
and calibration approach enable a consistent simulation of the compaction
banding phenomenon in high-porosity carbonate rocks.

In addition to the standard elastic-plastic parameters, the proposed model
introduces several additional parameters: the material length L, the hard-
ening moduli and a higher order elastic modulus B linking the higher order
stress with the second gradient of volumetric strain (the porosity change
is identified with the plastic volumetric strain). A four-step full calibra-
tion procedure of the model has been proposed. The method is based on
the macroscopic stress-strain curves, porosity and DVC maps computed at
several deformation states, and on a linear stability analysis applied at the
plasticity onset.

The porosity heterogeneity has been schematically represented by alter-
nated high- and low-porosity zones of cubic shapes. The FFT applied on
1D porosity profiles has permitted to identify the wavelength of the porosity
heterogeneity. This length, evaluated at 2.4 c¢m, constitutes the size of the
domain over which the porosity and its second gradient are evaluated. Then,
two domains in which compaction bands have been experimentally observed,
have been considered inside the Saint-Maximin limestone sample tested un-
der high confining pressure. In addition, plastic volumetric strain has been
evaluated over these domains which has permitted to calibrate the enhanced
hardening moduli. A linear stability analysis performed on the enhanced
constitutive laws has shown that the remaining elastic modulus controls the
confining pressure range for which compaction bands may form at the plas-
ticity onset. From the experimental results presented in this work and from
the data provided by Baud et al. (2017), the threshold of confining pressure
is estimated at 7.5 MPa. The corresponding modulus B is evaluated at 0.025
MPa.

Finally, the model has been implemented in the finite element code Nu-
merical Geolab in order to validate the model with the experimental results.
A sensitivity analysis of both the elastic modulus B and the material length L
shows that when their values are smaller, compaction bands become thinner
and strain localization becomes more accentuated for a given level of loading.
A triaxial compression test under 10.5 MPa of confining pressure has been
thereafter simulated. The numerical results are consistent with experimental
data in terms of compaction banding onset, band thickness evolution and
the plastic strain amount inside the band. In addition, compaction bands
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spacing has been studied by considering bigger samples, and has been found
very close to the bands thickness. This result is consistent with the linear
stability analysis which considers the perturbation as a sinusoidal function.

In the proposed model, the porosity heterogeneity is simply represented
by introducing one wavelength and compaction bands have been thus studied
at one scale (2.4 cm). However, the compaction banding phenomenon has
a multiscale character: one compaction band at a given scale can be seen
as a zone of many compaction bands at lower scales. In this case, further
analyses on the material length scale are required. Local tomography can
be used in order to focus on some subdomains inside the sample along the
loading process. Moreover, the proposed approach may be extended to large
scale problems. From geophysical surveys, porosity maps can be constructed
at larger scales and the material length of the gradient model can be assessed
from the dominant wavelength. In this way, numerical computations at the
scale of a reservoir can potentially be performed.

A Constitutive Law Expression

The consistency condition F' = 0 leads to the following equation:

OF OF OF
”+a”“’+ — V¥ =0 (29)
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By considering the elastic law ,; = ijkl(ékl — éill) and the plastic flow rule
0

aag ) )
strain (V2P o~ V?¢,), one can find the expression of the plastic multiplier A

as:

ekl =\ and by neglecting the second gradient of the elastic volumetric
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A= 30
i (30
with bil = %C’fmkl and H; = bfmafﬁ - aae_lf;g_g' Finally, the constitutive

law is expressed as:
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where Ay = —(1) =5, b}, = C’Zmn 50— and (1) is the Macaulay brackets.
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B Internal Power Density

The internal power density dw is assumed to linearly depend on these degrees
of freedom and their first gradients (u; ;, X;j, and xijk:), or equivalently on

Usy Ui 5y Tij = Wi — Xijs Rijk = Xijkr Thijk = Xijk — Xijk and Rijkl = Xijk,l-
ow = Kju; + oy5uij + Sijnij + Vijkkige + SijkMigk + CijkiKijki (32)

where K, 045, Sij, Vijk, Sijk, Gijr are the dual stresses. The micromorphic
medium is called as a first grade continuum of degree 2 following the nomen-
clature of Germain (1973). By analogy with the second gradient theory, the
deformation of the subvolume and its first gradient can be identified with the
deformation of the general continuum and its gradient. Two restrictions are
thus considered:

1. Vanishing relative microdisplacement gradient 7;; = 0.
2. Vanishing relative microdisplacement second gradient 7;;, = 0.

As discussed in Germain (1973), K; must be zero and o;; must be a symmetric
tensor (objectivity). Taking into account these conditions and the assumed
restrictions, the expression of the internal forces density can be written as:

ow = OijU; 5 + VijgWi i + Cijkluz’,jkl (33>

C Tangential Derivation Notation

Following the definitions of Mindlin (1964), D; K; and DK are the tangential
and normal derivatives of the vector field K; on the surface 09:

Noticing that
Mijuij = (Mijus) ; — Mijjui = Dj(Mijug) + Mygn; Du; — (DjMig)u; - (35)

the application of the integration by parts method is straightforward.
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Figure 25: Schematic representation of the ACC yield surface.

D Asymmetric Cam-Clay Model

The complete derivation of the ACC model is given in the Phd thesis of
Samudio (2017). This model, which is an extension of the classical Modified
Cam-Clay (MCC) model (Roscoe et al., 1958; Schofield and Wroth, 1968), is
more flexible and allows a displacement of the hardening-softening threshold.
In addition, the ACC model is better adapted to numerical implementation
(see return map algorithm in Godio et al. (2016)) since its expression always
takes real values and remains continuous in the real domain. Figure 25 shows
a schematic representation of the yield surface, whose expression is given in
Equation 14. For p = p., x takes the value of 1 and for p = —p;, = is equal
to -1. In order to characterize the yield surface, four parameters must be
evaluated: k, M, p; and p.. Note that for £ = 0 and p; = 0, the MCC model
is recovered.

E Penalty Moduli

The gradient-dependent plasticity model is implemented in the Numerical
Geolab code as a general micromorphic continuum of degree 2. The restric-
tions 7;; = 0 and 7;j; = 0 presented in B are introduced indirectly, by means
of two penalty moduli defined as follows:

$ij = Prjy; (36)
Sijk = Pyl (37)

For very high values of P, and P,, the degrees of freedom are constrained as
required. The retained values are P, = 10° MPa and P, = 10° MPa.
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