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FORMULAE FOR TWO-VARIABLE GREEN FUNCTIONS

FRANÇOIS DIGNE AND JEAN MICHEL

Abstract. Based on results of Digne-Michel-Lehrer (2003) we give two formu-

lae for two-variable Green functions attached to Lusztig induction in a finite
reductive group. We present applications to explicit computation of these

Green functions, to conjectures of Malle and Rotilio, and to scalar products

between Lusztig inductions of Gelfand-Graev characters.

Let G be a connected reductive group with Frobenius root F ; that is, some
power F δ is a Frobenius endomorphism attached to an Fqδ -structure on G, where

qδ is a power of a prime p. Let L be an F -stable Levi subgroup of a (non-necessarily
F -stable) parabolic subgroup P of G. Let U be the unipotent radical of P and let
XU = {gU ∈ G/U | g−1Fg ∈ U · FU} be the variety used to define the Lusztig
induction and restriction functors RG

L and ∗RG
L . For u ∈ GF , v ∈ LF unipotent

elements, the two-variable Green function is defined as

QG
L (u, v) = Trace((u, v) |

∑
i

(−1)iHi
c(XU)).

In this paper, using the results of [5], we give two different formulae for two-
variable Green functions, and some consequences of these, including proving some
conjectures of [15].

The two-variables Green functions occur in the character formulae for Lusztig
induction and restriction. In particular, for unipotent elements these formulae read

Proposition 1. (See for example [8, 10.1.2])

• If u is a unipotent element of GF , and ψ a class function on LF , we have

RG
L (ψ)(u) = |LF |〈ψ,QG

L (u,−)〉LF .
• If v is a unipotent element of LF , and χ a class function on GF , we have

∗RG
L (χ)(v) = |LF |〈χ,QG

L (−, v−1)〉GF .

Two formulae for two-variable Green functions

For an element u in a group G we denote by uG the G-conjugacy class of u.

Proposition 2. Assume either the centre ZG of G is connected and q > 2, or q
is large enough (depending just on the Dynkin diagram of G). Then for u regular,
QG

L (u,−) vanishes outside a unique regular unipotent class of LF . For v in that

class, we have QG
L (u, v) = |vLF |−1.

Proof (Rotilio). Let γGu be the normalized characteristic function of the GF -conjugacy
class of u; that is, the function equal to 0 outside the class of u and to |CG(u)F |
on that class. For v′ ∈ LF unipotent, Proposition 1 gives

∗RG
L (γGu )(v′) = |LF |〈γGu , QG

L (−, v′−1)〉GF = |LF |QG
L (u, v′−1).
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2 FRANÇOIS DIGNE AND JEAN MICHEL

Now, by [1, Theorem 15.2], there exists v ∈ LF such that the left-hand side is
equal to γLv (v′). In [1, Theorem 15.2] q is assumed large enough so that the Mackey
formula holds and that p and q are such that the results of [10] hold (that is p
almost good and q larger than some number depending on the Dynkin diagram of
G). The Mackey formula is known to hold if q > 2 by [2] and the results of [10]
hold without condition on q if ZG is connected by [17] or [18, Theorem 4.2] (the
assumption that p is almost good can be removed, see [13, section 89] and [12]).
The proposition follows. �

As in [5], we consider irreducible G-equivariant local systems on unipotent
classes. These local systems are partitioned into “blocks” parametrised by cus-
pidal pairs formed by a Levi subgroup and a cuspidal local system supported on a

unipotent class of that Levi subgroup. Let us call QL,I
wF the function defined in [5,

3.1(iii)] relative to an F -stable block I of unipotently supported local systems on
L and to wF ∈ WL(LI)F where (LI , ιI) is the cuspidal datum of I (for a Levi L
of a reductive group G, we set WG(L) = NG(L)/L).

Proposition 3. Assume either ZG is connected or q is large enough (depending
just on the Dynkin diagram of G). For u a unipotent element of GF and v a
unipotent element of LF , we have

QG
L (u, v) = |LF |−1

∑
I

∑
w∈WL(LI)

|Z0(LI)wF |
|WL(LI)|

QG,IG
wF (u)QL,I

wF (v),

where I runs over the F -stable blocks of L and where IG is the block of G with
same cuspidal data as I.

The part of the above sum for I the principal block is the same formula as [7,
Corollaire 4.4].

Proof. Proposition 1 applied with ψ = QL,I
wF gives, if we write RGF

LF instead of RG
L

to keep track of the Frobenius,

〈QL,I
wF , Q

G
L (u,−)〉LF = |LF |−1RGF

LF (QL,I
wF )(u)

Now we have by [5, Proposition 3.2] QL,I
wF = RLF

LwFI
X̃ιI ,wF where X̃ιI ,wF is qcιI

times the characteristic function of (ιI , wF ), a class function on LwFI . Here, as in
[5, above Remark 2.1], for an irreducible G-equivariant local system ι, we denote by
Cι the unipotent G-conjugacy class which is the support of ι, and if (LI , ιI) is the
cuspidal datum of ι we set cι = 1

2 (codimCι − dimZ(LI)). In [5, Proposition 3.2]
the assumptions on p and q come from [10] but by the same considerations than at
the end of the proof of Proposition 2 it is sufficient to assume ZG connected or q
large enough.

By the transitivity of Lusztig induction we get

〈QL,I
wF , Q

G
L (u,−)〉LF = |LF |−1RGF

LwFI
(X̃ιI ,wF )(u) = |LF |−1QG,IG

wF (u),

where IG is the block of G with same cuspidal data as I. Using the orthogonality

of the Green functions QL,I
wF , see [5, Corollary 3.5] (where the assumption is that p

is almost good which comes from [9], so can be removed now by [12]) and the fact
they form a basis of unipotently supported class functions on LF , indexed by the
WL(LI)-conjugacy classes of WL(LI)F , we get the proposition. �
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Proposition 3 gives a convenient formula to compute automatically two-variable
Green functions. Table 1 gives an example, computed with the package Chevie

(see [16]).
We denote by Yι the characteristic function of the F -stable local system ι, and

by A(u) the group of components of the centralizer of a unipotent element u.

Proposition 4. Assume either ZG is connected or q is large enough (depending
just on the Dynkin diagram of G). Let Rι,γ be the polynomials which appear in [5,
Lemma 6.9]. Then

QG
L (u, v) = |vL

F

|−1|A(v)|−1
∑
I

∑
ι∈IGF ,γ∈IF

Yι(u)Yγ(v)Rι,γq
cι−cγ ,

where cι = 1
2 (codimCι − dimZ(LI)).

Proof. For a block I of L and ι ∈ IF , let Q̃ι be the function of [5, (4.1)]. Then by
[5, (4.4)] applied respectively in G and L we have

QG,IG
wF (u) =

∑
ι∈IGF

Q̃ι(wF )Ỹι(u) and QL,I
wF (v) =

∑
κ∈IF

Q̃κ(wF )Ỹκ(v)

where Ỹι = qcιYι. Thus, using the notation ZLI as in [5, 3.3] to denote the function
wF 7→ |Z0(LI)wF | on WG(LI)F , the term relative to a block I in the formula of
Proposition 3 can be written

|LF |−1〈ZLI

∑
κ∈IF

Q̃κỸκ(v),
∑
ι∈IGF

Ỹι(u) Res
WG(LI)F
WL(LI)F Q̃ι〉WL(LI)F .

Applying now [5, Lemma 6.9] this is equal to

|LF |−1〈ZLI

∑
κ∈IF

Q̃κỸκ(v),
∑

ι∈IGF ,γ∈IF
Ỹι(u)Rι,γQ̃γ〉WL(LI)F ,

We use now [5, Corollary 5.2] which says that, 〈Q̃γ ,ZLI Q̃κ〉WL(LI)F = 0 unless
Cγ = Cκ and in this last case is equal to

|A(v)|−1
∑

a∈A(v)

|C0
L(va)F |q−2cγYγ(va)Yκ(va)

Thus the previous sum becomes

|LF |−1
∑

ι∈IGF ,γ∈IF
Ỹι(u)Rι,γ |A(v)|−1

∑
a∈A(v)

|C0
L(va)F |q−2cγYγ(va)

∑
κ∈IF

Yκ(va)Ỹκ(v).

But by [5, (4.5)] we have
∑
κ Yκ(va)Ỹκ(v) =

{
qcκ |A(v)F | if va = v

0 otherwise
, where κ runs

over all local systems. Thus, summing over all the blocks, we get the formula in
the statement. �

Corollary 5. Assume either ZG is connected or q is large enough (depending
just on the Dynkin diagram of G). Then for any unipotent elements u ∈ GF and
v ∈ LF we have:

(i) QG
L (u, v) vanishes unless vG ⊆ uG ⊆ IndG

L (vL), where IndG
L (vL) is the

induced class in the sense of [14].

(ii) |vLF ||A(v)|QG
L (u, v) is an integer and is a polynomial in q with integral

coefficients.
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Proof. For (i), we use [5, Lemma 6.9(i)] which states that Rι,γ = 0 unless Cγ ⊆
Cι ⊆ IndG

L (Cγ). Since Ỹκ(v) vanishes unless Cκ 3 v, the only non-zero terms in

the formula of proposition 4 have Cγ 3 v, whence the result since Ỹι(u) vanishes
unless Cι 3 u.

For (ii), we start with

Lemma 6. qcι−cγRι,γ is a polynomial in q with integral coefficients.

Proof. The defining equation of the matrix R̃ = {qcι−cγRι,γ}ι,γ reads (see the proof
of [5, Lemma 6.9(i)]):

R̃ = PGCGIC
−1
L P−1

L

where CG is the diagonal matrix with diagonal coefficients qcι for ι ∈ IG, and
CL is the similar matrix for L and I, where PG is the matrix with coefficients
{Pι,ι′}ι,ι′∈IG where these polynomials are those defined in [11, 6.5], and PL is the
similar matrix for L and I, and finally I is the matrix with coefficients

Iι,γ = 〈Ind
WG(LI)F
WL(LI)F ϕ̃γ , ϕ̃ι〉WG(LI)F

where ϕ̃γ is the character ofWL(LI)F which corresponds by the generalised Springer
correspondence to γ (and similarly for ϕ̃ι). Since PL and PG are unitriangular ma-
trices with coefficients integral polynomials in q, thus P−1

L also, it suffices to prove

that CGIC
−1
L has coefficients polynomial in q, or equivalently that

if 〈Ind
WG(LI)F
WL(LI)F ϕ̃γ , ϕ̃ι〉WG(LI)F 6= 0, then cι − cγ ≥ 0.

We now use [5, Proposition 2.3(ii)] which says that the non-vanishing above implies

Cγ ⊆ Cι ⊆ IndG
L (Cγ). We now use that, according to the definitions, cι − cγ =

dimBGu − dimBLv where BGu is the variety of Borel subgroups of G containing an
element u of the support of ι, and where BLv is the variety of Borel subgroups of
L containing an element v of the support of γ. Now the lemma follows from the
fact that by [14, Theorem 1.3 (b)] we have dimBGu = dimBLv if u is an element of

IndG
L (Cγ), and that dimBGu is greater for u ∈ IndG

L (Cγ)− IndG
L (Cγ). �

Now (ii) results from the lemma: since the Ỹ have values algebraic integers, by
Proposition 4 the expression in (ii) is a polynomial in q with coefficients algebraic
integers. But, since |LF |QG

L (u, v) is a Lefschetz number (see for example [8, 8.1.3]),
the expression in (ii) is a rational number; since this is true for an infinite number of
integral values of q the expression in (ii) is a polynomial with integral coefficients.

�

Scalar products of induced Gelfand-Graev characters

The pretext for this section is as follows: in [2, Remark 3.10] is pointed the
problem of computing 〈RG

L Γι, R
G
L Γι〉GF when (G, F ) is simply connected of type

2E6, when L is of type A2 × A2, and when ι corresponds to a faithful character
of Z(L)/Z0(L), and checking that the value is the same as given by the Mackey
formula. We show now various ways to do this computation, where in this section
we assume p and q large enough for all the results of [5] to hold (in particular,
we assume p good for G, thus not solving the problem of loc. cit. where we need
q = 2).



FORMULAE FOR TWO-VARIABLE GREEN FUNCTIONS 5

Let Z = Z(G), and let Γz be the Gelfand-Graev character parameterized by
z ∈ H1(F,Z), see for instance [3, Definition 2.7]. Let uz be a representative of the
regular unipotent class parametrized by z. As in [11, 7.5 (a)] for ι an F -stable local
system on the regular unipotent class we define Γι = c

∑
z∈H1(F,Z) Yι(uz)Γz where

c = |Z/Z0|
|H1(F,Z)| .

Note that the cardinality |CG(uz)
F | is independent of z; actually it is equal to

|Z(G)F |qrkssG (see [1, 15.5]). Thus we will denote this cardinality |CGF (u)| where
u ∈ GF is any regular unipotent element. There exists a character ζ of H1(F,Z)
and a root of unity bι (see [4, above 1.5]) such that Yι(uz) = bιζ(z). With these
notations, we have

Proposition 7. We have Γι = ηGσ
−1
ζ c|CGF (u)|DYι where ηG and σζ are defined

as in [4, 2.5],

Proof. This proposition could be deduced from [6, Theorem 2.8] using [4, Theorem
2.7]. We give here a more elementary proof.

With the notations of [3, (3.5’)] we have DΓz =
∑
z′∈H1(F,Z) cz,z′γz′ . By [4,

lemma 2.3] we have cz,z′ = czz′−1,1 and
∑
z∈H1(F,Z) ζ(z)cz,1 = ηGσ

−1
ζ . It follows

that

c−1b−1
ι DΓι =

∑
z∈H1(F,Z)

ζ(z)DΓz =
∑

z,z′∈H1(F,Z)

ζ(z)cz,z′γz′

=
∑

z,z′∈H1(F,Z)

czz′−1,1ζ(z)γz′

=
∑

z′∈H1(F,Z)

ζ(z′)γz′
∑

z′′∈H1(F,Z)

cz′′,1ζ(z′′)

= ηGσ
−1
ζ

∑
z′∈H1(F,Z)

ζ(z′)γz′ = ηGσ
−1
ζ b−1

ι |CGF (u)|Yι

�

Proposition 8. If ι is a local system supported on the regular unipotent class of L
and I denotes its block, we have

〈RG
L ΓL

ι , R
G
L ΓL

ι 〉GF =

| Z(L)

Z0(L)
|2

∑
w∈WL(LI)

|Z0(LI)wF ||WG(LI)|
|WL(LI)|2

|(wF )WG(LI) ∩WL(LI)|
|(wF )WG(LI)|

.

Note that in a given block I there is at most one local system supported by the
regular unipotent class (see [4, Corollary 1.10]).

Proof. When ι is supported by the regular unipotent class we have Q̃ι = 1, see the
begining of section 7, bottom of page 130 in [5]. Using this in the last formula of
the proof of [5, Proposition 6.1], we get that ΓL

ι is up to a root of unity equal to

|A(Cι))||WL(LI)|−1
∑
w∈WL(LI) |Z0(LI)wF |QL,I

wF . Since RG
LQ

L,I
wF = QG,IG

wF , we get

〈RG
L Γι, R

G
L Γι〉GF =

|A(Cι))|2|WL(LI)|−2
∑

w,w′∈WL(LI)

|Z0(LI)wF ||Z0(LI)w
′F |〈QG,IG

wF , QG,IG
w′F 〉GF .
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By [5, 3.5] the last scalar product is zero unless wF and w′F are conjugate in
WG(LI), and is equal to |CWG(LI)(wF )|/|Z0(LI)wF | otherwise. We get

〈RG
L Γι, R

G
L Γι〉GF = |A(Cι))|2|WL(LI)|−2∑

w∈WL(LI)

|Z0(LI)wF ||CWG(LI)(wF )||(wF )WG(LI) ∩WL(LI)|,

which gives the formula of the proposition since A(Cι) = Z(L)/Z(L)0. �

Corollary 9. Let ι and ι′ be local systems supported on the regular unipotent class
of G, and I, I ′ be their respective blocks: then

(i) 〈ΓG
ι ,Γ

G
ι′ 〉GF =

{
0 if ι 6= ι′,

| Z(G)
Z0(G) |

2|Z0(G)F |qdimZ(LI)−dimZ(G) if ι = ι′.

(ii) 〈Yι,Yι′〉GF =

{
0 if ι 6= ι′,

q−rkssG|Z0(G)F |−1 if ι = ι′.

Proof. The functionsQG,IG
wF andQ

G,I′G
w′F are orthogonal to each other when IG 6= I ′G

(see [9, V, 24.3.6] where the orthogonality is stated for the functions Xι). Since there
is a unique ι in a given block supported on the regular unipotent class, we get the
orthogonality in (i). In the case ι = ι′ in (i), the specialization L = G in Proposition

8 is 〈ΓG
ι ,Γ

G
ι′ 〉GF = | Z(G)

Z0(G) |
2
∑
w∈WG(LI)

|Z0(LI)wF |
|WG(LI)| . By [5, Corollary 5.2], where

we use that Q̃ι = 1 when ι has regular support, we have
∑
w∈WG(LI)

|Z0(LI)wF |
|WG(LI)| =

q−2cι |CG(u)0F |. Whence 〈ΓG
ι ,Γ

G
ι′ 〉GF = | Z(G)

Z0(G) |
2q−rkG+dimZ(LI)|C0

G(u)F |. Using

|C0
G(u)F | = qrkssG|Z0(G)F |, we get (i).
For (ii), we apply Proposition 7 in (i), using that D is an isometry and that

σζσζ = qrkssLI by [4, proposition 2.5]. �

A particular case of Proposition 8 is

Corollary 10. If (L, ι) is a cuspidal pair, that is L = LI , then

〈RG
L ΓL

ι , R
G
L ΓL

ι 〉GF = | Z(L)

Z0(L)
|2|WG(L)||Z(L)0F |.

We remark that this coincides with the value predicted by the Mackey formula

〈RG
L ΓL

ι , R
G
L ΓL

ι 〉GF =
∑

x∈LF \S(L,L)/LF

〈∗RL
L∩xL(ΓL

ι ), ∗R
xL
L∩xL(xΓL

ι )〉(L∩xL)F

Indeed, since the block I which contains the local system ζ is reduced to the
unique cuspidal local system (C, ζ) where C is the regular class of L, all terms in
the Mackey formula where L ∩ xL 6= L vanish. Thus the Mackey formula reduces
to

〈RG
L ΓL

ι , R
G
L ΓL

ι 〉GF =
∑

x∈WG(L)

〈ΓL
ι ,

xΓL
ι 〉LF

and any x in WL(L) acts trivially on H1(F,Z(L)) since, the map hL being sur-
jective, any element of H1(F,Z(L)) is represented by an element of H1(F,Z(G));
thus all the terms in the sum are equal, and we get the same result as Corollary 10
by applying Corollary 10 in the case G = L.

Another method for computing 〈RG
LDΓi, R

G
LDΓi〉GF would be to use Proposi-

tion 1 and the values of the two-variable Green functions.
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We give these values in the following table in the particular case of 2E6 for the
F -stable standard Levi subroup of type A2 × A2, for q ≡ −1 (mod 3), so that
F acts trivially on Z(G)/Z0(G). This table has been computed in Chevie using
Proposition 3. The method is to compute the one-variable Green functions which
appear in the right-hand side sum by the Lusztig-Shoji algorithm; note that even
though the characteristic function of cuspidal character sheaves are known only up
to a root of unity, this ambiguity disappears when doing the sum, since such a scalar
appears multiplied by its complex conjugate. However the Lusztig-Shoji algorithm
depends also on the knowledge that when ι, with support the class of the unipotent
element u, is parameterized by (u, χ) where χ ∈ Irr(A(u)) then for the unipotent
element ua ∈ GF parameterized by a ∈ H1(F,A(u)) we have Yι(ua) = χ(a). We
assume that this hold. This is known when ι is in the principal block, but not
for the two blocks with cuspidal datum supported on the Levi subgroup of type
A2 ×A2.

Note that the table shows that the values of |vLF |QG
L (u, v) are not in general

polynomials with integral coefficients but may have denominators equal to |A(v)|.
Table 1. Values of |vLF |QG

L (u, v) for G = 2E6(q) simply connected and
L = A2(q2)(q − 1)2, for q ≡ −1 (mod 3).

v\u E6 E6(ζ3) E6(ζ23)
E6(a1) E6(a1)(ζ3) E6(a1)(ζ23)

D5 E6(a3)

111, 111 0 0 0 0 0 0 0 0
21, 21 0 0 0 0 0 0 1 4q + 1

3, 3 1 0 0 (4q + 1)/3 Φ2/3 Φ2/3 2qΦ2/3 (7q2 + 2q − 2)q/3
3, 3(ζ3) 0 1 0 Φ2/3 (4q + 1)/3 Φ2/3 2qΦ2/3 (q − 2)qΦ2/3

3, 3(ζ23)
0 0 1 Φ2/3 Φ2/3 (4q + 1)/3 2qΦ2/3 (q − 2)qΦ2/3

v\u E6(a3)(−ζ23)
E6(a3)(ζ3) E6(a3)(−1) E6(a3)(ζ23)

E6(a3)(−ζ3)

111, 111 0 0 0 0 0
21, 21 2q + 1 4q + 1 2q + 1 4q + 1 2q + 1

3, 3 q2Φ2 (q − 2)qΦ2/3 (3q + 2)q2 (q − 2)qΦ2/3 q2Φ2

3, 3(ζ3) (3q + 2)q2 (q − 2)qΦ2/3 q2Φ2 (7q2 + 2q − 2)q/3 q2Φ2

3, 3(ζ23)
q2Φ2 (7q2 + 2q − 2)q/3 q2Φ2 (q − 2)qΦ2/3 (3q + 2)q2

v\u A5 A5(ζ3) A5(ζ23)
D5(a1)

111, 111 0 0 0 0

21, 21 (−2q − 1)Φ2 (−2q − 1)Φ2 (−2q − 1)Φ2 3q + 1

3, 3 qΦ2Φ3/3 (−5q2 − 2q + 1)qΦ2/3 (−5q2 − 2q + 1)qΦ2/3 qΦ1Φ2/3

3, 3(ζ3) (−5q2 − 2q + 1)qΦ2/3 qΦ2Φ3/3 (−5q2 − 2q + 1)qΦ2/3 qΦ1Φ2/3

3, 3(ζ23)
(−5q2 − 2q + 1)qΦ2/3 (−5q2 − 2q + 1)qΦ2/3 qΦ2Φ3/3 qΦ1Φ2/3

v\u A4+A1 D4 A4 D4(a1)(111)
111, 111 0 1 0 4q + 1

21, 21 Φ2Φ3 3qΦ2Φ6 (3q3 + q2 + q + 1)Φ2 (8q3 + 2q2 + 4q − 2)qΦ2

3, 3 (2q + 1)q3Φ2/3 qΦ1Φ2
2Φ6/3 q4Φ2

2 (4q + 1)q4Φ2
2/3

3, 3(ζ3) (2q + 1)q3Φ2/3 qΦ1Φ2
2Φ6/3 q4Φ2

2 (4q + 1)q4Φ2
2/3

3, 3(ζ23)
(2q + 1)q3Φ2/3 qΦ1Φ2

2Φ6/3 q4Φ2
2 (4q + 1)q4Φ2

2/3

v\u D4(a1)(21) D4(a1) A3+A1 A3

111, 111 2q + 1 Φ2 (−2q − 1)Φ2 (3q3 + 2q + 1)Φ2

21, 21 (8q3 + 6q2 + 2q + 2)q2 (2q + 1)qΦ2Φ6 (−4q3 − q2 − 2q + 1)qΦ2
2 (3q3 − q2 + 2q − 1)qΦ2

2Φ4

3, 3 (2q + 1)q4Φ1Φ2/3 q4Φ2Φ6/3 (−2q − 1)q5Φ2
2/3 0

3, 3(ζ3) (2q + 1)q4Φ1Φ2/3 q4Φ2Φ6/3 (−2q − 1)q5Φ2
2/3 0

3, 3(ζ23)
(2q + 1)q4Φ1Φ2/3 q4Φ2Φ6/3 (−2q − 1)q5Φ2

2/3 0
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v\u 2A2+A1 2A2+A1(ζ3) 2A2+A1(ζ23)
2A2

111, 111 Φ2Φ3 Φ2Φ3 Φ2Φ3 Φ2
2Φ3Φ6

21, 21 (2q3 + 2q2 + 4q + 1)q3Φ2 (2q3 + 2q2 + 4q + 1)q3Φ2 (2q3 + 2q2 + 4q + 1)q3Φ2 3q4Φ2
2Φ3Φ6

3, 3 q6Φ2Φ3 0 0 q6Φ2
2Φ3Φ6

3, 3(ζ3) 0 q6Φ2Φ3 0 0

3, 3(ζ23)
0 0 q6Φ2Φ3 0

v\u 2A2(ζ3) 2A2(ζ23)
A2+2A1 A2+A1

111, 111 Φ2
2Φ3Φ6 Φ2

2Φ3Φ6 (2q4 + q3 + q2 + q + 1)Φ2 Φ2
2Φ3Φ6

21, 21 3q4Φ2
2Φ3Φ6 3q4Φ2

2Φ3Φ6 (q3 + 2q + 1)q5Φ2 (3q2 + 2q + 1)q4Φ2
2Φ6

3, 3 0 0 0 0

3, 3(ζ3) q6Φ2
2Φ3Φ6 0 0 0

3, 3(ζ23)
0 q6Φ2

2Φ3Φ6 0 0

v\u A2(11) A2

111, 111 (3q5 + q2 + q + 1)Φ2
2Φ6 5q9 + 3q8 + 4q7 + 4q6 + 5q5 + 4q4 + 2q3 + 2q2 + 2q + 1

21, 21 (4q2 + q + 1)q4Φ3
2Φ2

6 (2q + 1)q4Φ1Φ2Φ3Φ4Φ6

3, 3 0 0
3, 3(ζ3) 0 0

3, 3(ζ23)
0 0

v\u 3A1 2A1

111, 111 (−3q9 − 3q8 − 3q6 − 3q5 − 2q4 − q3 − q2 − q − 1)Φ2 (2q8 + q6 + q5 + q4 + 1)Φ2
2Φ3Φ6

21, 21 (−2q2 − 1)q7Φ3
2Φ6 q9Φ3

2Φ3Φ4Φ6

3, 3 0 0

3, 3(ζ3) 0 0

3, 3(ζ23)
0 0

v\u A1 1

111, 111 (2q10 + q9 + q8 + q7 + 2q6 + q5 + q4 + q2 + q + 1)Φ3
2Φ6Φ10 Φ4

2Φ3Φ4Φ2
6Φ8Φ10Φ12Φ18

21, 21 0 0

3, 3 0 0
3, 3(ζ3) 0 0

3, 3(ζ23)
0 0
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