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FORMULAE FOR TWO-VARIABLE GREEN FUNCTIONS

FRANCOIS DIGNE AND JEAN MICHEL

ABSTRACT. Based on results of Digne-Michel-Lehrer (2003) we give two formu-
lae for two-variable Green functions attached to Lusztig induction in a finite
reductive group. We present applications to explicit computation of these
Green functions, to conjectures of Malle and Rotilio, and to scalar products
between Lusztig inductions of Gelfand-Graev characters.

Let G be a connected reductive group with Frobenius root F'; that is, some
power F? is a Frobenius endomorphism attached to an [ s-structure on G, where
¢° is a power of a prime p. Let L be an F-stable Levi subgroup of a (non-necessarily
F-stable) parabolic subgroup P of G. Let U be the unipotent radical of P and let
Xy ={gU € G/U | g7tFfg € U - F'U} be the variety used to define the Lusztig
induction and restriction functors RS’ and *RS’ . For w € G¥,v € L¥ unipotent
elements, the two-variable Green function is defined as

QF (u,v) = Trace((u, v) | Z(*l)iHi(XU))-

In this paper, using the results of [5], we give two different formulae for two-
variable Green functions, and some consequences of these, including proving some
conjectures of [15].

The two-variables Green functions occur in the character formulae for Lusztig
induction and restriction. In particular, for unipotent elements these formulae read

Proposition 1. (See for example [8, 10.1.2])

o Ifu is a unipotent element of G¥', and v a class function on LY, we have

RE (W) (u) = [LF (¢, QF (u, —))rr-

o Ifv is a unipotent element of LY, and x a class function on G, we have
“RE (X)(v) = [L7[(x, QE (v ) ar-
TWO FORMULAE FOR TWO-VARIABLE GREEN FUNCTIONS
For an element u in a group G we denote by u® the G-conjugacy class of u.

Proposition 2. Assume either the centre ZG of G is connected and q > 2, or q
is large enough (depending just on the Dynkin diagram of G ). Then for u regular,
Qf(u, —) wvanishes outside a unique regular unipotent class of LY. For v in that
class, we have QF (u,v) = |vLF|*1,

Proof (Rotilio). Let & be the normalized characteristic function of the G'-conjugacy
class of u; that is, the function equal to 0 outside the class of u and to |Cq(u)¥|
on that class. For v € LT unipotent, Proposition 1 gives

“RE (7)) (') = L |(7G, QE (= v )ar = [L7|QE (u,v'7Y).
1
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Now, by [1, Theorem 15.2], there exists v € L’ such that the left-hand side is
equal to v (v'). In [1, Theorem 15.2] ¢ is assumed large enough so that the Mackey
formula holds and that p and ¢ are such that the results of [10] hold (that is p
almost good and ¢ larger than some number depending on the Dynkin diagram of
G). The Mackey formula is known to hold if ¢ > 2 by [2] and the results of [10]
hold without condition on ¢ if ZG is connected by [17] or [18, Theorem 4.2] (the
assumption that p is almost good can be removed, see [13, section 89] and [12]).
The proposition follows. |

As in [5], we consider irreducible G-equivariant local systems on unipotent
classes. These local systems are partitioned into “blocks” parametrised by cus-
pidal pairs formed by a Levi subgroup and a cuspidal local system supported on a
unipotent class of that Levi subgroup. Let us call Qi}f the function defined in [5,
3.1(iii)] relative to an F-stable block Z of unipotently supported local systems on
L and to wF € Wi, (Lz)F where (Lz, ) is the cuspidal datum of Z (for a Levi L
of a reductive group G, we set Wg(L) = Ng(L)/L).

Proposition 3. Assume either ZG is connected or q is large enough (depending
just on the Dynkin diagram of G). For u a unipotent element of G and v a
unipotent element of LY, we have

ZOL wF|—
Q) =LF Y Y E " [z o,

T weWy(Lz) |WL(LI)|

where T runs over the F-stable blocks of L and where Zg is the block of G with
same cuspidal data as T.

The part of the above sum for Z the principal block is the same formula as [7,
Corollaire 4.4].

Proof. Proposition 1 applied with ¢ = Q{;}g gives, if we write RSFF instead of RE‘
to keep track of the Frobenius,

QL. QS (u,—))pr = |LF | RES (Q1F) ()

Now we have by [5, Proposition 3.2] ng = R%‘{;F /'\?LI,wF where /ﬁz,wp is ¢%z
T

times the characteristic function of (17, wF), a class function on L¥¥. Here, as in
[5, above Remark 2.1], for an irreducible G-equivariant local system ¢, we denote by
C, the unipotent G-conjugacy class which is the support of ¢, and if (Lz,¢7) is the
cuspidal datum of ¢ we set ¢, = 3(codim C, — dim Z(Lz)). In [5, Proposition 3.2]
the assumptions on p and ¢ come from [10] but by the same considerations than at
the end of the proof of Proposition 2 it is sufficient to assume ZG connected or ¢
large enough.

By the transitivity of Lusztig induction we get
LT - Fo5 ~1G,T
<QwF,QE’(U,_)>LF = ‘LF| 1R1C‘;%F(XLI,wF)(U) = ILF‘ leFG(u))

where Zg is the block of G with same cuspidal data as Z. Using the orthogonality
of the Green functions Q{‘U’FI, see [5, Corollary 3.5] (where the assumption is that p
is almost good which comes from [9], so can be removed now by [12]) and the fact
they form a basis of unipotently supported class functions on L, indexed by the
Wi, (Lz)-conjugacy classes of Wy, (Lz)F', we get the proposition. a
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Proposition 3 gives a convenient formula to compute automatically two-variable
Green functions. Table 1 gives an example, computed with the package Chevie
(see [16]).

We denote by ), the characteristic function of the F-stable local system ¢, and
by A(u) the group of components of the centralizer of a unipotent element w.

Proposition 4. Assume either ZG is connected or q is large enough (depending
just on the Dynkin diagram of G). Let R, ., be the polynomials which appear in [5,
Lemma 6.9]. Then

QE (u,v) = o™ || Aw)|” 12 Y VWY (W)Rig T,
€I T yeIr
where ¢, = %(codim C, — dim Z(Lz)).

Proof. For a block Z of L and ¢ € ZF, let Q, be the function of [5, (4.1)]. Then by
[5, (4.4)] applied respectively in G and L we have

Qurc) = > QF)V(u) and QLi(w)= Y Qu(wF)Vu(v)
LEZF KRELF

where ), = ¢®)),. Thus, using the notation Z1,, asin [5, 3.3] to denote the function
wF + |Z°(Lz)"¥| on Wg(Lz)F, the term relative to a block Z in the formula of
Proposition 3 can be written

Wa(Lz)F
|LF| 1 (2L, Z Qnym Z yL WS(LII))F >WL(LI)F'
KETLF =y
Applying now [5, Lemma 6.9] this is equal to
|LF|71<ZLZ Z ann(v)v Z j}L(u)RL,’yQ’Y>WL(LI)F7
KETF 1eZg ¥ yeZ?

We use now [5, Corollary 5.2] which says that, <QV?ZLIQK>WL(LI)F = 0 unless
Cy = C, and in this last case is equal to

AT Y 102 (0a) g V5 (va) Vi (va)
a€A(v)

Thus the previous sum becomes

LAY ST Di@RAA@)T Y 102 (0a) a2 Yy (va) Y Va(va) Ve (v).

€I yeIF a€A(v) KETF
. ce | A(0)F if v, =
But by [5, (4.5)] we have >, Vi (vq) Vi (v) = g AT it . Y , where k runs
0 otherwise
over all local systems. Thus, summing over all the blocks, we get the formula in
the statement. a

Corollary 5. Assume either ZG is connected or q is large enough (depending
just on the Dynkin diagram of G ). Then for any unipotent elements v € Gt and
v € LY we have:
(i) QE (u,v) vanishes unless v C uG C IndF (v¥), where IndF (V%) is the
induced class in the sense of [14].
(ii) |ULF||A(’U)|QS(U,U) is an integer and is a polynomial in q with integral
coefficients.
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Proof. For (i), we use [5, Lemma 6.9(i)] which states that R, , = 0 unless C, C

C, C Ind§(C,). Since Y, (v) vanishes unless C,; 3 v, the only non-zero terms in
the formula of proposition 4 have C., > v, whence the result since ), (u) vanishes
unless C, > u.

For (ii), we start with

Lemma 6. ¢“~“ R,  is a polynomial in g with integral coefficients.

Proof. The defining equation of the matrix R = {¢““"** R, 4}, ~ reads (see the proof
of [5, Lemma 6.9(i)]):

R = PeCcICp Pt
where Cg is the diagonal matrix with diagonal coeflicients ¢ for ¢+ € Zg, and
Cy, is the similar matrix for L and Z, where Pg is the matrix with coefficients
{P, v }..veze where these polynomials are those defined in [11, 6.5], and Py, is the
similar matrix for L and Z, and finally I is the matrix with coefficients
We(Lz)F ~ -~
Iy = <IndWS((LZI))F Pys Pu)We (Lr) F

where ¢, is the character of Wy,(Lz)F which corresponds by the generalised Springer
correspondence to v (and similarly for ¢,). Since Pr, and Pg are unitriangular ma-
trices with coefficients integral polynomials in ¢, thus Pp, L also, it suffices to prove
that CglC, ! has coefficients polynomial in ¢, or equivalently that

. We(Lz)F ~ -~
if <IndWS((L;))F Py SDL>WG(L1)F # 0, then ¢, — Cy > 0.

We now use [5, Proposition 2.3(ii)] which says that the non-vanishing above implies
C, C C, C Indg (Cy). We now use that, according to the definitions, ¢, — ¢, =
dim B — dim BY where BS is the variety of Borel subgroups of G containing an
element u of the support of ¢, and where BL is the variety of Borel subgroups of
L containing an element v of the support of v. Now the lemma follows from the
fact that by [14, Theorem 1.3 (b)] we have dim B = dim BY if u is an element of

Indg(C,), and that dim BS is greater for u € Indf (C,) — Ind§ (C,). O

Now (ii) results from the lemma: since the ) have values algebraic integers, by
Proposition 4 the expression in (ii) is a polynomial in ¢ with coefficients algebraic
integers. But, since |L|Q (u,v) is a Lefschetz number (see for example [8, 8.1.3]),
the expression in (ii) is a rational number; since this is true for an infinite number of
integral values of ¢ the expression in (ii) is a polynomial with integral coefficients.

O

SCALAR PRODUCTS OF INDUCED GELFAND-GRAEV CHARACTERS

The pretext for this section is as follows: in [2, Remark 3.10] is pointed the
problem of computing (RET,, RET,)gr when (G, F) is simply connected of type
2Fg, when L is of type As x Ao, and when ¢ corresponds to a faithful character
of Z(L)/Z°(L), and checking that the value is the same as given by the Mackey
formula. We show now various ways to do this computation, where in this section
we assume p and ¢ large enough for all the results of [5] to hold (in particular,
we assume p good for G, thus not solving the problem of loc. cit. where we need
q=2).
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Let Z = Z(G), and let T', be the Gelfand-Graev character parameterized by
z € HY(F, Z), see for instance [3, Definition 2.7]. Let u, be a representative of the
regular unipotent class parametrized by z. Asin [11, 7.5 (a)] for ¢ an F-stable local
system on the regular unipotent class we define I', = szeHl(F,Z) Y. (u,)T, where
= 12/2°]

[H(F,2)]"

Note that the cardinality |Cg(u.)¥| is independent of z; actually it is equal to
|Z(G)F|gksG (see [1, 15.5]). Thus we will denote this cardinality |Cqr (u)| where
u € G is any regular unipotent element. There exists a character ¢ of H'(F, Z)
and a root of unity b, (see [4, above 1.5]) such that Y, (u.) = b,{(z). With these
notations, we have

Proposition 7. We have I, = ngagld()@F (w)| DY, where ng and o¢ are defined
as in [4, 2.5],

Proof. This proposition could be deduced from [6, Theorem 2.8] using [4, Theorem
2.7]. We give here a more elementary proof.

With the notations of [3, (3.5")] we have DI'; = 3"y (g z) 2272 By [4,
lemma 2.3] we have ¢, s = ¢,,—1; and ZzeHl(RZ) ((z)ez1 = ngac_l. It follows
that

cID0 = Y (DT = > ((2)ee

2€HY(F,Z) 2,2/ €HY(F,Z)

= Z sz’_l,lé-(z)’yz/

2,2’ €HY(F,Z)

= > @ Y enad@)

ZeH(F,Z) e HY(F,Z)

=ngo;' Y (e =neo b Car (u)|V,
2 €H\(F,Z)

O

Proposition 8. If . is a local system supported on the regular unipotent class of L
and T denotes its block, we have

(RETY, RET ) gr =
| Z(L) S | Z°(L)" ¥ ||Wea (Lg)| |[(wF)Ve 1) 0 Wy, (Ly)|
ZO(L) [WL(Lz)? |(wF)We (L))

weWrL(Lz)
Note that in a given block Z there is at most one local system supported by the
regular unipotent class (see [4, Corollary 1.10]).

Proof. When ¢ is supported by the regular unipotent class we have Q, = 1, see the
begining of section 7, bottom of page 130 in [5]. Using this in the last formula of
the proof of [5, Proposition 6.1], we get that '™ is up to a root of unity equal to

JAC)IIWLLD) ™ pewn 1) 120(Lz)“F|QLF. Since REQLT = QS7°, we get
(RET,, RET \gr =

ACHPWLEL) > [Z2%L) T 2° (L) T QS QS ) ar.
w,w’ €Wy (Lz)
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By [5, 3.5] the last scalar product is zero unless wF and w'F are conjugate in
We(Lz), and is equal to |Cyg w,) (wF)|/|Z°(Lz)""| otherwise. We get

(RET., RET,)gr = |A(C,))[*|W(Lg)|
> 12%(L) | Cwe Ly (wF)| | (wF) Ve ) AT, (L),
weWrL(Lz)
which gives the formula of the proposition since A(C,) = Z(L)/Z(L)°. O

Corollary 9. Let . and ¢/ be local systems supported on the reqular unipotent class
of G, and T, I’ be their respective blocks: then

0 if L £,
(i) (M3, T )gr = im Z(Lz)—dim ,
L G ZZO((GG))|2|ZO(G)F|qd Z(Lz)—dim Z(G) if =1

0 if L #£1,
q—rkssG|ZO(G)F|—1 ZfL — [//.

(ii) Vo Vr)ar = {

Proof. The functions QSI’,IG and QS,%G are orthogonal to each other when Zg # Zg

(see [9, V, 24.3.6] where the orthogonality is stated for the functions X,). Since there

is a unique ¢ in a given block supported on the regular unipotent class, we get the

orthogonality in (i). In the case ¢ = ¢/ in (i), the specialization L = G in Proposition

8 is (TS, IS)gr = |ACSL12Y 1z @] g [5, Corollary 5.2], where
Loty /G 7Z9(G) wEWg (Lz) Y 19 y ,

[Wa (L)l
we use that @, = 1 when ¢ has regular support, we have ZweWG(LI) % =
g2 |Cq(u)°F|. Whence (IS, T§)qr = | Zogy[2q " CHIm ZLD)|C (u)F|. Using

C&(w)"| = g™ Z°(G)"|, we get ().
For (ii), we apply Proposition 7 in (i), using that D is an isometry and that
oco¢ = ¢z by [4, proposition 2.5]. O

A particular case of Proposition 8 is

Corollary 10. If (L,:) is a cuspidal pair, that is L = Lz, then

Z(L
(RETE RSV ar = | 2 2w m)) 2wy
Z°(L)
We remark that this coincides with the value predicted by the Mackey formula
(RETY.RET )ar = D> ("Riern(TD), "Refen (°TY)) woony e

2€LF\S(L,L)/LF

Indeed, since the block Z which contains the local system ( is reduced to the
unique cuspidal local system (C, () where C is the regular class of L, all terms in
the Mackey formula where L N *L # L vanish. Thus the Mackey formula reduces
to

(RETY, RET )gr = > (TL,"Tl)Lr
z€Wga (L)

and any z in Wp,(L) acts trivially on H!(F, Z(L)) since, the map hy, being sur-
jective, any element of H!(F, Z(L)) is represented by an element of H!(F, Z(G));
thus all the terms in the sum are equal, and we get the same result as Corollary 10
by applying Corollary 10 in the case G = L.

Another method for computing (RS DT';, RE DT';)gr would be to use Proposi-
tion 1 and the values of the two-variable Green functions.
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We give these values in the following table in the particular case of 2Eg for the
F-stable standard Levi subroup of type As x Ag, for ¢ = —1 (mod 3), so that
F acts trivially on Z(G)/Z°(G). This table has been computed in Chevie using
Proposition 3. The method is to compute the one-variable Green functions which
appear in the right-hand side sum by the Lusztig-Shoji algorithm; note that even
though the characteristic function of cuspidal character sheaves are known only up
to a root of unity, this ambiguity disappears when doing the sum, since such a scalar
appears multiplied by its complex conjugate. However the Lusztig-Shoji algorithm
depends also on the knowledge that when ¢, with support the class of the unipotent
element u, is parameterized by (u, x) where x € Irr(A(w)) then for the unipotent
element u, € G parameterized by a € H'(F, A(u)) we have Y, (u,) = x(a). We
assume that this hold. This is known when ¢ is in the principal block, but not
for the two blocks with cuspidal datum supported on the Levi subgroup of type
A2 X AQ.

Note that the table shows that the values of |ULF|QE (u,v) are not in general
polynomials with integral coefficients but may have denominators equal to |A(v)].

TABLE 1. Values of |ULF|QE(U,U) for G = 2E¢(q) simply connected and
L = A3(¢®)(q — 1)?, for ¢ = —1 (mod 3).

'u\u ‘ E@ EG(CS) EG((%) E6(a1) Eﬁ(al)(<3> EG(Ql)(C%) D5 Eg(ag)
111,111 | 0 0 0 0 0 0 0 0
21,21 | 0 0 0 0 0 0 1 4q+1
3,3 1 0 0 (4g+1)/3 y/3 ®y/3 2¢®2/3 (7% +2q — 2)q/3
3,3y | O 1 0 ®y/3 (4g+1)/3 ®y/3 2q®5/3 (q —2)q®2/3
3’3(C§) 0 0 1 Dy /3 Py /3 (49+1)/3 2qP2/3 (g —2)qP2/3
v\u | Eo(as)(_cz) B (as) ¢5) Ee(as) (1) Ee(as) (¢2) Be(a3) (—¢y)
111,111 0 0 0 0 0
21,21 2qg+1 4q9+1 2q+1 4q9+1 2qg+1
3,3 7> P2 (q—2)q®2/3 (3¢ +2)¢* (g —2)q®2/3 e
3.3y | (Ba+2)¢® (g —2)q®2/3 P2 (79* +2¢ — 2)q/3 P2
3,32 ¢°®2 (74* +2q — 2)q/3 a* P2 (¢ —2)q®2/3 (3¢ +2)¢
v\u ‘ As As(¢s) A5(<§) Ds(a1)
111,111 0 0 0 0
21,21 (—2¢ — 1)®; (—2q — 1)®o (—2q — 1)@ 3q+1
3,3 q®2®3/3 (—5¢% —2¢+1)q®2/3  (—5¢*> —2q+ 1)qP2/3 ¢P1P2/3
3,3(¢q) | (—56° —2q +1)q®2/3 qP2®3/3 (=5¢% — 29+ 1)q®2/3 ¢P192/3
3,32 | (=5¢° =20+ 1)g®2/3  (=5¢* —2¢+ 1)q®2/3 q®2®3/3 q®1®2/3
v\u ‘ Ag+Aq Dy Ay D4(a1)(111)
111,111 0 1 0 4g+1
21,21 Doyd3 3qP2Pg B+ +q+ 1P (8¢3 +2¢% +4q — 2)qP2
3,3 (29 +1)®®2/3  qP1P2P6/3 @32 (49 + 1)g*®2/3
3,3(¢c5) | 24+ 1)g*P2/3 qP1D3P6/3 q* @32 (4 + 1)g*®3/3
3.3z | (2a+ 1)g>®P2/3 qP1P3P6/3 g o2 (4q + 1)qi®2/3
v\u ‘ D4(a1)(21) Dy(ar) Asz+Aq As
111,111 2+ 1 Dy (—2¢ — 1)®» (3¢% +2q + 1)®s
21,21 | (8¢® +6¢® +2¢+2)q® (2¢+1)qP2®s  (—4¢> —q* —2¢+1)qP3  (3¢® — ¢ +2q — 1)qP3Py
3,3 (2 4+ 1)¢*®1P2/3 q*®2d6/3 (=29 — 1)g°®@2/3 0
3,3(¢s) (29 +1)g*®192/3 7 P2®/3 (=29 —1)¢°®3/3 0

3,32y | (204 1)q'®12/3 G D2P6/3 (—2¢ — 1)g>®3/3 0
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'U\u ‘ 2A9+Aq 2A2+A1(C3) 2A2+A1(€§) 2A5
111,111 Dy®3 Dod3 Dyd3 P2D3Dg
21,21 | (2¢> +2¢2 +4q+ 1)®®2 (203 +2¢° +4¢+ 1)¢3P2  (2¢3 +2¢2 +4q+ 1) P2 3¢*DZP3D6
3,3 B D3 0 0 8 P3P3P¢
3,3(¢3) 0 8 ®2P3 0 0
3,32 0 0 B P P3 0
v\u ‘ 2A2(C3) 2A2(C§) Ao+2Aq Ao+Aq
111,111 D2P3d4 D2D3dg CE+P++q+1)Ds D230
21,21 | 3¢*®2030¢ 3¢ P2d3dg (g3 +2q+1)¢g®®2 (3% + 2 + 1)¢* 20
3,3 0 0 0 0
3,3(¢cs) | °P3P3Ps 0 0 0
3,3(c2) 0 ¢®P2P3d¢ 0 0
v\u_| Az(11) Az
111,111 | (3¢° + ¢ + ¢+ 1)®3®6  5¢° + 3¢5 +4q" +4¢% + 5¢° +4¢" +2¢° + 2¢> +2¢ + 1
21,21 (4¢® + g+ 1)g* @302 (2¢ + 1)q* @1 D2 D3 D4 Dg
3,3 0 0
3,3(¢s) 0 0
3,3(c2) 0 0
v\u 34, 244
11,111 | (=3¢° =3¢5 =3¢° —=3¢° —2¢" = —? —q—1)®2 (2 + ¢ + ¢® + ¢ + 1) 23D P
21,21 (—2¢% — 1)q" P30 P P3P3P4 D6
3,3 0 0
3:3(¢a) 0 0
3,3(c2) 0 0
v\u Aq 1
11,111 | 2¢7+ ¢+ +d"+2¢5 + ® + ¢* + ® + ¢ + 1)@3P6 P19 LR34 D2P5P10P12P 15
21,21 0 0
3,3 0 0
3,3(¢y) 0 0
3,3(c2) 0 0
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