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ABSTRACT

Distortions can occur due to several processing steps in the imag-
ing chain of a wide range of multimedia content. The visibility of
distortions is highly correlated with the overall perceived quality
of a certain multimedia content. Subjective quality evaluation of
images relies mainly on mean opinion scores (MOS) to provide
ground-truth for measuring image quality on a continuous scale.
Alternatively, just noticeable difference (JND) defines the visibility
of distortions as a binary measurement based on an anchor point.
By using the pristine reference as the anchor, the first JND point
can be determined. This first JND point provides an intrinsic quan-
tification of the visible distortions within the multimedia content.
Therefore, it is intuitively appealing to develop a quality assess-
ment model by utilizing the JND information as the fundamental
cornerstone. In this work, we use the first JND point information
to train a Siamese Convolutional Neural Network to predict image
quality scores on a continuous scale. To ensure generalization, we
incorporated a white-box optical retinal pathway model to acquire
achromatic responses. The proposed model, D-JNDQ, displays a
competitive performance on cross dataset evaluation conducted
on TID2013 dataset, proving the generalization of the model on
unseen distortion types and supra-threshold distortion levels.

CCS CONCEPTS

« Computing methodologies — Perception; Neural networks;
Image compression.
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1 INTRODUCTION

Subjective assessment of image quality commonly often relies on
collecting Mean Opinion Scores (MOS) from a set of observers, as it
provides a continuous image quality measurement. Just Noticeable
Difference (JND) provides a binary measurement to quantify the
perceptual differences between a pair of images and thus could
serve as a potential workaround for quality prediction. It is defined
as the smallest intensity change of a stimulus that can be noticed
by the human visual system (HVS). Concisely, when the 15¢ JND
is obtained by using the pristine reference as an anchor, it also
represents the minimum visible distortion intensity. In other words,
it measures sub-threshold and near-threshold distortions. Without
loss of generality, the following JNDs, i.e., the Z"d, 37 d, ont h JND,
are the perceptual difference obtained by utilizing the previous JND
point as the anchor. Since the anchor points are distorted images,
these JND points provide information regarding to supra-threshold
distortions. Only the first JND measures to which extent observers
may start to notice the distortions when degrading the quality, while
the following JNDs only provide preference information between
different distortion levels. Since the first JND point [8] indicates
directly the minimum noticeable distortion intensity, it may also
reveal how our HVS perceives the distortions quantitatively. It
is thus of great potential to be explored for the development of
perceptual-based quality assessment metrics.

Recently, several JND datasets were published that measures the
visual differences between different distortion levels [8, 11, 16, 17].
Nonetheless, the collected JND points of the same content may
have high variation among observers. Therefore, additional models
are often used to fuse observer responses into one single JND point
[7].

Identifying the JND points of certain content from one observer
requires a series of comparisons between pairs of images. Limited
by the budget, existing datasets contain only a handful of SouRce
Content (SRC) and distortion types, i.e., the Hypothetical Reference
Circuit (HRC)[8, 11]. There may not be sufficient data to directly
develop a learning-based model. Therefore, it is inevitable to adopt
alternative approaches to overcome the problem of lack of training
data. For instance, transfer learning was adopted in [4] to predict
Satisfied User Ratio (SUR) using the MCL-JCI dataset [8]. Siamese
Convolutional Neural Network (CNN) was frequently adopted in
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Figure 1: Diagram of the proposed model where Iy, indicates the input images, and Ap,p denotes the achromatic responses.
Reference and distorted image pairs inputted to the Siamese CNN after the pre-processing. Siamese CNN outputs is used for
image quality prediction. During training, dissimilarity scores derived from MCL-JCI dataset is used for training via contrastive

loss.

the quality domain for predicting the quality-ranking of the stim-
uli, where pairwise or triplet-based inputs artificially augment the
limited data.

Moreover, existing white-box methods can be utilized to reduce
the dimensionality of the input images while preserving related
cues. Ultimately, an accurate model of the early HVS can greatly
benefit not only image quality assessment but also other computer
vision tasks. To this end, to model the HVS for distortion percep-
tion scenarios, Visual Difference Predictors (VDP) have been devel-
oped [3, 13]. They model the HVS in a modular fashion including
optical, retinal and neural pathways based on the psychophysi-
cal studies. Although VDPs are often used as standalone models
to assess the visibility of distortions, individual modules can be
beneficial as feature extractors.

To this end, we propose a Siamese CNN by exploiting the per-
ceptual information provided by the first JND step. A similarity
score is determined from the first JND step opinions of observers
in MCL-JCI dataset. We hypothesize that the similarity scores ac-
quired this way are correlated with the image quality. Therefore,
acquired similarity scores were used to train the a Siamese CNN
to predict image quality of a distorted image in comparison to the
reference. To further ensure model generalization with limited data,
we also exploit the intermediate perceptual representation intro-
duced in the Optical and Retinal Pathway model[13] to bridge the
gap between the perceptual distortion space within the HVS and
the latent representation output by our Siamese network. This allow
us to generalize the model to unseen distortions despite training
the model only on compression distortions. According to experi-
mental results on the TID-2013 dataset [14], the proposed model
achieves competitive performances compared to state-of-the-art
image quality metrics. It was also verified via experiments that
the model generalizes well for unseen distortion types in both sub-
threshold and supra-threshold ranges. Contribution of the work
can be summarized as follows:

o Incorporating white-box achromatic response model from
HDR-VDP 2 [13] as pre-processing step to ensure the gener-
alization of the model in image quality assessment of unseen
distortion types and supra-threshold distortions.

e Proposing a simple similarity score derivation from the first
JND points by capturing the JND point variance as the dis-
tance between reference and distorted image pair.

e Providing a publicly available image quality assessment met-
ric! that displays competitive performance without any pre-
training on cross dataset evaluations.

2 RELATED WORKS

There are several JND datasets in the literature for image compres-
sion and video compression with varied pre-process approaches
to obtain accurate and representative JNDs. MCL-JCI dataset [8]
is composed of 50 source images (SRCs) with varying numbers of
JND points on JPEG compression levels. After getting the raw JND
points, a Gaussian Mixture Model (GMM) was adapted to generate
a staircase quality function from a set of JND points [7]. MCL-JCV
dataset was released from [16], which contains JND data obtained
from 50 observers prepossessed by a similar staircase quality func-
tion designed for H.264/AVC. JND-PANO dataset contains JND
samples for 40 reference panoramic images over JPEG compres-
sion levels[11]. VideoSet [18] is a large-scale dataset that provides
JND samples for H.264 compression levels at varying resolution.
PW]NDInfer consist of JND samples over 202 reference images over
compression levels.

The booming of JND subjective studies over the past several
years has sparked a lot of interest and have spurred a lot of interest-
ing ideas for the development of JND prediction models. Liu et al.
proposed a picture-wise binary JND prediction model by defining
JND prediction as a multi-label classification task and reducing
it to a series of binary classification problems [10]. Fan et al. pro-
posed a model to predict the satisfied user ratio and the first JND
point over MCL-JCI dataset. Analogously, Zhang et al. proposed a
satisfied user ratio (SUR) prediction model for video compression
distortions [19]. SUR curve, for a lossy compression scheme (e.g.
JPEG), aims to characterize the probability distribution of the JND
levels. Consequently, SUR prediction models only aims to impact of
compression algorithms on the perceived quality. They do not gen-
eralize to other type of distortions. Our work differentiates from the

!model weights and code available at https://github.com/kyillene/D-JNDQ
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SUR prediction task by directly predicting image quality on unseen
distortion types and levels. According to our best knowledge, this
is the first work that utilizes the first JND points to predict overall
image quality on a continuous scale for various distortion types in
both sub-threshold and supra-threshold ranges.

3 PROPOSED MODEL

HVS is a very complex system and not yet fully understood. Based
on relevant studies [5], it can mainly be divided into four major
parts: optic, retinal, lateral geniculate nucleus, and visual cortex
processing. In our proposed framework, we simplify the approach
by dividing this complex process into two. We first use an existing
Optical and Retinal Pathway model to pre-process input images,
i.e., the Optical and Retinal Pathway proposed by Mantiuk et al.
This module provides an estimation of the achromatic responses
for displayed images. Optical and Retinal processing of HVS highly
affects the visibility of distortions. Hence, including this module
as a pre-processing tool simplifies the similarity prediction task
and allows the generalization of the model into unseen distortions.
After acquiring achromatic responses of both the reference and
distorted images, the remaining task is to predict the similarity
between the achromatic response inputs.

Regarding its proven success in visual similarity, and pairwise
ranking prediction tasks [12, 15], Siamese CNN was employed to
predict the similarity between input pairs. In general, Siamese net-
works are equipped with two or more identical networks with
shared weights to learn the embedding between a pair or triplet of
input data. More concretely, we aim to learn the first JND point dis-
tributions of the observers using the Siamese network. A detailed
explanation regarding to similarity score calculation is given in
Section 4.

The overall structure of the proposed model is shown in Fig. 1.
All the achromatic responses are acquired by pre-processing input
RGB images with the optical and retinal pathway model from HDR-
VDP 2. Then, these achromatic responses are fed into the Siamese
CNN to extract their latent representation, i.e., feature vectors. Af-
terward, the pairwise distance between outputted feature vectors
is calculated to compute a similarity score. In the following subsec-
tions, detailed information is given regarding the pre-processing
stage and the Siamese CNNss.

3.1 Optical and Retinal Pathway Model

Optical and Retinal Pathways are modeled as a combination of 4
sub-modules in the HDR-VDP 2 [13]. The first module accounts
for the light scattering that occurs in the cornea, lens, and retina.
It is defined by a modulation transfer function estimated via psy-
chophysical studies. The second module calculates the probability
of a photo-receptor sensing a photon at a corresponding wave-
length. It outputs cone and rod responses of the input image. The
third module mimics the non-linear response to light of the photo-
receptors. It is modeled as a non-linear transducer function. The
final module converts the non-linear responses into joint cone and
rod achromatic responses by simple summation.

By incorporating Optical and Retinal Pathways into the pre-
processing stage, masking effects occurring at this stage of the
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Figure 2: Dissimilarity scores acquired by using first JND
steps of each observer. Each row represents an SRC. Columns
are ordered from the highest QP level to lowest, left to right.

visual pipeline could be well accounted for. By enhancing or mask-
ing the distortions visibility with existing knowledge in the domain,
the training complexity of the similarity network could be much
simplified and accelerated. Nevertheless, it improves the general-
ization of the model to tackle not only unseen distortion types, but
also supra-threshold distortion values.

3.2 Siamese Convolutional Neural Network

The Siamese network is utilized as a feature extractor without any
fully connected layers. On top of this backbone, we directly compute
the pairwise distances. This architecture facilitates arbitrary input
resolutions. We design our Siamese network from the scratch. It
contains 5 convolutional layers with batch normalization and ReLu
activation layers. To reduce the spatial resolution, a stride of 2 was
adapted at the first 4 convolutional layers with appropriate zero
padding.

For the last layer of the network, a Sigmoid activation function is
employed without stride. After flattening the output feature vector,
they are then used to calculate the similarity score between the
reference and distorted images.

4 DATASET AND TRAINING DETAILS

MCL-JCI dataset [8] was used to train our network. MCL-JCI dataset
contains 50 SRCs with a resolution of 1920 x 1080. Each SRC is
encoded using JPEG encoder [1] with varying Quantization Param-
eter (QP) levels in a range of [0, 100], where 100 corresponds to the
highest quality. This results in a total of 5050 images including the
reference images. 30 subjects provided 3 to 8 JND points for each
SRC image with the bisection method. Individual JND points were
fused for each SRC [7].

As described in Sec. 3.1, reference and distorted images from
the MCL-JCI dataset are first converted into achromatic responses
using the Optical and Retinal Pathway model from HDR-VDP 2. The
obtained achromatic responses share the same spatial resolution as
the input images. However, pixel values are represented in a single
channel, resulting in an array of size 1920 x 1080 X 1.

After experimenting on the MCL-JCI dataset, it was observed that
the task of detecting the first JND point and following JND points
are different. While identifying the first JND point, an observer tries
to identify the difference between the reference and distorted image.
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However, for the later JND points, this task gradually turned into
a preference task, i.e., which stimulus is preferred compared to the
other. More specifically, instead of “at which QP level the distortion
becomes visible”, the question evolved into “at which QP level the
distortion becomes more disturbing”. This observation encourages
us to utilize only the first JND point for labeling the training dataset.
In order to capture the uncertainty of the observers, we utilized
the individual observer scores as done in [2, 4]. For each SRC, an
uncompressed image was paired with 100 compressed images with
different QP levels. Each pair was assigned with a dissimilarity
score ranging from 0 to 1. It is defined by the number of observers,
whose JND points are beyond the corresponding QP level. For a
given QP level i, the dissimilarity score d; is calculated simply as;
d=> o)
n

where, s; is the number of observers with first JND point, JNDy,
greater than i. n is the total number of observers.

For each SRC in the MCL-]JCI dataset, dissimilarity scores for
every QP level is calculated this way. In Fig. 2, each SRC is rep-
resented by a line. With a decreasing QP level, the dissimilarity
between the reference and distorted image increases.

During the training, a contrastive loss function[6] is used as
defined below:

YN (1-S8i) x D +S; x (M - D;)*

o= N @

where D; is the euclidean distance between the two output fea-

ture vector, S; is the ground truth similarity score between the two
inputs, and M is the margin as defined in [6].

We conducted hyperparameter tuning for the Siamese network.
The contrastive loss function was used with a batch size of 32 during
training. We found out that a 0.03 learning rate with the Adam
optimizer provides us with the best convergence speed and lowest
validation loss with the final network structure. Finally, the Siamese
network was trained for 100 epochs over the training dataset with
the optimal hyperparameters. We also experimented with weight
decay and regularization terms during hyperparameter searches.
However, we observed no improvement in training convergence or
model accuracy.

5 EVALUATION AND RESULTS

It is worth mentioning that our model was trained only on JPEG
distortions with the first JND. To prove the generalization capabili-
ties of the proposed model on unseen distortions and novel supra-
threshold distortion levels, we conducted a cross-dataset evaluation
on the TID-2013 dataset [14]. TID-2013 dataset contains 24 different
distortions including but not limited to noise, blur, transmission
error, and compression distortions. They are categorized into 6
overlapping groups. In total, there are 3000 distorted images with
varying distortion intensity and distortion types.

We tested the model on all 3000 images without any pre-training.
We used the scripts provided by the authors to calculate the cor-
relation between the predicted results and the MOS. As such, cor-
relation results are directly comparable with other metric correla-
tions acquired by the authors. Table 1 reports the Spearman rank-
order correlation coefficients of the proposed model and the other
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Reference Image Ref. Achromatic Response

Figure 3: Reference and distorted image (QP=17) with corre-
sponding achromatic responses for SRC-7 in MCL-JCI.

Table 1: SROCC values for selected metrics in TID-2013

Noise Actual Simple Exotic New  Color Full

D-JNDQ 0.851  0.881 0.894 0.315 0.842 0.813 0.589
HDR-VDP 3 0.829 0.847 0.929 0.822  0.679 0.635 0.772

FSIM 0.897  0.911 0.949 0.844 0.649 0.565 0.801
FSIMc 0.902  0.915 0.947 0.841 0.788 0.755 0.851
PSNR 0.822  0.825 0.913 0.597  0.618 0.535 0.640
PSNRc 0.769  0.803 0.876 0.562  0.777 0.734  0.687
PSNRHA 0.923 0938 0.953 0825 0.701 0.632 0.819
SSIM 0.757  0.788 0.837 0.632  0.579 0.505 0.637
MSSSIM 0.873 0,887 0.905 0.841 0.631  0.566 0.787
VIFP 0.784  0.815 0.897 0.557  0.589  0.506  0.608

methodologies provided by [14]. The proposed model, i.e., D-JNDQ,
provides competitive results with the compared metrics in Noise,
Actual and Simple categories and provides better results in distor-
tion categories "New" and "Color" compared to other evaluated
metrics. The proposed model achieved the lowest performance in
the subset "Exotic". This is mainly due to the preferential nature of
the distortions in this category. Fig 5 presents two failure examples
from this category. As it can be seen, according to MOS, image on
the right has higher quality but our model predicts the opposite.
This is due to model being trained on the visibility of distortions.
However, for distortions, such as local block-wise distortion, de-
tecting the distortion plays a minimal role since the distortions are
visible at all levels with different variations rather than different
intensities. Therefore, we expected a poor prediction performance
in this category, which also reduces the overall correlation results
in the ’full’ category.

In order to measure the impact of the pre-processing stage of the
model, we conducted an ablation study. Table. 2 depicts the result
of this study. The best model parameters for each input type were
trained for the same amount of iterations. Results show that the
model with achromatic response input, i.e. with pre-processing, has
a higher correlation with the MOS compared to the one using RGB
inputs in all categories.

In addition to Spearman correlation evaluation, we also con-
ducted an analysis on the performance of identifying significant
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Table 2: SROCC values with and without pre-processing.

Noise Actual Simple Exotic New Color Full

AR.Input 0851 0.881 0.894 0.315
RGB Input 0.742  0.750 0.801 0.141

0.842 0.813  0.589
0.703 0.734  0.446

Different / Similar

=1

0.75

AUC

Better [ Worse

Figure 4: Metric performances on TID-2013 dataset excluding
part of the "Exotic" category.

pairs. In this analysis, we have excluded the aforementioned 4 dis-
tortion types (out of the 24 total types) from the “Exotic“ category.
We followed the strategy proposed in [9] to stress out the perfor-
mances of considered models, readers are recommended to refer
to [9] for more details. In Fig. 4, the left sub-figure presents the
area under curve (AUC) values for each metric at identifying sig-
nificant and non-significant pairs. Similarly, the right figure shows
AUC values for each metric in identifying better or worse image
pairs, while the middle figure indicates the accuracy of the metric
in terms of distinguishing better or worse images in significant
pairs. Although there is no significant difference in many of the
metric performances, the proposed metric (D-JNDQ) has a com-
petitive performance in identifying significant versus similar pairs.
For better/worse analysis, all metrics seem to perform well overall.
D-JDNQ, HDR-VDP 3, FSIM, and FSIMc have a significantly better
performance than the rest of the evaluated metrics in terms of AUC
values. D-JNDQ, HDR-VDP 3, FSIMc, and PSNRc have more than
98% accuracy in identifying whether a stimulus within a significant
pair is significantly better or worse than another.

QoEVMA °22, October 14, 2022, Lisboa, Portugal.
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Figure 5: Failure cases from ’Exotic’ category. For both im-
ages, MOS and D-JNDQ predictions are given below. While,
higher numbers indicate better quality for MOS, lower num-
ber indicates better quality for D-JNDQ.

6 CONCLUSION

We propose a learning-based metric, D-JNDQ, trained using the
first JND point information. The optical and retinal pathway model
from HDR-VDP 2 is used as a pre-processing module to improve
the performance of the metric. Ablation study proves that the pre-
processing stage is crucial for the generalization of the model. Our
experimental results show that the metric can generalize well for
the quality assessment of various types of distortions in both sub
and supra-threshold intensities. The competitive performance of
the model also demonstrated that the first JND points provide
rich information for image quality assessment. More specifically,
incorporating the first JND point variance among observers into
similarity scores shown to be beneficial for the training of the
Siamese CNN.

On another front, D-JNDQ showed poor performance for certain
distortion types (e.g. Figure 5), where the image quality task is
related to distortion preference rather than distortion visibility.
Since we utilized a distortion visibility database (i.e., JND dataset,
MCL-JCI) to develop the metric, this is not a surprising outcome.

At its current state, JND datasets are widely available for 2D
lossy compression algorithms. With the increasing popularity of
JND datasets for other multimedia types, we believe that the pro-
posed metric and rest of our contributions can be extended to other
multimedia types.
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