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D-JNDQ: LEARNING IMAGE QUALITY FROM JUST NOTICEABLE DIFFERENCES

Ali Ak, Andréas Pastor, Patrick Le Callet

IPI, LS2N, University of Nantes, France

ABSTRACT

According to recent psycho-physics studies, the visibility
of distortions is highly correlated with the overall perceived
quality of a certain stimulus. Subjective quality evaluation
of images relies mainly on mean opinion scores (MOS) to
provide ground-truth for measuring image quality on a con-
tinuous scale. Alternatively, just noticeable difference (JND)
defines the visibility of distortions as a binary measurement
based on an anchor point. By using the pristine reference
as the anchor, the first JND point can be determined. This
first JND point provides an intrinsic quantification of the visi-
ble distortions within the stimulus. Therefore, it is intuitively
appealing to develop a quality assessment model by utiliz-
ing the JND information as the fundamental cornerstone. In
this work, we use the first JND point information to train
a Siamese Convolutional Neural Network to predict image
quality scores on a continuous scale. To ensure generaliza-
tion, we first process the input images to acquire achromatic
responses. Cross dataset evaluation of the proposed model on
the TID-2013 dataset provides a competitive correlation with
MOS, proving the generalization of the model on unseen dis-
tortion types and supra-threshold distortion levels.

Index Terms— Image Quality, Just Noticeable Differ-
ence, Siamese Convolutional Neural Network

1. INTRODUCTION

Subjective assessment of image quality commonly relies on
collecting mean opinion scores (MOS) from a set of ob-
servers, as it provides a continuous image quality measure-
ment. Just Noticeable Difference provides a binary measure-
ment to quantify the perceptual differences between a given
image pair, and thus could serve as a potential workaround
for quality prediction. It is defined as the smallest intensity
change of a stimuli, which can be noticed by the human vi-
sual system(HVS). Concisely, when the 1st JND is obtained
by using the pristine reference as an anchor, it also repre-
sents the minimum visible distortion intensity. In another
words, it measures sub-threshold and near-threshold distor-
tions. Without loss of generality, the following JNDs, i.e., the
2nd, 3rd, ..., nth JND, are the perceptual difference obtained
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by utilizing the previous JND point as the anchor. Since the
anchor points are distorted images, these JND points pro-
vide information regarding to supra-threshold distortions. the
Only the first JND measures to which extend observers may
start to notice the distortions when degrading the quality,
while the following JNDs only provide preferences infor-
mation between different distortion levels. Since the first
JND point [1] indicates directly the minimum noticeable
distortion-intensity, it may also reveal how our HVS perceive
the distortions quantitatively. It is thus of great potential to
be explored for the development of perceptual based quality
assessment metric.

Recently, several novel JND datasets were released for
the measurement of the visual differences between different
distortion levels [1, 2, 3, 4]. Nonetheless, the collected JND
points of the same content may have high variation among ob-
servers. Therefore, additional models are often used to fuse
observer responses into one single JND point [5].

Identifying the JND points of certain content from one ob-
server requires a series of comparisons between pairs. Lim-
ited by the budget, existing datasets contain only a handful
of SouRce Content (SRC) and distortion types, i.e., the Hy-
pothetical Reference Circuit (HRC) [1, 2]. There may not
be sufficient data to develop a learning-based model directly.
Therefore, it is inevitable to adopt alternative approaches to
overcome the problem of lack of training data. For instance,
transfer learning was adopted in [6] to predict Satisfied User
Ratio (SUR) using the MCL-JCI dataset [1]. Siamese Con-
volutional Neural Network (CNN) was frequently adopted in
the quality domain for predicting the quality-ranking of the
stimuli, where pairwise inputs indirectly augment the limited
data.

To this end, in this work, we proposed1 to train a Siamese
CNN by exploiting the perceptual information provided by
the first JND. Furthermore, to further ensure model gener-
alization with limited data, we also exploit the intermediate
perceptual representation introduced in the Optical and Reti-
nal Pathway model[7] to bridge the gap between the percep-
tual distortion space within HVS and the latent representation
output by our Siamese network.According to experimental
results on the TID-2013 dataset [8], the proposed model
achieves competitive performances compared to state-of-the-
art quality metrics. It was also verified via experiments that

1model weights and code: https://github.com/kyillene/D-JNDQ



Fig. 1. Diagram of the proposed model where IR/D indicates the input images, and AR/D denotes the achromatic responses.

the model is generalized in image quality task for unseen
distortion types in both sub-threshold and supra-threshold
ranges.

2. RELATED WORKS

There are several JND datasets in the literature for image
compression and video compression with varied pre-process
approaches to obtrain accurate and representative JNDs.
MCL-JCI dataset [1] is composed of 50 source image (SRC)
with varying number of JND points on JPEG compression
levels. After getting the raw JND points, a Gaussian mixture
model was adapted to generate a staircase quality function
from a set of JND points [5]. MCL-JCV dataset was re-
leased from [3], which contains JND data obtained from 50
observers prepossessed by a similar staircase quality func-
tion designed for H.264/AVC. JND-PANO dataset contains
JND samples for 40 reference panoramic images over JPEG
compression levels[2]. VideoSet is a large-scale dataset that
provides JND samples for H.264 compression levels at vary-
ing resolution [9]. PWJNDInfer is consist of JND samples
over 202 reference images over compression levels.

The booming of JND subjective studies over the past sev-
eral years has sparked a lot of interest and have spurred a lot of
interesting ideas for the development of JND prediction mod-
els. Liu et al. proposed a picture-wise binary JND prediction
model by defining JND prediction as a multi-label classifica-
tion task and reducing it to a series of binary classification
problems [10]. Fan et al. proposed a model to predict the sat-
isfied user ratio and the first JND point over MCL-JCI dataset.
Analogously, Zhang et al. proposed a satisfied user ratio pre-
diction model for video compression distortions [11]. Ac-
cording to our best knowledge, this is the first work that uti-
lizes the first JND points to predict overall image quality on a
continuous scale for various distortion types in sub-threshold
and supra-threshold ranges.

3. PROPOSED MODEL
Human Visual System is a very complex system and not yet
fully understood. Based on relevant studies [12], it can mainly

be split into four broad parts as optical, retinal, lateral genic-
ulate nucleus, and visual cortex processing. In the proposed
framework, as a preliminary study, we simplify our approach
by dividing this complex process into two. We first use an ex-
isting Optical and Retinal Pathway model to pre-process in-
put images, i.e., the Optical and Retinal Pathway proposed
by Mantiuk et al. This module provides an estimation of
the achromatic responses for displayed images. Optical and
Retinal processing of HVS highly affects the visibility of dis-
tortions. Hence, including this module as a pre-processing
tool simplifies the similarity prediction task. After acquiring
achromatic responses of both the reference and distorted im-
ages, the remaining task is to predict the similarity between
the achromatic responses inputs. Regarding its proven suc-
cess in visual similarity, and pairwise ranking prediction tasks
[13], Siamese CNN was employed to predict the similarity be-
tween input pair. In general, Siamese networks are equipped
with two or more identical networks with shared weights to
learn the embedding between a pair or triplet of input data.
More concretely, we aim to learn the first JND point distribu-
tions of the observers using the Siamese network.

The overall structure of the proposed model is shown in
Fig. 1. All the achromatic responses are acquired by pre-
processing input RGB images with the optical and retinal
pathway model from HDR-VDP 2. Then, they are fed into
the Siamese CNN to extract their latent representation, i.e.,
feature vectors. Afterwards, the pairwise distance between
outputted feature vectors is calculated to compute a similarity
score. During training, contrastive loss [14] is used between
the predicted outputs and the ground truth dissimilarity scores
acquired from MCL-JCI dataset. In the following sections,
a detailed information is given regarding the pre-processing
stage and the Siamese CNNs.

3.1. Optical and Retinal Pathway Model

Optical and Retinal Pathway is modeled as a combination of
4 sub-modules in the HDR-VDP 2 [7]. The first module ac-
counts for the light scattering that occurs in the cornea, lens,
and retina. It is defined by a modulation transfer function esti-
mated via psychophysical studies. The second module calcu-



Fig. 2. Reference and distorted image (QP=17) with corre-
sponding achromatic responses for SRC-7 in MCL-JCI.

lates the probability of a photo-receptor sensing a photon at a
corresponding wavelength. It outputs cone and rod responses
of the input image. The third module mimics the non-linear
response to light of the photo-receptors. It is modeled as a
non-linear transducer function. The final module converts the
non-linear responses into joint cone and rod achromatic re-
sponses by simple summation.

By incorporating Optical and Retinal Pathway into pre-
processing stage, the masking effects occurring at this stage
of the visual pipeline could be well taken into account. By
enhancing or masking the distortions visibility with existing
knowledge in the domain, the training complexity of the simi-
larity network could be well simplified and accelerated. Nev-
ertheless, it enhances the generalization of the model for tack-
ling not only unseen distortion types but also supra-threshold
distortion values.

3.2. Siamese Convolutional Neural Network

The Siamese network is utilized as a feature extractor with-
out any fully connected layers. On top of this backbone, we
directly compute the pairwise distances. This architecture fa-
cilitates arbitrary input resolutions. We design our Siamese
network from the scratch. It is consists of 5 convolutional
layers with batch normalization, ReLu activation layers. To
reduce the spatial resolution, a stride of 2 was adapted for the
first 4 convolutional layers.

For the last layer of the network, a Sigmoid activation
function is employed without stride. After flattening the out-
put feature vector, they are then used to calculate the similar-
ity score between the reference and distorted images.

4. DATASET AND TRAINING DETAILS

MCL-JCI dataset [1] was used to train our network. MCL-JCI
dataset contains 50 SRCs with a resolution of 1920 × 1080.
Each SRC is encoded using JPEG encoder [15] with vary-
ing Quantization Parameter (QP) levels in a range of [0, 100],
where 100 correspond to the highest quality. This results in a

Fig. 3. Dissimilarity scores acquired by using first JND steps
of each observer. Each row represents an SRC. Columns are
ordered from the highest QP level to lowest, left to right.

total of 5050 images including the reference images. 30 sub-
jects provided 3 to 8 JND points for each SRC image with the
bisection method. Individual JND points were fused for each
SRC [5].

As described in Sec. 3.1, reference and distorted images
from the MCL-JCI dataset are first converted into achromatic
responses using the Optical and Retinal Pathway model from
HDR-VDP 2. The obtained achromatic responses share the
same spatial resolution with input images. However, pixel
values are represented in a single channel, resulting in an ar-
ray of size 1920× 1080× 1.

After experimenting on the MCL-JCI dataset, it was ob-
served that the task of detecting the first JND point and fol-
lowing JND points are different. While identifying the first
JND point, an observer tried to identify the difference be-
tween the reference and distorted image. However, for the
later JND points, this task gradually turned into a preference
task, i.e., which stimulus is preferred compared to the other.
More specifically, instead of “at which QP level the distortion
becomes visible”, question evolved into “at which QP level
the distortion becomes more disturbing”. This observation
encourages us to utilize only the first JND point for labeling
the training dataset. In order to capture the uncertainty of the
observers, we utilized the individual observer scores as done
in [16, 6]. For each SRC, uncompressed image was paired
with 100 compressed images with different QP levels. Each
pair was assigned with a dissimilarity score ranging from 0
to 1. It is defined by the number of observers, whose JND
points are beyond the corresponding QP level. In Fig. 3, each
SRC is represented by a line. With a decreasing QP level,
the dissimilarity between the reference and distorted image
increases.

After pre-processing the dataset as described above, we
conducted hyper parameter tuning for the Siamese network.
Contrastive loss function was used with a batch size of 32
during training. We found out that 0.03 learning rate with
Adam optimizer provides us the best convergence speed and
lowest validation loss with the final network structure. Fi-
nally, Siamese network trained for 100 epochs over the train-
ing dataset with the optimal hyper parameters. We also exper-



imented with weight decay and regularization terms during
hyper parameter search, however we observed no improve-
ment on training convergence or model accuracy.

5. EVALUATION AND RESULTS

Table 1. SROCC values for selected metrics in TID-2013
Noise Actual Simple Exotic New Color Full

D-JNDQ 0.851 0.881 0.894 0.315 0.842 0.813 0.589
HDR-VDP 3 0.829 0.847 0.929 0.822 0.679 0.635 0.772
FSIM 0.897 0.911 0.949 0.844 0.649 0.565 0.801
FSIMc 0.902 0.915 0.947 0.841 0.788 0.755 0.851
PSNR 0.822 0.825 0.913 0.597 0.618 0.535 0.640
PSNRc 0.769 0.803 0.876 0.562 0.777 0.734 0.687
PSNRHA 0.923 0.938 0.953 0.825 0.701 0.632 0.819
SSIM 0.757 0.788 0.837 0.632 0.579 0.505 0.637
MSSSIM 0.873 0,887 0.905 0.841 0.631 0.566 0.787
VIFP 0.784 0.815 0.897 0.557 0.589 0.506 0.608

Table 2. SROCC values with and without pre-processing.
Noise Actual Simple Exotic New Color Full

A.R. Input 0.851 0.881 0.894 0.315 0.842 0.813 0.589
RGB Input 0.742 0.750 0.801 0.141 0.703 0.734 0.446

It is worth mentioning that our model was trained only
on JPEG distortions with the first JND. To prove the gen-
eralization of the proposed model on unseen distortions and
novel supra-threshold distortion levels, we conducted a cross-
dataset evaluation on the TID-2013 dataset [8]. TID-2013
dataset contains 24 different distortions including but not lim-
ited to noise, blur, transmission error, compression distor-
tions. They are categorized into 6 overlapping groups. In
total, there are 3000 distorted images with varying distortion
intensity and distortion types.

We tested the model on all 3000 images without any pre-
training. We used the scripts provided by the authors to cal-
culate the correlation of between the predicted results and the
MOS. As such, correlation results are directly comparable
with other metric correlations acquired by the authors. Ta-
ble 5 reports the Spearman rank order correlation coefficients
of the proposed model and the other methodologies provided
by [8]. The proposed model , i.e., D-JNDQ, provides com-
petitive results with the compared metrics in Noise, Actual
and Simple categories and providing better results in New
and Color category of distortions compared to other evalu-
ated metrics. The proposed model achieved the lowest per-
formance on the subset of exotic category. This is mainly due
to the preferential nature of the distortions in this category.
For distortions, such as local block-wise distortion, detecting
the distortion plays a minimal role since the distortions are
visible at all levels with different variations rather than dif-
ferent intensities. Therefore, we expected a poor prediction
performance in this category, which also reduces the overall
correlation results. Table. 2 depicts the ablation study results.
Best model parameters for each input type was trained for
same amount of iterations. Results show that the model with

Fig. 4. Metric performances on TID-2013 dataset excluding
part of the ”Exotic” category.

achromatic response input has a higher correlation with the
MOS compared to the one using RGB inputs.

In addition to Spearman correlation evaluation, we also
conducted an analysis on the performance of identifying sig-
nificant pairs. In this analysis, we have excluded the afore-
mentioned 4 distortion types (out of total 24 types) from the
“Exotic“ category. We followed the strategy proposed in [17]
to stress out the performances of considered models, readers
are recommended to refer to [17] for more details. In Fig. 4,
the left sub-figure presents the area under curve (AUC) values
for each metric at identifying significant and non-significant
pairs. Similarly, right figure shows AUC values for each met-
ric in identifying better or worse image pairs, while the mid-
dle figure indicates the accuracy of the metric in terms of dis-
tinguishing better or worse images in significant pairs. Al-
though there is no significant difference in many of the metric
performances, proposed metric (D-JNDQ) has a competitive
performance in identifying significant versus similar pairs.
For better/worse analysis, all metrics seem to perform well
overall. D-JDNQ, HDR-VDP 3, FSIM and FSIMc have a
significantly better performance than the rest of the evalu-
ated metrics in terms of AUC values. D-JNDQ, HDR-VDP 3,
FSIMc and PSNRc have more than 98% accuracy on identify-
ing whether a stimulus within a significant pair is significantly
better or worse than another.

6. CONCLUSION

We propose a learning based metric, D-JNDQ trained using
the first JND point information. The optical and retinal path-
way model from HDR-VDP 2 is used as a pre-processing
module to improve performance of the metric. Our exper-
imental results show that the metric is well generalized in
quality assessment of various types of distortions in both sub
and supra threshold intensities. It is demonstrated that the first
JND points provide rich information for image quality assess-
ment. Additionally, proposed metric shows poor performance
for certain distortion types, where the image quality task is re-
lated to distortion preference rather than distortion visibility.
Since we utilized a distortion visibility database to develop
the metric, this is not a surprising outcome. We also believe
that the proposed approach can be extended on video quality
evaluation task following a similar recipe.
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