Design & field-test of an operational low-cost & open-source sensor for river water quality monitoring

Perret Franck¹, Krieg-Rabeski Pascal¹, Maurer Lucas¹, <u>Namour Philippe^{2*}</u>, Legout Cédric³, Freche Guilhem³, Guyard Hélène³, Navratil Oldrich¹

Univ Lyon, Université Lumière Lyon 2, CNRS, UMR 5600 EVS, F-69635 Lyon (France)
 Irstea Lyon-Villeurbanne, UR RiverLy, 5, rue de la Doua, 69626 Villeurbanne cedex 20244 (France)
 - Université Grenoble Alpes, Institut des Géosciences de l'Environnement (IGE) BP 53, 38041-Grenoble Cedex 9 (France)

Low-cost river monitoring

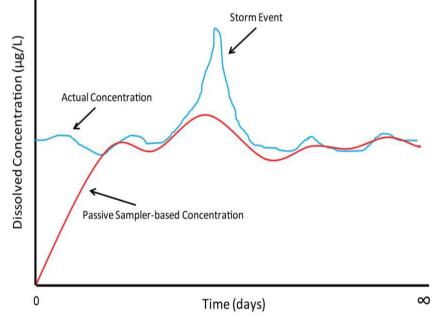
- 1. Current river monitoring
- 2. New low-cost & open-source tool
- 3. Field application: turbidity
- 4. Conclusions & Perspectives

Outline

...

The start of the art

Nowadays, the state of the art with regard to the physicochemical and biological monitoring of rivers is:


• **Grab sampling** at time *t* (usually during working hours)

The high cost of this protocol makes it impossible to obtain any satisfactory spatial relevance

Integrative sampling

Equilibration time: 15-30 days POCIS (Polar Organic Chemical Integrative Sampler) DGT (Diffusive Gradient in Thin film) SPME (Solid Phase Micro-extraction) SPMD (Semipermeable Membrane Device)

Average sample obscures the essentially dynamic character of a polluting event

Stuer-Lauridsen 2005 Environ. Pollut., 136, 3, 503-524, Kot-Wasik et al. 2007 Anal. Chim. Acta, 602, 2, 141-163, Soderstrom et al. 2009 J. Chromatogr. A, 1216, 3, 623-630

Current Monitoring Techniques

Deduce a river's Chemical Status from monthly grab samples or integrative samples

It's like to

"Try to understand a symphony by listening only one or two notes every minute!"

Kirchner et al. 2004 Hydrol. Processes, 18, 7, 1353-1359

4

Imagine new water monitoring tools

Properly monitor a river is a huge meteorological challenge

A dream monitoring tool must be:

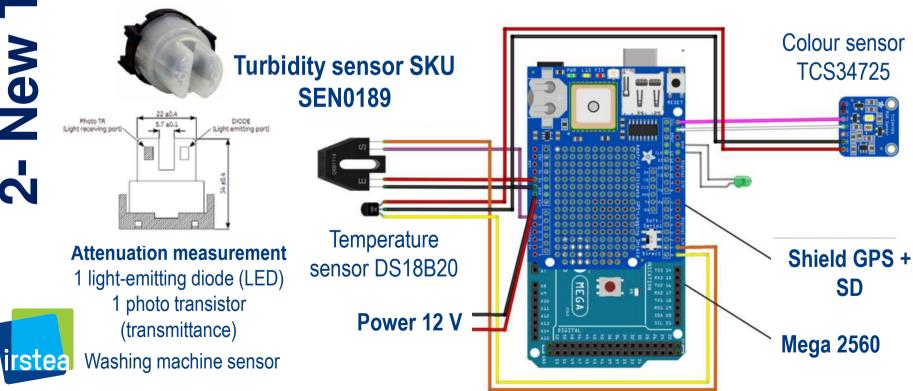
- 1. Cheap: multiply measurement points
- 2. Autonomous: limit maintenance costs
- 3. Fast: monitor transient events in real time
- 4. Integrated: several laboratory functions (reduce risks of errors)
- 5. Reliable & Accurate: keep current data quality
- 6. Non destructive: not modify its surrounding

And include software for subsequent data validation, management & interpretation!

Namour et al. (2012) E-Water [on-line], 2012/01, http://www.ewa-online.eu

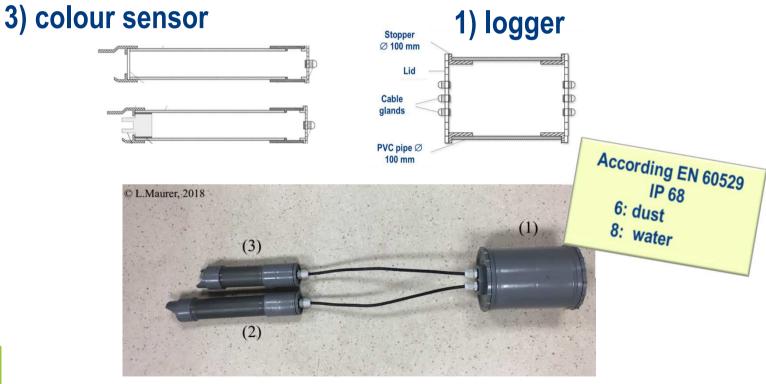
Hardware & Software

Open-source electronics platform based on Easy-to-use hardware & software available as DIY kits (kid's electronics) or in preassembled forms



Microcontroller board Arduino Mega 2560 (powerful CPU > UNO)

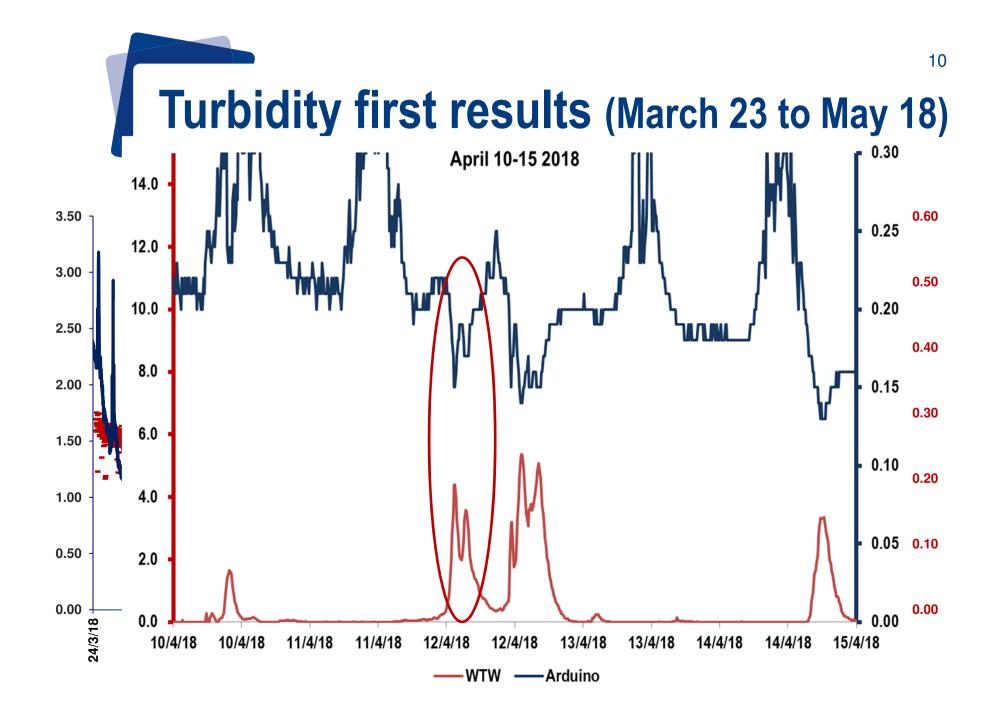
Shield GPS + SD (timestamped logging & localisation)


Tools New Ņ

Encapsulation

Insulate the electronics from the environment

2) temperature & turbidity sensors


New Tools

2

Field monitoring site

applications **Field** က irstea

Good correlation ($R^2 = 0.9722$) with the commercial sensor Low sensitivity : slope = 0,016 mV.L/g Solar interference to decrease (suppress)

Turbidity first results

11

Cost comparison

Pieces of equipment used	Cost (€)
Arduino MEGA 2560	38.90
Shield GPS/SD	20.25
Micro SD 16 GB	9.22
Turbidity sensor (SKU SEN0189)	10.85
Temperature sensor (DS18B20)	1.59
Colour sensor (TCS34725)	6.50
Shield Proto	6.90
Field equipment (PVC, wires)	68.00
TOTAL	162.21

Compare with WTW's device cost : 6000 €

- WTW VisoTurb® 700 IQ
- Sensor net data logger DIQ/S 282

Conclusions

- 4- Conclusions
 - Good correlation (R² = 0.9722) with the brand sensor (WTW) (WTW VisoTurb® 700 IQ + sensor net data logger DIQ/S 282)
 - Low cost < 200 € compared to ≈ 6000 €
 - Need to increase the low-cost sensor sensitivity \approx 1 μ V.L/g Cost / benefit analyse:

Balance between required sensitivity and available money

- Decrease (suppress) solar interference
 - Stray light filters proper encapsulation

Over all perspectives

- Low production & energy use costs (self powered with solar power)
- Software & hardware under control (fitted to aims)
- Rugged housings fitted to field conditions
- Monitoring point number increase

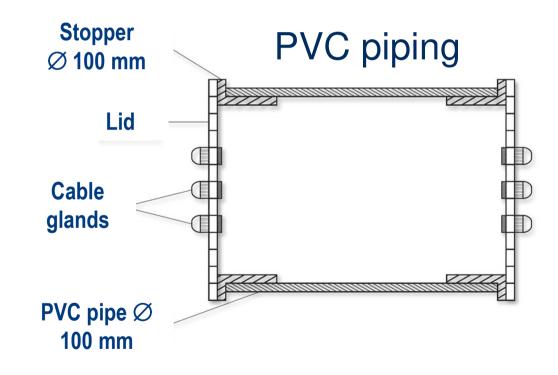
- Needs skills in electronics & programming
- Some limits to overcome as energy supply & precision
- Need upgrades to give usable data
- Data quality fall risks

- Large user community
- Share knowledge & develop low-cost
- instrumentation
- Adapt other sensors (pH, conductivity, pollutants, ...)
- New job creation

20

- Trade brands hit back with new own
 low cost equipment
- Needs software for big data validation, processing & interpretation

IGE


Institut des géosciences de l'environnement

Just finished my	Next step:
first Arduino project:	Update my Linked In
A blinking led	in Add skill Mechatronic Engineering

Need new monitoring tools New robust and flexible tools Able to detect the transitory hot moments and spots, In order to Assess activity of **bioactive element** in biogeochemical cycles Improve our ability to predict pollutant occurrence, and finally to better manage water resource

Turbidity & colour sensors

Turbidity sensor SKU SEN0189 attenuation measurement 1 light-emitting diode (LED) 1 photo transistor (transmittance)

Only receptor is waterproof

Colour sensor TCS34725

Measurement:

light-emitting diode (LED)
 filtered photo transistors (Red, Green, Blue)
 unfiltered photo transistor (Brightness)
 Not waterproof